JP2009295638A - Method for manufacturing r-t-b magnet - Google Patents

Method for manufacturing r-t-b magnet Download PDF

Info

Publication number
JP2009295638A
JP2009295638A JP2008145068A JP2008145068A JP2009295638A JP 2009295638 A JP2009295638 A JP 2009295638A JP 2008145068 A JP2008145068 A JP 2008145068A JP 2008145068 A JP2008145068 A JP 2008145068A JP 2009295638 A JP2009295638 A JP 2009295638A
Authority
JP
Japan
Prior art keywords
temperature
molded body
magnet
atmosphere
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145068A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koga
敏之 古賀
Koichi Nishizawa
剛一 西澤
Ariteru Fukazawa
有輝 深澤
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008145068A priority Critical patent/JP2009295638A/en
Publication of JP2009295638A publication Critical patent/JP2009295638A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B magnet capable of suppressing fluctuation in a composition of a molded body in baking, improving magnetic characteristics of the obtained R-T-B magnet and preventing a variation in the magnetic characteristics accompanied by the fluctuation in the composition of the R-T-B magnet. <P>SOLUTION: This method for manufacturing an R-T-B magnet comprises: a molding step of forming a molded body of a magnetic material, a temperature rise step of heating the molded body to raising the temperature of the molded body up to a baking temperature T<SB>s</SB>°C, and a temperature maintaining step of maintaining the temperature of the molded body at T<SB>s</SB>°C. In the temperature rise step or the temperature maintaining step, the atmosphere is switched from a vacuum atmosphere to an inert gas atmosphere, and switching from the vacuum atmosphere to the inert gas atmosphere is executed before a time point t<SB>1</SB>and after a time point t<SB>2</SB>, where t<SB>1</SB>is a time point when the temperature of the molded body reaches T<SB>s</SB>°C, and t<SB>2</SB>is a time point when the temperature of the molded body reaches T<SB>s</SB>°C and 50 minutes have not elapsed while maintaining the temperature at T<SB>s</SB>°C after t1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、R−T−B系磁石の製造方法に関する。   The present invention relates to a method for manufacturing an R-T-B magnet.

R−T−B(Rは希土類元素、TはFe、Co等の金属元素)系の組成を有する希土類磁石(以下、R−T−B系磁石という。)は、優れた磁気特性を有する磁石である。なお、磁石の磁気特性を表す指標としては、一般に、残留磁束密度(Br)及び保磁力(Hcj)が用いられ、これらの積(最大エネルギー積)が大きいほど、磁石の磁気特性が優れていることを意味する。   A rare earth magnet having a composition of R-T-B (R is a rare earth element, T is a metal element such as Fe, Co, etc.) is a magnet having excellent magnetic properties. It is. In general, the residual magnetic flux density (Br) and the coercive force (Hcj) are used as indices indicating the magnetic characteristics of the magnet. The larger these products (maximum energy product), the better the magnetic characteristics of the magnet. Means that.

R−T−B系磁石の製造方法としては、例えば、下記特許文献1に、組成式R(Fe1−aCo)(RはYを含む希土類元素から選択された1種又は2種以上、TはAl、Si又はFe、Co以外の遷移金属から選択された1種又は2種以上、X、Y、Z及びa、bは、11≦X≦16、70≦Y≦85、4≦Z≦9、0≦a≦0.2、0≦b≦4)からなる希土類磁石の製造方法において、真空中又は大気圧以下の不活性ガス雰囲気中、1,000〜1,150℃で、焼結体の密度が真密度の90〜98%になるまで焼結を行い、引き続き1〜20気圧の不活性ガス雰囲気中、900〜1,150℃で0.1〜5時間、焼結を行うことを特徴とする製造方法が示されている。この製造方法によれば、密度、残留磁化及び保磁力を高めた高性能の磁石が得られる旨が、下記特許文献1に記載されている。
特開2000−232012号公報
As a method for producing an R-T-B magnet, for example, in the following Patent Document 1, a composition formula R X (Fe 1-a Co a ) Y B Z T b (R is selected from rare earth elements including Y) 1 type or 2 types or more, T is 1 type or 2 types or more selected from transition metals other than Al, Si or Fe, Co, X, Y, Z and a, b are 11 <= X <= 16, 70 <= Y ≦ 85, 4 ≦ Z ≦ 9, 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 4) in a rare earth magnet manufacturing method, in a vacuum or in an inert gas atmosphere below atmospheric pressure, Sintering is carried out at 1,150 ° C. until the density of the sintered body reaches 90 to 98% of the true density, and subsequently 0.1 to 0.1 at 900 to 1,150 ° C. in an inert gas atmosphere of 1 to 20 atm. A production method characterized by sintering for 5 hours is shown. Patent Document 1 below describes that according to this manufacturing method, a high-performance magnet having an increased density, residual magnetization, and coercive force can be obtained.
JP 2000-233201 A

