JP2014199845A - Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet - Google Patents

Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet Download PDF

Info

Publication number
JP2014199845A
JP2014199845A JP2013073788A JP2013073788A JP2014199845A JP 2014199845 A JP2014199845 A JP 2014199845A JP 2013073788 A JP2013073788 A JP 2013073788A JP 2013073788 A JP2013073788 A JP 2013073788A JP 2014199845 A JP2014199845 A JP 2014199845A
Authority
JP
Japan
Prior art keywords
oxygen
resin
ppm
kneader
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013073788A
Other languages
Japanese (ja)
Inventor
直行 永島
Naoyuki Nagashima
直行 永島
洋介 人見
Yosuke Hitomi
洋介 人見
邦男 宮原
Kunio Miyahara
邦男 宮原
修二 東
Shuji Azuma
修二 東
日隈 慎二
Shinji Hikuma
慎二 日隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013073788A priority Critical patent/JP2014199845A/en
Publication of JP2014199845A publication Critical patent/JP2014199845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal sintered body containing low oxygen and having high density even when metal fine powder containing low oxygen is used.SOLUTION: A method includes the steps of: adjusting atmosphere gas so that oxygen concentration in the atmosphere gas in a kneader before metal fine powder containing low oxygen is injected thereinto is kept to be 200 ppm or less; melting the resin injected into the kneader; and injecting the metal fine powder containing low oxygen into the molten resin and kneading them in the presence of the atmosphere gas whose oxygen concentration is 200 ppm or less.

Description

本発明は、金属粉末含有樹脂成形体用組成物の製造方法、予備成形体、金属焼結体の製造方法および希土類焼結磁石に関する。   The present invention relates to a method for producing a metal powder-containing resin molded body composition, a preform, a method for producing a metal sintered body, and a rare earth sintered magnet.

従来より圧粉工法により金属粉末を圧縮成形し、成形体を焼結して金属焼結体を得る方法のほかに、小型化、複雑形状化に対応させるために金属粉末と樹脂とを混練し、この混練物を射出成形し、得られた成形体を脱脂、焼結して金属焼結体を得る方法が知られている。これをMIM(Metal Injection Molding)工法と呼んでいる。   In addition to the conventional method of compressing and molding metal powder by the compacting method and sintering the compact to obtain a sintered metal compact, the metal powder and resin are kneaded in order to cope with downsizing and complex shapes. A method is known in which a metal sintered body is obtained by injection molding the kneaded product and degreasing and sintering the obtained molded body. This is called the MIM (Metal Injection Molding) method.

MIM工法の例として下記の特許文献1では、希土類焼結磁石の製造方法が開示してある。その方法では、希土類(R)、鉄(Fe)およびホウ素(B)を主成分とする鋳造インゴットを粉砕し、この金属粉末に樹脂を3〜10重量%の範囲で添加後に混練し、この混練物を射出成形して得られる成形体を脱脂して焼結している。   As an example of the MIM method, Patent Document 1 below discloses a method for manufacturing a rare earth sintered magnet. In this method, a cast ingot mainly composed of rare earth (R), iron (Fe) and boron (B) is pulverized, and the resin is added to the metal powder in the range of 3 to 10% by weight, and then kneaded. A molded product obtained by injection molding a product is degreased and sintered.

また、特許文献2では、磁気異方性焼結磁石の製造方法について記載されている。その方法では、主成分が20〜45重量%のR(Rは希土類元素の少なくとも1種)と、0.1〜3.0重量%のBと、52〜79.9重量%のFeまたはFe+Co(ただし、CoはFeの1/2以下)からなり、その平均粒径が1〜20μmである金属粉末を用いる。その金属粉末100部に、樹脂としてワックス、レジンおよび滑材の混合物を6〜14部の範囲で添加後に混練して、この混練物を射出成形している。   Patent Document 2 describes a method for manufacturing a magnetic anisotropic sintered magnet. In that method, the main component is 20 to 45% by weight of R (R is at least one rare earth element), 0.1 to 3.0% by weight of B, and 52 to 79.9% by weight of Fe or Fe + Co. (However, Co is 1/2 or less of Fe.) A metal powder having an average particle diameter of 1 to 20 μm is used. A mixture of wax, resin and lubricant is added to 100 parts of the metal powder in the range of 6 to 14 parts, and the mixture is kneaded, and the kneaded product is injection molded.

ところで、希土類焼結磁石の高特性化のために、金属粉末として低酸素金属微粉末を使うことが検討されている。これまで使用されてきた従来の金属粉末の酸素量は3000ppm以上であったが、低酸素金属微粉末の酸素量は2000ppm以下である。最近ではより酸素量の少ない低酸素金属微粉末が使用されるようになっている。   By the way, in order to improve the characteristics of rare earth sintered magnets, the use of low oxygen metal fine powder as a metal powder has been studied. The conventional metal powder that has been used so far has an oxygen content of 3000 ppm or more, while the low oxygen metal fine powder has an oxygen content of 2000 ppm or less. Recently, a low-oxygen metal fine powder with a smaller oxygen content has been used.

従来の金属粉末と樹脂を混練する混練工程において、従来の金属粉末であれば混練工程の雰囲気ガスの酸素濃度を1000ppm程度にすれば混練、成形、脱脂、焼結して得られる磁石の特性は圧粉工法で得られるものと差が無い程度に十分である。しかし、金属粉末に低酸素金属微粉末を使用した場合は、混練工程の雰囲気ガスの酸素濃度が1000ppm程度では、混練、成形、脱脂、焼結して得られる磁石の特性を圧粉工法で得られるものと差がない程度に良好なものにするには不十分である。このように、低酸素金属微粉末は非常に酸化されやすく、酸化によって磁石の製品特性が低下するという問題があることが本発明者等により確認されている。   In the kneading process of kneading conventional metal powder and resin, if the oxygen concentration of the atmosphere gas in the kneading process is about 1000 ppm for conventional metal powder, the characteristics of the magnet obtained by kneading, molding, degreasing, and sintering are as follows: It is sufficient that there is no difference from that obtained by the compacting method. However, when low oxygen metal fine powder is used for the metal powder, the characteristics of the magnet obtained by kneading, molding, degreasing and sintering can be obtained by the compacting method when the oxygen concentration of the atmosphere gas in the kneading process is about 1000 ppm. It is not enough to make it as good as it does. Thus, it has been confirmed by the present inventors that the low oxygen metal fine powder is very easily oxidized and there is a problem that the product characteristics of the magnet deteriorate due to the oxidation.

特開昭62−252919号公報JP 62-252919 A 特開平1−150303号公報JP-A-1-150303

本発明は、このような実状に鑑みてなされ、その目的は、低酸素金属微粉末と樹脂を混練して用いる場合でも、高特性の希土類焼結磁石などの金属焼結体を製造する方法を提供することである。また、本発明の目的は、このような金属焼結体を製造するための予備成形体と、その予備成形体を構成する金属粉末含有樹脂成形体用組成物の製造方法とを提供することである。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for producing a metal sintered body such as a high-performance rare earth sintered magnet even when a low-oxygen metal fine powder and a resin are kneaded and used. Is to provide. Another object of the present invention is to provide a preform for producing such a metal sintered body and a method for producing a metal powder-containing resin molded body composition constituting the preform. is there.