しかし、上記特許文献1に示す製造方法では、焼結中の成形体(焼結体の前駆体)の組成が変動し易く、磁石(時効処理後の焼結体)の所望の組成から想定される磁気特性に比べて、実際に得られる磁石の磁気特性が低くなる場合が少なくなかった。また、近年における電子機器の小型化、薄肉化に伴い、電子機器に実装される磁石にも小型化、薄肉化が要求されているが、磁石が小型化、薄肉化するほど、焼結中に成形体の組成が変動し易くなる傾向にあり、得られる磁石の磁気特性が低下する可能性があった。   However, in the manufacturing method shown in Patent Document 1, the composition of the molded body (sintered body precursor) during sintering is likely to fluctuate, and is assumed from the desired composition of the magnet (sintered body after aging treatment). In many cases, the magnetic properties of the magnet actually obtained are lower than the magnetic properties. In addition, with recent downsizing and thinning of electronic devices, magnets mounted on electronic devices are also required to be downsized and thinned. However, the smaller the magnets are, the more thin the magnets are being sintered. The composition of the molded body tends to fluctuate, and there is a possibility that the magnetic properties of the obtained magnet will be lowered.

そこで、本発明はこのような事情に鑑みてなされたものであり、焼成中における成形体の組成の変動を抑制でき、得られるR−T−B系磁石の磁気特性を向上させることができると共に、R−T−B系磁石の組成の変動に伴う磁気特性のばらつきを防止できるR−T−B系磁石の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and can suppress fluctuations in the composition of the molded body during firing, and can improve the magnetic properties of the resulting RTB-based magnet. An object of the present invention is to provide a method for producing an R-T-B system magnet that can prevent variations in magnetic properties due to variations in the composition of the R-T-B system magnet.

上記目的を達成するため、本発明のR−T−B系磁石の製造方法は、磁性材料から成形体を形成する成形工程と、成形体を加熱して成形体の温度を焼成温度T℃に到達させる昇温工程と、更に成形体の温度をT℃に保持する温度保持工程と、を備え、昇温工程又は温度保持工程において、その雰囲気を真空雰囲気中から不活性ガス雰囲気へ切り替え、且つ、真空雰囲気から不活性ガス雰囲気への切り替えを、下記t以降t以前に行うことを特徴とする。
:成形体の温度をT℃に到達させる前の時点
:t以降、成形体の温度をT℃に到達させ、更にT℃に保持して50分経過させる前の時点
In order to achieve the above object, the RTB-based magnet manufacturing method of the present invention includes a molding step of forming a molded body from a magnetic material, and heating the molded body to set the temperature of the molded body to a firing temperature T s ° C. And a temperature holding step for keeping the temperature of the molded body at T s ° C. In the temperature raising step or the temperature holding step, the atmosphere is switched from a vacuum atmosphere to an inert gas atmosphere. and, switching to the inert gas atmosphere from the vacuum atmosphere, and performing the following t 1 after t 2 previously.
t 1: the temperature of the molded body T s ° C. prior to reaching the point t 2: t 1 later, the temperature of the molded body was allowed to reach T s ° C., prior to lapse 50 minutes hold a further T s ° C. Time

このような本発明のR−T−B系磁石の製造方法においては、昇温工程又は温度保持工程において、成形体の焼成雰囲気をt以降t以前に真空雰囲気から不活性ガス雰囲気へ切り替えることによって、成形体の組成の変動を抑制することができる。特に本発明では、従来の焼成条件で生じ易い傾向にあった成形体からの希土類元素の蒸発や成形体と不純物ガスとの反応を抑制することができる。その結果、得られるR−T−B系磁石は、焼成時の組成変動に起因する磁気特性、特に保磁力(Hcj)の低下が少なく、従来の製造方法により得られた磁石と比べて、結果として高い磁気特性を有するものとなる。また本発明によれば、R−T−B系磁石の組成の変動に伴う磁気特性のばらつきを防止できる。さらに、本発明によれば、焼成後の成形体(焼結体)の密度(焼結密度)の低下を抑制することも期待できる。 In the production method of the R-T-B magnet of the present invention, in the Atsushi Nobori step or the temperature holding step, switching from the vacuum atmosphere firing atmosphere of the shaped body to t 1 after t 2 previously to an inert gas atmosphere As a result, fluctuations in the composition of the molded body can be suppressed. In particular, in the present invention, it is possible to suppress the rare earth element evaporation from the molded body and the reaction between the molded body and the impurity gas, which tend to occur under conventional firing conditions. As a result, the obtained R-T-B magnet has a small decrease in magnetic properties, particularly coercive force (Hcj), due to composition fluctuations during firing, and the results are compared with a magnet obtained by a conventional manufacturing method. It has a high magnetic characteristic. Further, according to the present invention, it is possible to prevent variations in magnetic characteristics due to variations in the composition of the R-T-B magnet. Furthermore, according to the present invention, it can also be expected to suppress a decrease in the density (sintered density) of the molded body (sintered body) after firing.

成形体の焼成において、tより前の時点(成形体から溶媒や添加剤が十分に除去されていない時点)で焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えると、焼結密度が上昇し難いため、得られるR−T−B系磁石の残留磁束密度Brが低下したり、または焼結密度上昇のために要する時間が長くなったりする傾向がある。また、tより後の時点で焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えると、成形体からの希土類元素の蒸発や成形体と不純物ガスとの反応が起こり易く、また成形体中の粒成長を制御し難いため、得られるR−T−B系磁石の保磁力Hcjが低下する傾向がある。そこで、本発明では、焼成雰囲気をt以降t以前に真空雰囲気から不活性ガス雰囲気へ切り替えることによって、これらの傾向を抑制することができる。 In firing the compact, if the firing atmosphere is switched from a vacuum atmosphere to an inert gas atmosphere at a time prior to t 1 (when the solvent or additive is not sufficiently removed from the compact), the sintering density increases. Since it is difficult, the residual magnetic flux density Br of the obtained RTB-based magnet tends to decrease, or the time required for increasing the sintered density tends to increase. Further, when the firing atmosphere at a later point in time than t 2 to switch from the vacuum atmosphere to an inert gas atmosphere, easily occur reaction with evaporation or moldings and impurity gas of a rare earth element from the molded body, and the grain in the molded body Since it is difficult to control the growth, the coercive force Hcj of the obtained RTB-based magnet tends to decrease. Therefore, in the present invention, by switching from the vacuum atmosphere sintering atmosphere to t 1 after t 2 previously to an inert gas atmosphere, it is possible to suppress these tendencies.

上記本発明では、tが、成形体の温度を(T−40)℃に到達させた時点であることが好ましい。 The present invention, t 1 is preferably a time when the temperature was allowed to reach a molded body (T s -40) ℃.