上記目的を達成するために、本発明者らは、鋭意検討した結果、下記の新たな知見を得た。すなわち、本発明者等は、混練機内部に樹脂を投入後、低酸素雰囲気として酸素濃度を確認し、それから樹脂のみを溶融し、改めて混練機内部の酸素濃度を確認した場合に、樹脂溶融後の雰囲気ガスの酸素濃度が樹脂溶融前の雰囲気ガスの酸素濃度より上昇することを見出した。これは樹脂に混入している空気(酸素)が樹脂の溶融によって脱泡されることにより混練機内部に放出され、拡散されることによって雰囲気ガスの酸素濃度が上昇したためと考えられる。実際に、プラネタリーミキサーなどの密閉バッチ式混練機を使用し、樹脂を混練機へ投入し、混練機内部の雰囲気を酸素濃度100ppm以下の低酸素雰囲気にした後、樹脂を加熱溶融すると、混練機内部の酸素濃度は400ppmに上昇した。   In order to achieve the above object, the present inventors have made extensive studies, and as a result, have obtained the following new findings. That is, the present inventors, after charging the resin into the kneader, after confirming the oxygen concentration as a low oxygen atmosphere, then melting only the resin, and again confirming the oxygen concentration inside the kneader, It was found that the oxygen concentration of the atmospheric gas was higher than the oxygen concentration of the atmospheric gas before melting the resin. This is probably because the air (oxygen) mixed in the resin is degassed by melting the resin and released into the kneader and diffused to increase the oxygen concentration of the atmospheric gas. Actually, using a closed batch type kneader such as a planetary mixer, charging the resin into the kneader, making the atmosphere inside the kneader into a low oxygen atmosphere with an oxygen concentration of 100 ppm or less, and then heating and melting the resin, kneading The oxygen concentration inside the machine increased to 400 ppm.

上記の知見をもとに本発明者らが鋭意研究した結果、以下に示す本発明の方法で金属粉末含有樹脂成形体用組成物を製造し、その組成物を用いて成形した予備成形体を焼結することで、焼結密度が向上し、該焼結体が希土類焼結磁石である場合には、Br(残留磁束密度)およびHc(保磁力)が向上することを見出した。   As a result of intensive studies by the present inventors based on the above knowledge, a metal powder-containing resin molded body composition was produced by the method of the present invention shown below, and a preformed body molded using the composition was prepared. It has been found that by sintering, the sintered density is improved, and when the sintered body is a rare earth sintered magnet, Br (residual magnetic flux density) and Hc (coercive force) are improved.

すなわち、本発明に係る金属粉末含有樹脂成形体用組成物の製造方法は、
低酸素金属微粉末を投入する前の雰囲気ガスにおける酸素濃度が200ppm以下を保持するように混練機内部の雰囲気ガスを調整する工程と、
前記混練機内部に投入された樹脂を溶融する工程と、
前記混練機内部の酸素濃度が200ppm以下である雰囲気ガスの存在下で、溶融された前記樹脂に、低酸素金属微粉末を投入して混練する工程と、を有する。
That is, the method for producing a metal powder-containing resin molded body composition according to the present invention,
Adjusting the atmospheric gas inside the kneader so that the oxygen concentration in the atmospheric gas before introducing the low oxygen metal fine powder is maintained at 200 ppm or less;
Melting the resin charged in the kneader;
And a step of charging and kneading the low oxygen metal fine powder into the molten resin in the presence of an atmospheric gas having an oxygen concentration of 200 ppm or less inside the kneader.

本発明の方法では、溶融された樹脂の周囲に存在する雰囲気ガス、すなわち低酸素金属微粉末を投入する前の雰囲気ガスにおける酸素濃度が200ppm以下を保持するように混練機内部の雰囲気ガスを調整する。そのため、溶融前の樹脂に含まれる空気(酸素)が樹脂の溶融により雰囲気ガスに拡散したとしても、混練機内部の雰囲気ガスは、酸素濃度が200ppm以下を保持するように雰囲気ガスが調整されている。そして、その後に、溶融された樹脂に低酸素金属微粉末を投入して樹脂と共に混練される。こうすることにより低酸素金属微粉末は酸素にほとんど触れることがない。   In the method of the present invention, the atmospheric gas inside the kneader is adjusted so that the oxygen concentration in the atmospheric gas existing around the molten resin, that is, the atmospheric gas before introducing the low-oxygen metal fine powder is maintained at 200 ppm or less. To do. Therefore, even if the air (oxygen) contained in the resin before melting diffuses into the atmospheric gas due to melting of the resin, the atmospheric gas inside the kneader is adjusted so that the oxygen concentration is maintained at 200 ppm or less. Yes. Thereafter, the low-oxygen metal fine powder is put into the molten resin and kneaded with the resin. By doing so, the low-oxygen metal fine powder hardly comes into contact with oxygen.

混練後には、低酸素金属微粉末は樹脂で被覆された状態となり、その後の工程において、脱脂工程に投入するまでは、低酸素でない雰囲気下に曝すことができる。混練処理は、酸素濃度が200ppm以下の雰囲気下で行われることが好ましい。その場合には、混練に際しても低酸素金属微粉末が酸化されるおそれが少ない。   After kneading, the low-oxygen metal fine powder is in a state of being coated with a resin, and can be exposed to a non-low-oxygen atmosphere in the subsequent process until it is put into the degreasing process. The kneading treatment is preferably performed in an atmosphere having an oxygen concentration of 200 ppm or less. In that case, the low oxygen metal fine powder is less likely to be oxidized during kneading.

好ましくは、混練機の内部に前記樹脂を予め投入し、混練機の内部の酸素濃度を調整する。このような構成によれば、混練機を低酸素室に設置するような大掛りな設備や、混練機全体を低酸素雰囲気で覆うような煩雑な設備を必要とせず、簡易な設備を用いて、低酸素金属微粉末を投入する前の雰囲気ガスを低酸素雰囲気に保持することができる。混練機の内部を所定の酸素濃度以下に保持するための方法としては、混練機内部を真空引きする方法や、混練機内部に不活性ガスを常時流す方法などが例示される。   Preferably, the resin is previously introduced into the kneader to adjust the oxygen concentration inside the kneader. According to such a configuration, a large facility for installing the kneader in the low oxygen chamber and a complicated facility for covering the entire kneader with a low oxygen atmosphere are not required, and a simple facility is used. The atmosphere gas before introducing the low oxygen metal fine powder can be maintained in a low oxygen atmosphere. Examples of a method for keeping the inside of the kneader below a predetermined oxygen concentration include a method of evacuating the inside of the kneader and a method of constantly flowing an inert gas inside the kneader.

なお、本発明において、低酸素金属微粉末は、酸素量2000ppm以下の微粉末として定義される。また、本発明に用いる低酸素金属微粉末は、酸素量1000ppm以下の微粉末が好ましい。   In the present invention, the low oxygen metal fine powder is defined as a fine powder having an oxygen content of 2000 ppm or less. The low oxygen metal fine powder used in the present invention is preferably a fine powder having an oxygen content of 1000 ppm or less.

好ましくは前記低酸素金属微粉末を投入する前に、混練機内部の酸素濃度を200ppm以下にする。低酸素金属微粉末を投入前から雰囲気ガスの酸素濃度を制御しておけば、混練に際しても低酸素金属微粉末を投入後に、低酸素金属微粉末が雰囲気ガスの酸素に接触し、低酸素金属微粉末が酸化されるおそれが極めて少ない。   Preferably, the oxygen concentration inside the kneader is set to 200 ppm or less before introducing the low oxygen metal fine powder. If the oxygen concentration of the atmosphere gas is controlled before the low oxygen metal fine powder is charged, the low oxygen metal fine powder comes into contact with the oxygen of the atmospheric gas after the low oxygen metal fine powder is charged even during kneading. There is very little possibility that fine powder will be oxidized.

好ましくは前記樹脂を溶融する前に、混練機内部の酸素濃度を200ppm以下にする。樹脂を溶融する前から雰囲気ガスの酸素濃度を制御しておけば、樹脂の溶融後にも直ちに、雰囲気ガスの酸素濃度を所定値以下に制御し易い。   Preferably, before the resin is melted, the oxygen concentration inside the kneader is set to 200 ppm or less. If the oxygen concentration of the atmospheric gas is controlled before the resin is melted, it is easy to control the oxygen concentration of the atmospheric gas to a predetermined value or less immediately after the resin is melted.

本発明に係る予備成形体は、上記に記載の金属粉末含有樹脂成形体用組成物の製造方法により得られる組成物を成形することで得られる。成形のための方法としては、特に限定されないが、射出成形、圧縮成形などが好ましい。   The preform according to the present invention is obtained by molding a composition obtained by the method for producing a metal powder-containing resin molded body composition described above. A method for molding is not particularly limited, but injection molding, compression molding and the like are preferable.