これにより、成形体の組成の変動を抑制し易くなり、特に、従来の焼成条件で生じ易い傾向にあった成形体からの希土類元素の蒸発を抑制し易くなる。   Thereby, it becomes easy to suppress the fluctuation | variation of a composition of a molded object, and it becomes easy to suppress especially the evaporation of the rare earth element from the molded object which was easy to occur on the conventional baking conditions.

上記本発明では、昇温工程において、成形体の温度を(T−40)℃に一定時間保持した後に、成形体の温度をT℃に到達させることが好ましい。これにより、T℃に到達する前に、Tに近い温度で成形体が一定時間保持されることとなり、その結果、焼結密度の低下をより確実に抑制することができ、得られるR−T−B系磁石の磁気特性を更に向上させることができる。 The present invention, in the Atsushi Nobori step, after holding a predetermined time the temperature of the molded body (T s -40) ℃, it is preferable to bring the temperature of the molded body T s ° C.. Thereby, before reaching T s ° C., the molded body is held for a certain period of time at a temperature close to T s , and as a result, it is possible to more reliably suppress a decrease in sintered density and obtain R The magnetic characteristics of the -T-B magnet can be further improved.

上記本発明では、不活性ガス雰囲気の気圧を50Pa〜80kPaとすることが好ましい。不活性ガス雰囲気の気圧が小さ過ぎると、成形体からの希土類元素の蒸発や成形体と不純物ガスとの反応を抑制し難くなる傾向があり、不活性ガス雰囲気の気圧が大き過ぎると、成形体内の微細な空隙に侵入した不活性ガスが成形体外へ抜け難くなり、焼結密度が上昇し難い傾向がある。そこで、本発明では、不活性ガス雰囲気の気圧を上記の好適範囲内とすることによって、これらの傾向を抑制することができる。   In the said invention, it is preferable that the atmospheric pressure of an inert gas atmosphere shall be 50 Pa-80 kPa. If the pressure in the inert gas atmosphere is too small, it tends to be difficult to suppress the evaporation of rare earth elements from the molded body and the reaction between the molded body and the impurity gas, and if the pressure in the inert gas atmosphere is too large, It is difficult for the inert gas that has entered the fine voids to escape from the molded body, and the sintered density tends not to increase. Therefore, in the present invention, these tendencies can be suppressed by setting the pressure of the inert gas atmosphere within the above-mentioned preferable range.

本発明によれば、焼成中における成形体の組成の変動を抑制でき、得られるR−T−B系磁石の磁気特性を向上させることができると共に、R−T−B系磁石の組成の変動に伴う磁気特性のばらつきを防止できるR−T−B系磁石の製造方法を提供することが可能となる。   According to the present invention, fluctuations in the composition of the compact during firing can be suppressed, the magnetic properties of the resulting R-T-B magnet can be improved, and fluctuations in the composition of the R-T-B magnet can be achieved. Thus, it is possible to provide a method for manufacturing an R-T-B magnet that can prevent variations in magnetic properties associated with.

以下、本発明の好適な一実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

(R−T−B系磁石の製造方法)
本実施形態のR−T−B系磁石の製造方法は、R−T−B系磁石の原料である合金(磁性材料)からなる磁性粉末を作製する磁性粉末作製工程(ステップ1)、磁性粉末から成形体を形成する成形工程(ステップ2)と、成形体を焼成して焼結体を得る昇温工程及び温度保持工程(ステップ3)と、焼結体に時効処理を施す時効処理工程(ステップ4)と、から構成される。
(Method for manufacturing R-T-B magnet)
The manufacturing method of the RTB-based magnet of this embodiment includes a magnetic powder manufacturing step (step 1) for manufacturing a magnetic powder made of an alloy (magnetic material) that is a raw material of the RTB-based magnet, and magnetic powder. Forming step (step 2) for forming a green body from the above, a temperature raising step and a temperature holding step (step 3) for firing the green body to obtain a sintered body, and an aging treatment step for applying an aging treatment to the sintered body ( Step 4).