本発明に係る金属焼結体の製造方法は、前記予備成形体を焼結する工程を有する。本発明の希土類焼結磁石は、この金属焼結体の製造方法により得られる。その製造方法により得られる希土類焼結磁石は、酸素量2000ppm以下、焼結密度99.0%以上で、且つ優れた磁気特性を有する。   The method for manufacturing a metal sintered body according to the present invention includes a step of sintering the preform. The rare earth sintered magnet of the present invention is obtained by this method for producing a sintered metal. The rare earth sintered magnet obtained by the manufacturing method has an oxygen content of 2000 ppm or less, a sintering density of 99.0% or more, and excellent magnetic properties.

図1は本発明の一実施形態に係る方法で用いられる密閉バッチ式混練機の概略図である。FIG. 1 is a schematic view of a closed batch kneader used in a method according to an embodiment of the present invention. 図2(A)は本発明の一実施例に係る方法のフローチャート図、図2(B)は本発明の比較例に係る方法のフローチャート図である。2A is a flowchart of a method according to an embodiment of the present invention, and FIG. 2B is a flowchart of a method according to a comparative example of the present invention.

以下、本発明の一実施形態に係る希土類焼結磁石などの金属焼結体を製造する方法と、このような金属焼結体を製造するための予備成形体(一例として射出成形体)と、その予備成形体を構成する金属粉末含有樹脂成形体用組成物の製造方法とを、図面を参照しつつ説明する。   Hereinafter, a method of manufacturing a metal sintered body such as a rare earth sintered magnet according to an embodiment of the present invention, a preformed body (an injection molded body as an example) for manufacturing such a metal sintered body, The manufacturing method of the composition for metal powder containing resin moldings which comprises the preform is demonstrated, referring drawings.

まず、本実施形態に係る組成物の原料となる低酸素金属微粉末と樹脂とを用意する。低酸素金属微粉末の種類に限定はないが、例えば、希土類焼結磁石を製造する場合には、R(希土類)−T−B系金属粉末を用いる。なお、R−T−B系金属粉末の主成分における希土類R(RはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの1種または2種以上から選択される。)の割合は、特に限定されないが、たとえば20質量%〜40質量%、Bは0.5質量%〜1.5質量%であり、残部Tは、FeまたはFeおよびCoを含む遷移金属元素から選択される1種または2種以上の元素で構成される。また、R−T−B系金属粉末は他の元素の含有を許容する。たとえば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。また、金属粉末の粒径は特に限定はないが、好ましくは平均粒径が1μm〜20μm、さらに好ましくは1μm〜10μmである。   First, a low oxygen metal fine powder and a resin, which are raw materials for the composition according to the present embodiment, are prepared. Although there is no limitation in the kind of low-oxygen metal fine powder, for example, when manufacturing a rare earth sintered magnet, R (rare earth) -TB metal powder is used. In addition, the rare earth R in the main component of the R-T-B-based metal powder (R has a concept including Y. Therefore, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, The ratio of Ho, Er, Tm, Yb, and Lu is selected from one or more.) The ratio is not particularly limited, but is, for example, 20% by mass to 40% by mass, and B is 0.5% by mass to 1.%. The remaining T is composed of one or more elements selected from transition metal elements including Fe or Fe and Co. In addition, the RTB-based metal powder allows the inclusion of other elements. For example, elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. The particle size of the metal powder is not particularly limited, but preferably the average particle size is 1 μm to 20 μm, more preferably 1 μm to 10 μm.

樹脂は、熱可塑性樹脂を用いることが好ましく、たとえばポリプロピレン、ポリスチレン、ポリエチレン、ポリアセタール、EVA樹脂、AS樹脂およびABS樹脂などが用いられ、構造式中に酸素を含有しない樹脂が特に好ましい。また、ワックスや可塑剤などの添加剤を必要に応じて使用してもかまわない。   As the resin, a thermoplastic resin is preferably used. For example, polypropylene, polystyrene, polyethylene, polyacetal, EVA resin, AS resin, and ABS resin are used, and a resin that does not contain oxygen in the structural formula is particularly preferable. Moreover, you may use additives, such as a wax and a plasticizer, as needed.

本実施形態では、樹脂は、図1に示す密閉バッチ式混練機1の混練容器12内に投入される。密閉バッチ式混練機1について特に限定はなく、例えばプラネタリーミキサー、加圧ニーダーなどが例示される。   In the present embodiment, the resin is charged into the kneading container 12 of the closed batch kneader 1 shown in FIG. The closed batch kneader 1 is not particularly limited, and examples thereof include a planetary mixer and a pressure kneader.

図1に示す密閉バッチ式混練機(以下、「混練機」という)1について説明する。混練機1は、混練容器12を有し、混練容器12の内部には、一対のブレード11が配置してあり、ブレード11が回転することで混練容器内部の材料を混練するようになっている。混練容器12には、投入用ポット13が装着してあり、投入用ポット13の内部の低酸素金属微粉末を必要に応じて、混練容器12の内部に投入可能になっている。   A closed batch kneader (hereinafter referred to as “kneader”) 1 shown in FIG. 1 will be described. The kneading machine 1 has a kneading container 12, and a pair of blades 11 are arranged inside the kneading container 12, and the blade 11 rotates to knead the material inside the kneading container. . The kneading container 12 is provided with a charging pot 13, and the low oxygen metal fine powder inside the charging pot 13 can be charged into the kneading container 12 as necessary.

また混練容器12には、ガス導入管14、酸素濃度計16および真空ポンプ15が接続してある。ガス導入管14からは、不活性ガスを、混練容器の内部に流すことが可能になっている。真空ポンプ15は、混練容器12の内部を真空引きし、混練容器内の雰囲気ガスを吸引可能になっている。   The kneading vessel 12 is connected with a gas introduction pipe 14, an oxygen concentration meter 16 and a vacuum pump 15. From the gas introduction pipe 14, it is possible to flow an inert gas into the kneading vessel. The vacuum pump 15 can evacuate the inside of the kneading vessel 12 to suck the atmospheric gas in the kneading vessel.

酸素濃度計16は、混練容器12の内部における雰囲気ガスの酸素濃度を計測可能になっており、そこで計測された酸素濃度信号は、図示しない制御装置に出力される。制御装置では、混練容器12の内部の酸素濃度が、200ppm以下、好ましくは100ppm以下に低くなるように、ガス導入管14から混練容器12内への不活性ガスの流れ、および/または真空ポンプ15による混練容器12内の圧力を制御可能になっている。   The oxygen concentration meter 16 can measure the oxygen concentration of the atmospheric gas inside the kneading vessel 12, and the oxygen concentration signal measured there is output to a control device (not shown). In the control device, the flow of the inert gas from the gas introduction tube 14 into the kneading vessel 12 and / or the vacuum pump 15 so that the oxygen concentration inside the kneading vessel 12 is lowered to 200 ppm or less, preferably 100 ppm or less. The pressure inside the kneading container 12 can be controlled.

本実施形態では、混練容器12内に樹脂を投入した後、樹脂を加熱するとともにブレード11を用いて混練容器12内を撹拌することで樹脂を加熱溶融させる。加熱溶融の条件に特に限定はなく、樹脂の種類などにより決定される。   In the present embodiment, after the resin is put into the kneading container 12, the resin is heated and melted by stirring the inside of the kneading container 12 using the blade 11. There are no particular limitations on the heating and melting conditions, and the conditions are determined according to the type of resin.

また、樹脂を加熱溶融する前に、混練容器12の内部を、酸素濃度が200ppm以下の低酸素雰囲気にすることが好ましい。混練容器12の内部を低酸素雰囲気にするタイミングは、樹脂を混練容器12内に投入する前でも後でもかまわない。樹脂を投入する前に混練容器12内を低酸素雰囲気にする場合は、低酸素金属微粉末投入用のポット13とは別に、樹脂投入用のポットを混練容器12に装着しておくと良い。こうすることによって樹脂を投入する際に混練容器12を開放する必要がなくなる。低酸素雰囲気にする方法に限定はないが、真空ポンプ15による真空引きおよびガス導入管14を用いた不活性ガスのフローを併用することが好ましい。また、不活性ガスの種類にも特に限定はないが、たとえば窒素ガス、アルゴンガス、ヘリウムガス、ネオンガスなどが例示され、好ましくは、窒素ガスまたはアルゴンガスである。   Moreover, it is preferable to make the inside of the kneading container 12 into a low oxygen atmosphere having an oxygen concentration of 200 ppm or less before heating and melting the resin. The timing of setting the inside of the kneading container 12 to a low oxygen atmosphere may be before or after the resin is put into the kneading container 12. When the inside of the kneading container 12 is put in a low oxygen atmosphere before the resin is charged, a pot for charging the resin may be attached to the kneading container 12 separately from the pot 13 for charging the low oxygen metal fine powder. This eliminates the need to open the kneading container 12 when charging the resin. Although there is no limitation on the method of creating a low oxygen atmosphere, it is preferable to use evacuation by the vacuum pump 15 and an inert gas flow using the gas introduction pipe 14 in combination. Moreover, although there is no limitation in particular also in the kind of inert gas, nitrogen gas, argon gas, helium gas, neon gas etc. are illustrated, for example, Preferably they are nitrogen gas or argon gas.

本実施形態では、樹脂をどのような形態で混練容器12内部に投入するかについて特に限定はなく、例えば樹脂ペレットの形態で投入することができる。また、樹脂の量については特に制限はないが、低酸素金属微粉末を100質量%とした場合に3質量%〜15質量%であることが好ましい。   In the present embodiment, there is no particular limitation as to how the resin is charged into the kneading vessel 12 and can be charged, for example, in the form of resin pellets. Moreover, there is no restriction | limiting in particular about the quantity of resin, However When it is 100 mass% of low oxygen metal fine powder, it is preferable that it is 3 mass%-15 mass%.

本実施形態では、樹脂を加熱溶融中、混練容器12の内部の雰囲気を真空引きし、樹脂の脱泡処理を行う。脱泡処理する方法に特に限定はないが、真空ポンプ15により真空引きして混練容器12の内部を減圧する。さらに減圧された混練容器12の内部をガス導入管14による不活性ガスのフローを併用することが好ましい。加熱溶融後から混練容器12内を低酸素雰囲気にする場合、加熱溶融前と同じ方法を用いて低酸素雰囲気にしてもよく、異なる方法を用いて低酸素雰囲気にしてもよい。   In the present embodiment, while the resin is heated and melted, the atmosphere inside the kneading vessel 12 is evacuated to perform the defoaming process of the resin. There is no particular limitation on the method of defoaming, but the inside of the kneading vessel 12 is decompressed by evacuating with the vacuum pump 15. Further, it is preferable to use an inert gas flow through the gas introduction pipe 14 in the decompressed kneading vessel 12 together. When the inside of the kneading vessel 12 is made into a low oxygen atmosphere after heat melting, the same method as before heat melting may be used to make the low oxygen atmosphere, or a different method may be used to make the low oxygen atmosphere.

本実施形態では、加熱溶融後に混練容器12内の酸素濃度を200ppm以下、より好ましくは100ppm以下とする。混練容器12内の酸素濃度は酸素濃度計16で測定する。   In the present embodiment, the oxygen concentration in the kneading vessel 12 is 200 ppm or less, more preferably 100 ppm or less after heating and melting. The oxygen concentration in the kneading vessel 12 is measured by an oxygen concentration meter 16.

次いで、低酸素金属微粉末を混練容器12内部に投入する。低酸素金属微粉末は周囲の空気に含まれる酸素により酸化されやすいので、予め内部を低酸素雰囲気にした低酸素金属微粉末のための投入用ポット13に充填しておくことが好ましい。こうすることによって低酸素金属微粉末を投入する際に混練容器12を開放する必要がなくなり、混練容器12を低酸素雰囲気としたまま低酸素金属微粉末を投入することができる。   Subsequently, the low oxygen metal fine powder is put into the kneading vessel 12. Since the low-oxygen metal fine powder is easily oxidized by oxygen contained in the surrounding air, it is preferable to fill the charging pot 13 for the low-oxygen metal fine powder whose interior is previously in a low-oxygen atmosphere. By doing so, it is not necessary to open the kneading container 12 when the low oxygen metal fine powder is charged, and the low oxygen metal fine powder can be charged while keeping the kneading container 12 in a low oxygen atmosphere.

低酸素金属微粉末のための投入用ポット13内の酸素濃度は200ppm以下、より好ましくは100ppm以下とする。低酸素金属微粉末を混練機1の混練容器12内部に投入後、混練容器12内部の加熱を継続するとともにブレード11を用いて混練容器12内を溶融した樹脂とともに撹拌することにより加熱および混練を行い、射出成形用組成物(金属粉末含有樹脂成形体用組成物)を得る。加熱温度および混練時間に限定はないが、たとえば100℃〜250℃で5分〜180分、混練することが好ましい。   The oxygen concentration in the charging pot 13 for the low oxygen metal fine powder is 200 ppm or less, more preferably 100 ppm or less. After charging the low-oxygen metal fine powder into the kneading container 12 of the kneading machine 1, the heating inside the kneading container 12 is continued and the blade 11 is used to stir the kneading container 12 together with the molten resin for heating and kneading. To obtain an injection molding composition (metal powder-containing resin molding composition). The heating temperature and the kneading time are not limited, but it is preferable to knead at 100 to 250 ° C. for 5 to 180 minutes, for example.

次に、上述した本実施形態の製造方法により得られた混練後の射出成形用組成物(金属粉末含有樹脂成形体用組成物)を図示しない射出成形機へ投入した。配向磁場中で射出成形し、脱脂(脱バインダ)工程および焼結工程を経ることによって、希土類焼結磁石を製造することができる。射出成形工程、脱脂工程および焼結工程の条件について特に限定はない。   Next, the kneaded injection molding composition (metal powder-containing resin molding composition) obtained by the production method of the present embodiment described above was put into an injection molding machine (not shown). A rare earth sintered magnet can be produced by injection molding in an orientation magnetic field, followed by a degreasing (debinding) step and a sintering step. There are no particular limitations on the conditions of the injection molding process, the degreasing process and the sintering process.

射出成形工程は、成形金型に配向磁場を印加しながら射出成形用組成物(金属粉末含有樹脂成形体用組成物)を射出することにより行う。配向磁場を印加することにより成形体に磁気異方性を持たせることができる。射出成形工程における配向磁場の磁界強度や印加時間などには特に制限は無い。   The injection molding step is performed by injecting an injection molding composition (metal powder-containing resin molding composition) while applying an orientation magnetic field to the molding die. By applying an orientation magnetic field, the molded body can have magnetic anisotropy. There are no particular restrictions on the magnetic field strength or application time of the orientation magnetic field in the injection molding process.

脱脂工程は、射出成形により得られた成形体を、真空、不活性ガスフロー、不活性ガス減圧、あるいは水素フロー等の雰囲気下で加熱することにより行う。脱脂工程における加熱温度および加熱時間には特に制限は無い。脱脂工程における雰囲気ガスの酸素濃度は、好ましくは5ppm以下である。   The degreasing step is performed by heating the molded body obtained by injection molding in an atmosphere such as vacuum, inert gas flow, inert gas decompression, or hydrogen flow. There is no restriction | limiting in particular in the heating temperature and heating time in a degreasing process. The oxygen concentration of the atmospheric gas in the degreasing step is preferably 5 ppm or less.