<ステップ1:磁性粉末作製工程>
磁性粉末作製工程では、所望の組成を有するR−T−B系磁石が得られるような合金(磁性材料)を準備する。この工程では、例えば、R−T−B系磁石の組成に対応する金属等の元素を含む単体、合金又は化合物等を、真空又はAr等の不活性ガス雰囲気下で溶解した後、これを用いて鋳造法やストリップキャスト法等の合金製造プロセスを行うことによって、所望の組成を有する合金を作製する。
<Step 1: Magnetic powder production process>
In the magnetic powder production process, an alloy (magnetic material) is prepared so that an R-T-B magnet having a desired composition can be obtained. In this step, for example, a simple substance, an alloy, a compound, or the like containing an element such as a metal corresponding to the composition of the R-T-B magnet is dissolved in an inert gas atmosphere such as vacuum or Ar, and then used. An alloy having a desired composition is produced by performing an alloy production process such as a casting method or a strip casting method.

R−T−B系磁石の種類は特に限定されないが、例えば、希土類元素Rとして主にNdを含むものが挙げられるが、希土類元素と、希土類元素以外の遷移元素とを組み合わせた組成を有するものが好適である。具体的には、希土類元素として、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの少なくとも1種を含み、Bを必須元素として1〜12原子%含み、且つ残部がFeであるR−Fe−B系磁石が例示される。このようなR−T−B系磁石は、必要に応じて、Co、Ni、Mn、Al、Nb、Zr、Ti、W、Mo、V、Ga、Zn、Bi、Ta、Cu、Sn、Ag及びSi等の元素を更に含有してもよい。   The type of the R-T-B magnet is not particularly limited. For example, the rare earth element R mainly includes Nd, but has a composition in which a rare earth element and a transition element other than the rare earth element are combined. Is preferred. Specifically, the rare earth element includes at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. , B as an essential element, and an R—Fe—B magnet in which the balance is Fe is exemplified. Such R-T-B magnets can be made of Co, Ni, Mn, Al, Nb, Zr, Ti, W, Mo, V, Ga, Zn, Bi, Ta, Cu, Sn, Ag as required. And elements such as Si may be further contained.

次に、得られた合金を粗粉砕して、数百μm程度の粒径を有する磁性粗粉を形成し、更に磁性粗粉を微粉砕して、数μm程度の粒径を有する磁性粉末を形成する。   Next, the obtained alloy is coarsely pulverized to form a magnetic coarse powder having a particle size of about several hundred μm, and the magnetic coarse powder is further finely pulverized to obtain a magnetic powder having a particle size of about several μm. Form.

合金を粗粉砕する方法としては、例えば、ジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いる方法、または、合金に水素を吸蔵させた後、異なる相間の水素吸蔵量の相違に基づく自己崩壊的な粉砕を生じさせる方法(水素吸蔵粉砕法)が挙げられる。磁性粗粉を微粉砕する方法としては、例えば、磁性粗粉を、粉砕時間等の条件を適宜調整しながら、ジェットミル、ボールミル、振動ミル、湿式アトライター等の微粉砕機を用いて粉砕する方法が挙げられる。粉砕の助剤としてステアリン酸などの添加剤を加えても良い。   As a method of coarsely pulverizing an alloy, for example, a method using a coarse pulverizer such as a jaw crusher, a brown mill, a stamp mill, or the like, or after self-occlusion of hydrogen in an alloy, self-based on the difference in hydrogen storage amount between different phases. Examples thereof include a method (hydrogen storage pulverization method) that causes disintegrative pulverization. As a method for finely pulverizing the magnetic coarse powder, for example, the magnetic coarse powder is pulverized using a fine pulverizer such as a jet mill, a ball mill, a vibration mill, or a wet attritor while appropriately adjusting conditions such as the pulverization time. A method is mentioned. An additive such as stearic acid may be added as a grinding aid.