焼結工程は、脱脂工程により得られた成形体を真空、不活性ガスフロー、不活性ガス減圧等の雰囲気下で加熱することにより行う。焼結温度および焼結時間に特に制限は無く、低酸素金属微粉末の種類などに応じて決定される。その後必要に応じて時効処理を行う。   A sintering process is performed by heating the molded object obtained by the degreasing process in atmosphere, such as a vacuum, an inert gas flow, and inert gas pressure reduction. There is no restriction | limiting in particular in sintering temperature and sintering time, It determines according to the kind etc. of a low oxygen metal fine powder. Thereafter, an aging treatment is performed as necessary.

上記の方法により、酸素量が2000ppm以下、より好ましくは1000ppm以下の希土類焼結磁石を得ることができる。希土類焼結磁石の酸素量を2000ppm以下とすることにより、焼結密度が99.0%以上の希土類焼結磁石を得ることができる。さらに、酸素量2000ppm以下で、焼結密度99.0%以上の希土類焼結磁石は、非常に優れた特性を持つことが可能である。   By the above method, a rare earth sintered magnet having an oxygen content of 2000 ppm or less, more preferably 1000 ppm or less can be obtained. By setting the oxygen content of the rare earth sintered magnet to 2000 ppm or less, a rare earth sintered magnet having a sintered density of 99.0% or more can be obtained. Furthermore, a rare earth sintered magnet having an oxygen content of 2000 ppm or less and a sintered density of 99.0% or more can have very excellent characteristics.

本実施形態の方法では、混練機内部で溶融された樹脂の周囲に存在する雰囲気ガス、すなわち低酸素金属微粉末を投入する前の雰囲気ガスにおける酸素濃度が200ppm以下を保持するように雰囲気ガスを調整する。そのため、溶融前の樹脂に含まれる空気(酸素)が樹脂の溶融により雰囲気ガスに拡散したとしても、その雰囲気ガスは、酸素濃度が200ppm以下を保持するように雰囲気ガスが調整される。そして、その後に、混練機内部に低酸素金属微粉末を投入して、溶融された樹脂と共に混練される。   In the method of the present embodiment, the atmospheric gas is maintained so that the oxygen concentration in the atmospheric gas existing around the resin melted inside the kneader, that is, the atmospheric gas before introducing the low-oxygen metal fine powder is kept at 200 ppm or less. adjust. Therefore, even if air (oxygen) contained in the resin before melting diffuses into the atmospheric gas due to melting of the resin, the atmospheric gas is adjusted so that the oxygen concentration is maintained at 200 ppm or less. Thereafter, the low-oxygen metal fine powder is put into the kneader and kneaded with the molten resin.

混練処理は、酸素濃度が200ppm以下の雰囲気下で行われることから、低酸素金属微粉末が酸化されるおそれが少なく、しかも混練後には、低酸素金属微粉末は樹脂で被覆された状態となり、その後の工程において、脱脂工程に投入するまでは、低酸素でない雰囲気下に曝すことができる。たとえば大気(酸素含有雰囲気)中でも短時間の貯蔵や成形などであれば、低酸素金属微粉末を酸化させることなく取り扱うことができる。   Since the kneading process is performed in an atmosphere having an oxygen concentration of 200 ppm or less, the low oxygen metal fine powder is less likely to be oxidized, and after kneading, the low oxygen metal fine powder is in a state of being coated with a resin, In the subsequent process, it can be exposed to a non-low oxygen atmosphere until it is put into the degreasing process. For example, the low-oxygen metal fine powder can be handled without being oxidized in the air (oxygen-containing atmosphere) for short-time storage or molding.

本実施形態では、混練機1における混練容器12の内部に樹脂を予め投入し、混練容器12の内部の酸素濃度を調整する。そのため、本実施形態では、混練機を低酸素室に設置するような大掛りな設備や、混練機全体を低酸素雰囲気で覆うような煩雑な設備を必要とせず、簡易な設備を用いて、低酸素金属微粉末を投入する前の雰囲気ガスを低酸素雰囲気に保持することができる。   In the present embodiment, a resin is previously introduced into the kneading container 12 in the kneader 1 to adjust the oxygen concentration inside the kneading container 12. Therefore, in this embodiment, it does not require a large facility such as installing the kneader in a low oxygen chamber or a complicated facility that covers the entire kneader in a low oxygen atmosphere, using a simple facility, It is possible to maintain the atmosphere gas before introducing the low oxygen metal fine powder in a low oxygen atmosphere.

さらに本実施形態では、樹脂を溶融する前にも、混練機内部の酸素濃度を200ppm以下にしている。樹脂を溶融する前から雰囲気ガスの酸素濃度を制御しておけば、樹脂の溶融後にも直ちに、雰囲気ガスの酸素濃度を所定値以下に制御し易い。   Furthermore, in this embodiment, the oxygen concentration inside the kneader is set to 200 ppm or less before the resin is melted. If the oxygen concentration of the atmospheric gas is controlled before the resin is melted, it is easy to control the oxygen concentration of the atmospheric gas to a predetermined value or less immediately after the resin is melted.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

たとえば、上述した実施形態では、焼結前の予備成形体は、配向磁場中での射出成形により成形したが、その他の方法、たとえば圧縮成形、押出成形などにより焼結前の予備成形体を成形しても良い。   For example, in the above-described embodiment, the preform before sintering is formed by injection molding in an oriented magnetic field, but the preform before sintering is formed by other methods such as compression molding and extrusion molding. You may do it.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1
本実施例に係る金属粉含有射出成形用組成物は下記の方法により製造した。まず、低酸素金属微粉末として、主成分がR(NdおよびDy):31質量%、B:1.0質量%、残部がFeであり、平均粒径5μm、酸素量980ppmの金属粉末を用意した。また、樹脂としてはポリスチレンを用意した。
Example 1
The metal powder-containing injection molding composition according to this example was produced by the following method. First, as a low-oxygen metal fine powder, a metal powder having a main component of R (Nd and Dy): 31 mass%, B: 1.0 mass%, the balance being Fe, an average particle diameter of 5 μm, and an oxygen content of 980 ppm is prepared. did. Moreover, polystyrene was prepared as resin.

また、密閉バッチ式混練機として、図1に示すようなプラネタリーミキサーから成る混練機1を使用した。   Further, as the closed batch kneader, a kneader 1 composed of a planetary mixer as shown in FIG. 1 was used.

まず、ポリスチレンをプラネタリーミキサーの混練容器12内に投入した。その後、プラネタリーミキサーの混練容器12を密閉し、真空引きした後に不活性ガスとして窒素ガスをフローし、プラネタリーミキサーの混練容器12内部を酸素濃度100ppmにした。   First, polystyrene was put into the kneading container 12 of the planetary mixer. Thereafter, the kneading vessel 12 of the planetary mixer was sealed and evacuated, and then nitrogen gas was flowed as an inert gas to make the inside of the kneading vessel 12 of the planetary mixer have an oxygen concentration of 100 ppm.

次いで、混練容器12内に投入してあるポリスチレンを加熱溶融した。次いで、再度真空引きした後に不活性ガスとして窒素ガスをフローし、加熱溶融したポリスチレンを180℃〜200℃で10分〜15分、脱泡処理した。その後、プラネタリーミキサーの混練容器12の内部を酸素濃度100ppmにした。   Next, the polystyrene charged in the kneading vessel 12 was heated and melted. Next, after evacuating again, nitrogen gas was flowed as an inert gas, and the heated and melted polystyrene was defoamed at 180 ° C. to 200 ° C. for 10 to 15 minutes. Thereafter, the inside of the kneading vessel 12 of the planetary mixer was adjusted to an oxygen concentration of 100 ppm.

次いで、投入用ポット13に充填された前記低酸素金属微粉末を混練容器12に投入し、投入後、200℃に加熱して60分混練し、金属粉末含有射出成形体用組成物を得た。なお、混練中、プラネタリーミキサー内部の酸素濃度を低酸素金属微粉末投入時の酸素濃度に維持した。   Subsequently, the low-oxygen metal fine powder filled in the charging pot 13 was charged into the kneading vessel 12, and after charging, heated to 200 ° C. and kneaded for 60 minutes to obtain a metal powder-containing composition for injection molded body. . During the kneading, the oxygen concentration inside the planetary mixer was maintained at the oxygen concentration at which the low oxygen metal fine powder was charged.

次いで、得られた金属粉末含有樹脂成形体用組成物を射出成形機へ投入して200℃に加熱し、配向磁場中にて射出成形を行い、10個の予備成形体を得た。予備成形体は50×10×3mmの直方体形状に成形した。   Next, the obtained metal powder-containing composition for resin molded body was put into an injection molding machine, heated to 200 ° C., and injection molded in an orientation magnetic field to obtain 10 preformed bodies. The preform was molded into a rectangular parallelepiped shape of 50 × 10 × 3 mm.

その後、前記予備成形体を不活性ガス雰囲気、700℃で10時間加熱し脱脂した。脱脂後、脱脂体を真空中(5×10−2Pa)、1100℃で4時間、焼結した。得られた焼結体に、Ar雰囲気中にて500℃で1時間、時効処理を施した。 Thereafter, the preform was heated and degreased at 700 ° C. for 10 hours in an inert gas atmosphere. After degreasing, the degreased body was sintered in vacuum (5 × 10 −2 Pa) at 1100 ° C. for 4 hours. The obtained sintered body was subjected to an aging treatment at 500 ° C. for 1 hour in an Ar atmosphere.

<測定方法および判定基準>
酸素量の測定は酸素、窒素、水素分析装置(LECO社製 TCH600)を用いて測定した。酸素の測定は試料から発生する酸素を炭素と反応させ二酸化炭素、一酸化炭素の状態で、二酸化炭素赤外線検出器および一酸化炭素赤外線検出器で測定する。酸素量の判定基準は10個の焼結体の平均値で2000ppm以下のものを良好とし、1000ppm以下のものを特に良好とした。
<Measurement method and criteria>
The amount of oxygen was measured using an oxygen, nitrogen, and hydrogen analyzer (TCH600 manufactured by LECO). Oxygen is measured by reacting oxygen generated from the sample with carbon and in the state of carbon dioxide and carbon monoxide, using a carbon dioxide infrared detector and a carbon monoxide infrared detector. The criterion for determining the amount of oxygen was that the average value of 10 sintered bodies was 2000 ppm or less, and that 1000 ppm or less was particularly good.

また、焼結密度は理論密度に対する実測密度との比率を示したものである。実測密度はアルキメデス法により測定した。焼結密度の判定基準は10個の焼結体の平均値で99.0%以上のものを良好とした。   The sintered density indicates the ratio of the measured density to the theoretical density. The actual density was measured by the Archimedes method. As a criterion for determining the sintered density, an average value of 10 sintered bodies was 99.0% or more.

さらに、焼結体の磁気特性は東英工業株式会社製 振動試験型磁力計(VSM)で測定した。Br(残留磁束密度)の判定基準は10個の焼結体の平均値で13.5kG以上のものを良好とした。   Furthermore, the magnetic properties of the sintered body were measured with a vibration test type magnetometer (VSM) manufactured by Toei Industry Co., Ltd. The criterion for determining Br (residual magnetic flux density) was that the average value of 10 sintered bodies was 13.5 kG or higher.

Hc(保磁力)の判定基準は10個の焼結体の平均値で15.0kOe以上のものを良好とした。   The criterion of Hc (coercive force) was determined to be good when the average value of 10 sintered bodies was 15.0 kOe or more.

実施例1に係る焼結体の物性値は、10個の焼結体の平均で酸素量が950ppmであり、焼結密度99.2%、Br13.7kG、Hc15.1kOeと、いずれも良好な値を示した。   The physical property value of the sintered body according to Example 1 is such that the average oxygen content of the 10 sintered bodies is 950 ppm, and the sintered density is 99.2%, Br13.7 kG, and Hc15.1 kOe, all good. The value is shown.

実施例2
低酸素金属微粉末の酸素量を500ppmとした以外は実施例1と同様の方法で焼結体を得た。得られた焼結体の物性値は、10個の焼結体の平均で酸素量が560ppmであり、焼結密度99.3%、Br13.7kG、Hc15.2kOeといずれも良好な値を示した。
Example 2
A sintered body was obtained in the same manner as in Example 1 except that the oxygen content of the low oxygen metal fine powder was changed to 500 ppm. The physical properties of the obtained sintered body were an average of 560 ppm of oxygen for 10 sintered bodies, and all showed good values of sintered density 99.3%, Br13.7 kG, Hc15.2 kOe. It was.

実施例3〜6
表1に記載したように、混練温度、混練時間を変更し、その他の条件は実施例1と同様にして、実施例1と同様の方法で焼結体を得た。結果を表1に示す。全ての実施例で酸素量、焼結密度、Br、Hcのいずれも良好な値を示した。
Examples 3-6
As described in Table 1, the kneading temperature and kneading time were changed, and other conditions were the same as in Example 1, and a sintered body was obtained in the same manner as in Example 1. The results are shown in Table 1. In all Examples, the oxygen amount, the sintered density, Br, and Hc all showed good values.

Figure 2014199845
Figure 2014199845

比較例1
低酸素金属微粉末および樹脂は実施例1と同様のものを用いた。ポリスチレンをプラネタリーミキサーの混練容器12に投入後、プラネタリーミキサーの混練容器12内部を酸素濃度1000ppmとし、その後低酸素金属微粉末をプラネタリーミキサーの混練容器12に投入して、200℃に加熱し樹脂を溶融して混合した。60分混練して金属粉末含有樹脂成形体用組成物を得た。樹脂の溶融および混練中、プラネタリーミキサー内部の酸素濃度は1000ppmを維持した。
Comparative Example 1
The same low oxygen metal fine powder and resin as those used in Example 1 were used. After the polystyrene is put into the kneading container 12 of the planetary mixer, the inside of the kneading container 12 of the planetary mixer is made to have an oxygen concentration of 1000 ppm, and then the low oxygen metal fine powder is put into the kneading container 12 of the planetary mixer and heated to 200 ° C. The resin was melted and mixed. It knead | mixed for 60 minutes and the composition for metal powder containing resin moldings was obtained. During the melting and kneading of the resin, the oxygen concentration inside the planetary mixer was maintained at 1000 ppm.

得られた金属粉末含有樹脂成形体用組成物を用いて実施例1と同様の方法で射出成形を行い、予備成形体を得た。実施例1と同様の方法で予備成形体を脱脂および焼結して、焼結体を得た。   Using the obtained metal powder-containing resin molded body composition, injection molding was performed in the same manner as in Example 1 to obtain a preformed body. The preform was degreased and sintered in the same manner as in Example 1 to obtain a sintered body.

得られた焼結体は、10個の焼結体の平均で酸素量が6700ppmと高く、焼結密度96.8%、Br13.0kG、Hc11.5kOeとなり、実施例1〜6と比較して製品特性が低下した。   The obtained sintered body had an average oxygen amount of 6700 ppm as high as 10 sintered bodies, and a sintered density of 96.8%, Br13.0 kG, and Hc11.5 kOe, which were compared with Examples 1-6. Product characteristics deteriorated.

比較例2
低酸素金属微粉末および樹脂は実施例2と同様のものを用いた。ポリスチレンをプラネタリーミキサーの混練容器12に投入後、プラネタリーミキサーの混練容器12内部を酸素濃度100ppmとし、その後低酸素金属微粉末をプラネタリーミキサーの混練容器12に投入して、200℃に加熱し樹脂を溶融して混合した。60分混練して金属粉末含有樹脂成形体用組成物を得た。樹脂の溶融および混練中、プラネタリーミキサー内部の酸素濃度は100ppm以下に制御しようとしたが、樹脂の溶解時に一時的に300ppmまで悪化した。
Comparative Example 2
The same low oxygen metal fine powder and resin as in Example 2 were used. After the polystyrene is put into the kneading container 12 of the planetary mixer, the inside of the kneading container 12 of the planetary mixer is made to have an oxygen concentration of 100 ppm, and then the low oxygen metal fine powder is put into the kneading container 12 of the planetary mixer and heated to 200 ° C. The resin was melted and mixed. It knead | mixed for 60 minutes and the composition for metal powder containing resin moldings was obtained. During melting and kneading of the resin, the oxygen concentration inside the planetary mixer was controlled to 100 ppm or less, but temporarily deteriorated to 300 ppm when the resin was dissolved.