<ステップ2:成形工程>
次に、成形工程において、磁性粉末から成形体を形成する。磁性粉末の乾式成形を行う場合は、磁性粉末を金型内に充填した後、金型内の磁性粉末に対して磁場を印加しながら圧縮成形を行うことによって、所定の磁場配向度を有する成形体を形成する。成形の助剤としてステアリン酸などの添加剤を磁性粉末に加えても良い。あるいは金型表面にステアリン酸などを塗布や噴霧させても良い。
<Step 2: Molding process>
Next, in the molding step, a molded body is formed from the magnetic powder. When dry molding of magnetic powder is performed, after the magnetic powder is filled in the mold, compression molding is performed while applying a magnetic field to the magnetic powder in the mold, thereby forming a mold having a predetermined magnetic field orientation degree. Form the body. An additive such as stearic acid may be added to the magnetic powder as a molding aid. Alternatively, stearic acid or the like may be applied or sprayed on the mold surface.

磁性粉末の湿式成形を行う場合は、磁性粉末と油等の溶媒とを含むスラリーを金型内に充填した後、金型内のスラリーに対して磁場を印加しながら圧縮成形を行うことによって、所定の磁場配向度を有する成形体を形成する。   When performing wet molding of magnetic powder, after filling a slurry containing magnetic powder and a solvent such as oil in the mold, by performing compression molding while applying a magnetic field to the slurry in the mold, A molded body having a predetermined magnetic field orientation is formed.

成形によって得られる成形体の形状は特に制限されず、柱状、平板状、リング状等、所望とするR−T−B系磁石の形状に応じて変更することができる。   The shape of the molded body obtained by molding is not particularly limited, and can be changed according to the desired shape of the R-T-B magnet, such as a columnar shape, a flat plate shape, or a ring shape.

成形時の加圧方向は、磁場の印加方向と同じとしてもよく、磁場の印加方向と垂直としてもよいが、磁場の印加方向と垂直に加圧を行うと、より優れた磁気特性が得られる傾向にある。また、成形時における磁場強度は、400〜1600kA/mとすることができ、加圧は30〜300MPaとすることができる。このような条件で磁場中、成形を行うことにより、良好な磁気特性を有するR−T−B系磁石を得易い傾向がある。   The pressing direction during molding may be the same as the magnetic field application direction, or may be perpendicular to the magnetic field application direction, but more excellent magnetic properties can be obtained by applying pressure perpendicular to the magnetic field application direction. There is a tendency. Moreover, the magnetic field intensity at the time of shaping | molding can be 400-1600 kA / m, and pressurization can be 30-300 MPa. By forming in a magnetic field under such conditions, it tends to be easy to obtain an R-T-B magnet having good magnetic properties.

なお、湿式成形を行った場合は、成形工程後の脱溶媒処理工程において、成形体を例えば真空中で加熱することにより、成形体に残存した溶媒や添加剤を除去する。なお、脱溶媒処理工程では、通常、成形体の焼結は進行しないが、焼結が部分的に進行してもよい。   When wet molding is performed, in the solvent removal treatment step after the molding step, the molded body is heated, for example, in a vacuum to remove the solvent and additives remaining in the molded body. In the solvent removal treatment step, usually, the sintered compact does not proceed, but the sintering may partially proceed.

<ステップ3:昇温工程及び温度保持工程>
図1は、昇温工程及び温度保持工程で行う加熱の温度プロファイルの一例を示す図である。図1において、横軸が焼成開始からの経過時間(分)を、縦軸が各経過時間における温度(℃)をそれぞれ示している。図1に示すように、昇温工程では、脱溶媒処理工程後の成形体を加熱して成形体の温度を焼成温度T℃に到達させ、温度保持工程では、更に成形体の温度をT℃に所定時間保持する。温度保持工程後、成形体を急冷することによって、成形体を焼結させ、焼結体を得る。なお、図1では、成形体を加熱して成形体の温度を(T−40)℃に到達させた時点をtとしているが、tは、成形体の温度をT℃に到達させる前の時点であれば特に限定されない。
<Step 3: Temperature raising step and temperature holding step>
FIG. 1 is a diagram illustrating an example of a temperature profile of heating performed in the temperature raising step and the temperature holding step. In FIG. 1, the horizontal axis indicates the elapsed time (minutes) from the start of firing, and the vertical axis indicates the temperature (° C.) at each elapsed time. As shown in FIG. 1, in the temperature raising step, the molded body after the desolvation treatment step is heated so that the temperature of the molded body reaches the firing temperature T s ° C. Hold at s ° C for a predetermined time. After the temperature holding step, the molded body is rapidly cooled to sinter the molded body to obtain a sintered body. In FIG. 1, although the time at which the temperature was allowed to reach the green body by heating the molded body (T s -40) ℃ is set to t 1, t 1 is reached the temperature of the molded body T s ° C. If it is the time before making it, it will not specifically limit.