得られた金属粉末含有樹脂成形体用組成物を用いて実施例1と同様の方法で射出成形を行い、予備成形体を得た。実施例1と同様の方法で予備成形体を脱脂および焼結して、焼結体を得た。   Using the obtained metal powder-containing resin molded body composition, injection molding was performed in the same manner as in Example 1 to obtain a preformed body. The preform was degreased and sintered in the same manner as in Example 1 to obtain a sintered body.

得られた焼結体は、10個の焼結体の平均で酸素量が2550ppmと高く、焼結密度98.5%、Br13.4kG、Hc14.5kOeとなり、実施例1〜6と比較して製品特性が低下した。   The obtained sintered body had an average oxygen amount of 2550 ppm as high as 10 sintered bodies, a sintered density of 98.5%, Br13.4 kG, and Hc14.5 kOe, compared with Examples 1-6. Product characteristics deteriorated.

実施例と比較例1,2との工程の違いは、図2(A)および図2(B)に示すように、実施例においては、樹脂のみを加熱溶融した後に雰囲気中の酸素濃度を低減し、それから低酸素金属微粉末を投入して混練しているのに対し、比較例においては、樹脂を投入し、雰囲気中の酸素濃度を低減した後に、このまま低酸素金属微粉末を投入し、加熱し樹脂の溶融および両者の混練を同時に行っている点である。比較例1、2では樹脂を加熱溶解する際に発生する酸素により低酸素金属微粉末が酸化され、そのため最終的に得られる焼結体の物性値を低下させていると考えられる。   As shown in FIGS. 2 (A) and 2 (B), the difference in the process between the example and the comparative examples 1 and 2 is that in the example, the oxygen concentration in the atmosphere is reduced after only the resin is heated and melted. Then, while the low oxygen metal fine powder is added and kneaded, in the comparative example, after adding the resin and reducing the oxygen concentration in the atmosphere, the low oxygen metal fine powder is supplied as it is, It is the point which heats and melt | dissolves resin and knead | mixing both of them simultaneously. In Comparative Examples 1 and 2, it is considered that the low-oxygen metal fine powder is oxidized by oxygen generated when the resin is heated and melted, so that the physical property value of the finally obtained sintered body is lowered.

実施例7〜10
低酸素金属微粉末および樹脂は実施例1と同様のものを用いた。表1に記載したように、樹脂溶融前の酸素濃度と樹脂溶融後の酸素濃度を変更した以外は実施例1と同様の方法で焼結体を得た。樹脂溶融後の酸素濃度が200ppm以下であれば樹脂溶融前の酸素濃度に関わらず、焼結体の酸素量が1000ppm以下の焼結体が得られ、各種物性値も良好範囲内であった。
Examples 7-10
The same low oxygen metal fine powder and resin as those used in Example 1 were used. As described in Table 1, a sintered body was obtained in the same manner as in Example 1 except that the oxygen concentration before melting the resin and the oxygen concentration after melting the resin were changed. When the oxygen concentration after melting the resin was 200 ppm or less, a sintered body with an oxygen content of 1000 ppm or less was obtained regardless of the oxygen concentration before resin melting, and various physical property values were also in the good range.

比較例3
低酸素金属微粉末および樹脂は実施例1と同様のものを用いた。ただし、樹脂溶融前の酸素濃度は100ppmとしたが、その後、真空引きと不活性ガスのフローを中止した。その結果、樹脂溶融後の酸素濃度は400ppmとなった。その状態で低酸素金属微粉末を投入し、以後は実施例1と同様の方法で焼結体を得た。結果を表1に示す。
Comparative Example 3
The same low oxygen metal fine powder and resin as those used in Example 1 were used. However, the oxygen concentration before the resin was melted was 100 ppm, but after that vacuuming and the flow of inert gas were stopped. As a result, the oxygen concentration after melting the resin was 400 ppm. In this state, low-oxygen metal fine powder was added, and thereafter, a sintered body was obtained in the same manner as in Example 1. The results are shown in Table 1.

表1に記載したように、比較例3の焼結体は、焼結体の酸素量が高くなり、各種物性値も良好範囲から外れた。   As described in Table 1, in the sintered body of Comparative Example 3, the amount of oxygen in the sintered body was high, and various physical property values were out of the good range.

以上より、樹脂溶融後に低酸素金属微粉末を投入したとしても、樹脂溶融後の酸素濃度が200ppmを超える場合には、たとえ樹脂溶融前の混練容器内の酸素濃度が低くても好ましい物性を有する焼結体が得られない。逆に樹脂溶融後の酸素濃度が200ppm以下であれば、樹脂溶融前の混練容器内の酸素濃度が高かったとしても各種物性値が良好範囲内の焼結体を得ることができる。   From the above, even when the low oxygen metal fine powder is added after the resin is melted, if the oxygen concentration after the resin melt exceeds 200 ppm, it has preferable physical properties even if the oxygen concentration in the kneading container before the resin melt is low. A sintered body cannot be obtained. Conversely, if the oxygen concentration after resin melting is 200 ppm or less, a sintered body having various physical property values within a good range can be obtained even if the oxygen concentration in the kneading container before resin melting is high.

実施例11
金属粉末含有樹脂成形体用組成物を得るまでの工程は実施例1と同様に行い、その後、射出成形の代わりに圧縮成形を行った。金属粉末含有樹脂成形体用組成物を180℃に加熱して圧縮成形を行い、20×10×3mm直方体形状の予備成形体を得た。予備成形体を脱脂および焼結して、焼結体を得た。結果を表1に示す。
Example 11
The steps until obtaining the metal powder-containing resin molded body composition were performed in the same manner as in Example 1, and then compression molding was performed instead of injection molding. The metal powder-containing resin molded body composition was heated to 180 ° C. and compression molded to obtain a 20 × 10 × 3 mm rectangular parallelepiped preform. The preform was degreased and sintered to obtain a sintered body. The results are shown in Table 1.

表1に記載したように、圧縮成形の場合においても、射出成形と同様に酸素量の少ない焼結体が得られ、焼結体の各種物性値も良好範囲内であった。   As shown in Table 1, even in the case of compression molding, a sintered body with a small amount of oxygen was obtained as in the case of injection molding, and various physical property values of the sintered body were also within a good range.

実施例12
低酸素金属微粉末を酸素量2000ppmの微粉末に変更して実施例1と同様の試験を行った。結果を表1に示す。焼結体の酸素量が2000ppm以下となり、各種物性値も良好範囲内であった。
Example 12
The same test as in Example 1 was performed by changing the low oxygen metal fine powder to a fine powder having an oxygen content of 2000 ppm. The results are shown in Table 1. The amount of oxygen in the sintered body was 2000 ppm or less, and various physical property values were also in a good range.

実施例13、14
樹脂の種類を変更して実施例1と同様の試験を行った。結果を表2に示す。いずれの実施例でも焼結体の酸素量が1000ppm以下となり、各種物性値も良好範囲内であった。
Examples 13 and 14
The same test as in Example 1 was performed by changing the type of resin. The results are shown in Table 2. In any of the examples, the amount of oxygen in the sintered body was 1000 ppm or less, and various physical property values were within a good range.

Figure 2014199845
Figure 2014199845

1・・・ 密閉バッチ式混練機
11・・・ ブレード
12・・・ 混練容器
13・・・ 投入用ポット
14・・・ ガス導入管
15・・・ 真空ポンプ
16・・・ 酸素濃度計
DESCRIPTION OF SYMBOLS 1 ... Sealed batch type kneader 11 ... Blade 12 ... Kneading container 13 ... Pot for injection 14 ... Gas introduction pipe 15 ... Vacuum pump 16 ... Oxygen concentration meter

Claims (7)

混練機の内部の雰囲気ガスにおける酸素濃度が200ppm以下を保持するように雰囲気ガスを調整する工程と、
前記混練機内部に樹脂を投入する工程と、
前記混練機内部に投入した樹脂を溶融する工程と、
前記混練機内部に低酸素金属微粉末を投入して混練する工程とを備え、
前記低酸素金属微粉末を投入して混練する工程は、酸素濃度が200ppm以下である雰囲気ガスの存在下で行う金属粉末含有樹脂成形体用組成物の製造方法。
Adjusting the atmospheric gas so that the oxygen concentration in the atmospheric gas inside the kneader is maintained at 200 ppm or less;
Introducing a resin into the kneader;
Melting the resin charged into the kneader;
A step of charging and kneading the low-oxygen metal fine powder inside the kneader,
The step of adding and kneading the low-oxygen metal fine powder is a method for producing a composition for a metal powder-containing resin molded body, which is performed in the presence of an atmospheric gas having an oxygen concentration of 200 ppm or less.
前記混練機内部に前記樹脂を予め投入し、前記混練機内部の酸素濃度を調整する請求項1に記載の金属粉末含有樹脂成形体用組成物の製造方法。   The method for producing a composition for a metal powder-containing resin molded article according to claim 1, wherein the resin is previously introduced into the kneader and the oxygen concentration inside the kneader is adjusted. 前記樹脂を溶融する前に、前記混練機内部の雰囲気ガスにおける酸素濃度を200ppm以下にする請求項1または2に記載の金属粉末含有樹脂成形体用組成物の製造方法。   The method for producing a metal powder-containing resin molded body composition according to claim 1 or 2, wherein an oxygen concentration in an atmospheric gas inside the kneader is set to 200 ppm or less before the resin is melted. 前記樹脂を溶融後に、前記混練機内部の雰囲気ガスにおける酸素濃度を200ppm以下にする請求項1から3のいずれか1項に記載の金属粉末含有樹脂成形体用組成物の製造方法。   The method for producing a metal powder-containing resin molded body composition according to any one of claims 1 to 3, wherein after the resin is melted, an oxygen concentration in an atmospheric gas inside the kneader is set to 200 ppm or less. 請求項1〜4のいずれか1項に記載の金属粉末含有樹脂成形体用組成物の製造方法により得られる組成物で成形された予備成形体。   The preform formed by the composition obtained by the manufacturing method of the composition for metal powder containing resin moldings of any one of Claims 1-4. 請求項5に記載の予備成形体を焼結する工程を有する金属焼結体の製造方法。   The manufacturing method of the metal sintered compact which has the process of sintering the preforming body of Claim 5. 請求項6に記載の金属焼結体の製造方法により得られる酸素量2000ppm以下、焼結密度99.0%以上である希土類焼結磁石。   A rare earth sintered magnet having an oxygen content of 2000 ppm or less and a sintered density of 99.0% or more obtained by the method for producing a metal sintered body according to claim 6.
JP2013073788A 2013-03-29 2013-03-29 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet Pending JP2014199845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073788A JP2014199845A (en) 2013-03-29 2013-03-29 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073788A JP2014199845A (en) 2013-03-29 2013-03-29 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet

Publications (1)

Publication Number Publication Date
JP2014199845A true JP2014199845A (en) 2014-10-23

Family

ID=52356592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073788A Pending JP2014199845A (en) 2013-03-29 2013-03-29 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2014199845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370192A (en) * 2020-04-08 2020-07-03 宁波源盛磁业有限公司 Sintered neodymium iron boron permanent magnet oxygen control preparation method and screening device
JP2021147672A (en) * 2020-03-19 2021-09-27 特定非営利活動法人広島循環型社会推進機構 Waste ferrous metal powder/waste plastic compact and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277262A (en) * 1986-12-19 1988-11-15 Kawasaki Steel Corp Plastic magnet composition
JPH08170105A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Molding of resin bonded magnet
JPH09283358A (en) * 1996-04-09 1997-10-31 Hitachi Metals Ltd Manufacture of r-fe-b sintered magnet
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor
JP2000203943A (en) * 1999-01-05 2000-07-25 Citizen Watch Co Ltd Production of powder injection molded article
JP2004214409A (en) * 2002-12-27 2004-07-29 Neomax Co Ltd Method for manufacturing oxidation-resistant rare earth system magnet powder
JP2006310786A (en) * 2005-03-28 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet and method for mixing material powder and lubricant
JP2007227466A (en) * 2006-02-21 2007-09-06 Tdk Corp Method of manufacturing rare-earth sintered magnet, and method of manufacturing granules
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277262A (en) * 1986-12-19 1988-11-15 Kawasaki Steel Corp Plastic magnet composition
JPH08170105A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Molding of resin bonded magnet
JPH09283358A (en) * 1996-04-09 1997-10-31 Hitachi Metals Ltd Manufacture of r-fe-b sintered magnet
JP2000012316A (en) * 1998-06-24 2000-01-14 Sumitomo Metal Mining Co Ltd Rare earth bond magnet, and magnetic powder and composition therefor
JP2000203943A (en) * 1999-01-05 2000-07-25 Citizen Watch Co Ltd Production of powder injection molded article
JP2004214409A (en) * 2002-12-27 2004-07-29 Neomax Co Ltd Method for manufacturing oxidation-resistant rare earth system magnet powder
JP2006310786A (en) * 2005-03-28 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet and method for mixing material powder and lubricant
JP2007227466A (en) * 2006-02-21 2007-09-06 Tdk Corp Method of manufacturing rare-earth sintered magnet, and method of manufacturing granules
WO2012161355A1 (en) * 2011-05-25 2012-11-29 Tdk株式会社 Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021147672A (en) * 2020-03-19 2021-09-27 特定非営利活動法人広島循環型社会推進機構 Waste ferrous metal powder/waste plastic compact and manufacturing method thereof
JP7324445B2 (en) 2020-03-19 2023-08-10 特定非営利活動法人広島循環型社会推進機構 Waste iron-based metal powder, waste plastic compact and method for producing the same
CN111370192A (en) * 2020-04-08 2020-07-03 宁波源盛磁业有限公司 Sintered neodymium iron boron permanent magnet oxygen control preparation method and screening device
CN111370192B (en) * 2020-04-08 2021-07-13 宁波源盛磁业有限公司 Sintered neodymium iron boron permanent magnet oxygen control preparation method and screening device

Similar Documents

Publication Publication Date Title
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP6963251B2 (en) Rare earth iron nitrogen-based magnetic powder
WO2018096733A1 (en) Rare earth-iron-nitrogen system magnetic powder and method for producing same
CN107424695A (en) A kind of dual alloy nanocrystalline rare-earth permanent magnet and preparation method thereof
EP3552736A1 (en) Production method of rare earth magnet and production apparatus used therefor
US20200176184A1 (en) Method for manufacturing r-t-b permanent magnet
JP2010150604A (en) Method for producing rare earth sintered magnet
JP2020053434A (en) Rare earth magnet and manufacturing method therefor
KR101744403B1 (en) Manufacturing method of rare-earth magnet
CN103849809B (en) A kind of method adding holmium in neodymium iron boron
CN105206412B (en) A kind of method for improving Sintered NdFeB magnet crystal boundary
JP2014199845A (en) Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet
JP5987833B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP7056264B2 (en) RTB series rare earth magnets
EP2980815A1 (en) Sintered magnet production method
JP7259705B2 (en) Method for manufacturing rare earth magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP2012199423A (en) Production method of anisotropic magnetic powder and anisotropic bond magnet
CN108806910A (en) Improve the coercitive method of neodymium-iron-boron magnetic material
JP7028123B2 (en) Manufacturing method of rare earth magnets
JP2009076631A (en) Method of manufacturing rare-earth metal bond magnet
CN111863369A (en) Magnetic binder and preparation method thereof, and preparation method of composite permanent magnetic material
KR20240017949A (en) Corrosion-resistant, high-performance NdFeB sintered magnet and manufacturing method and use thereof
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905