なお、昇温開始時の温度は、一例として0℃から昇温を開始した場合について記載(図示)したが、実際には0℃よりも高い温度(例えば室温付近)であることが多い。また、焼成時(昇温工程及び温度保持工程)における成形体の温度は、例えば成形体の雰囲気温度等を調節することによって変化させることができるが、本明細書では、このような「雰囲気温度」等をそのときの成形体自体の温度と見なすことができるものとする。   In addition, although the temperature at the time of starting temperature rising was described (illustrated) as an example when temperature rising started from 0 ° C., the temperature is often higher than 0 ° C. (for example, near room temperature) in many cases. In addition, the temperature of the molded body at the time of firing (temperature raising step and temperature holding step) can be changed, for example, by adjusting the ambient temperature of the molded body. "Can be regarded as the temperature of the molded body itself at that time.

なお、好適なTは、磁性粉末の組成、粉砕方法、粒度と粒度分布の違い等、諸条件によって異なるが、1000〜1200℃程度とすればよい。また、成形体の温度をTに保持する時間は、成形体に含まれる磁性粉末の組成、粉砕方法、粒度と粒度分布の違い等の諸条件によって調整することが好ましいが、1〜5時間程度とすればよい。 Incidentally, preferred T s, the composition of the magnetic powder, grinding method, differences such as particle size and particle size distribution may vary depending on various conditions, it may be about 1000 to 1200 ° C.. The time for maintaining the temperature of the compact at T s is preferably adjusted according to various conditions such as the composition of the magnetic powder contained in the compact, the pulverization method, the difference in particle size and particle size distribution, etc., but 1 to 5 hours. It should be about.

昇温工程及び温度保持工程においては、成形体を、真空雰囲気中で加熱し、次に不活性ガス雰囲気中で加熱する。そして、本実施形態では、このような焼成雰囲気の切り替えを、以下に示す時点で実施する。すなわち、成形体を加熱して成形体の温度をT℃に到達させる直前の時点をtとし、t以降、成形体を更に加熱して成形体の温度をT℃に到達させ、更に成形体の温度をT℃に保持して50分経過させる前の時点をtとするとき、真空雰囲気から不活性ガス雰囲気への切り替えを、t以降t以前に行う。 In the temperature raising step and the temperature holding step, the molded body is heated in a vacuum atmosphere and then heated in an inert gas atmosphere. And in this embodiment, such a change of a firing atmosphere is implemented at the time shown below. That is, the time just before to reach the temperature of the molded body by heating the molded body to T s ° C. and t 1, t 1 and later, the molded body was further heated to reach the temperature of the molded body T s ° C., Furthermore, when the time before holding the temperature of the molded body at T s ° C. for 50 minutes and letting it be t 2 , switching from the vacuum atmosphere to the inert gas atmosphere is performed after t 1 and before t 2 .

成形体の焼成雰囲気をt〜tで真空雰囲気から不活性ガス雰囲気へ切り替えることによって、成形体の組成の変動や成形体と不純物ガスとの反応を抑制することができる。特に実施形態では、成形体からの希土類元素(例えばNd)の蒸発を抑制することができる。その結果、得られるR−T−B系磁石の磁気特性、特に保磁力(Hcj)を向上させることできる。また、成形体の焼成雰囲気をt〜tで真空雰囲気から不活性ガス雰囲気へ切り替えることによって、焼結密度の低下を抑制することも期待でき、さらに、R−T−B系磁石の組成の変動に伴う磁気特性のばらつきを防止できる。 By switching the firing atmosphere of the compact from a vacuum atmosphere to an inert gas atmosphere at t 1 to t 2 , fluctuations in the composition of the compact and reaction between the compact and the impurity gas can be suppressed. In particular, in the embodiment, evaporation of rare earth elements (for example, Nd) from the molded body can be suppressed. As a result, it is possible to improve the magnetic properties, particularly the coercive force (Hcj), of the obtained RTB-based magnet. Moreover, by switching the firing atmosphere of the compact from a vacuum atmosphere to an inert gas atmosphere at t 1 to t 2 , it can be expected to suppress a decrease in the sintered density, and further, the composition of the R-T-B system magnet Variations in magnetic characteristics due to fluctuations can be prevented.

なお、tより前の時点で焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えると、焼結密度が上昇し難いため、得られるR−T−B系磁石の残留磁束密度Brが低下したり、または焼結密度上昇のために要する時間が長くなったりする傾向がある。また、tより後の時点で焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えると、成形体からのNd等の希土類元素の蒸発や成形体と不純物ガスとの反応が起こり易く、また成形体中の粒成長を制御し難いため、得られるR−T−B系磁石のHcjが低下する傾向がある。そこで、t〜tの時点で、焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えることによって、これらの傾向を抑制することができる。 Note that if the firing atmosphere is switched from a vacuum atmosphere to an inert gas atmosphere at a time prior to t 1 , the sintered density is difficult to increase, so that the residual magnetic flux density Br of the resulting RTB-based magnet decreases. Or the time required for increasing the sintered density tends to increase. Further, when the firing atmosphere at a later point in time than t 2 to switch from the vacuum atmosphere to an inert gas atmosphere, easily occur reaction with evaporation or moldings and impurity gas of a rare earth element such as Nd from the molded body, also formed body Since it is difficult to control the grain growth inside, the Hcj of the resulting RTB-based magnet tends to decrease. Therefore, these tendencies can be suppressed by switching the firing atmosphere from a vacuum atmosphere to an inert gas atmosphere at the time t 1 to t 2 .

は、成形体を加熱して成形体の温度を(T−40)℃に到達させた時点とすることが好ましい。また、tは、成形体を加熱して成形体の温度を(T−20)℃に到達させた時点とすることがより好ましい。すなわち、成形体の焼成において、成形体を加熱して成形体の温度が(T−40)℃よりも高い(T−20)℃に到達させた時点をtとすることが好ましい。これにより、得られるR−T−B系磁石の磁気特性を更に向上させることできるのみならず、焼結密度の低下をより確実に抑制することができる。 t 1 is preferably the time when the temperature of the molded body is reached to (T s −40) ° C. by heating the molded body. Further, t 1 is more preferably set to the time when the temperature of the molded body is reached to (T s -20) ° C. by heating the molded body. That is, in firing the molded body, it is preferable that the time when the molded body is heated to reach (T c −20) ° C. higher than (T s −40) ° C. is defined as t 1 . Thereby, not only can the magnetic properties of the obtained R-T-B system magnet be further improved, but also a decrease in the sintered density can be more reliably suppressed.

また、昇温工程では、成形体の温度を(T−40)℃に一定時間保持した後に、成形体を更に加熱して成形体の温度を焼成温度T℃に到達させることが好ましい。これにより、T℃に到達する前に、Tに近い温度で成形体が一定時間保持されることとなり、その結果、成形体の組成変動が一定時間遅れることとなる。すなわち、比較的遅い時点で焼成雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替えることが可能となる。その結果、焼結密度の低下をより確実に抑制することができる。 In the temperature raising step, it is preferable that the temperature of the molded body is maintained at (T s -40) ° C. for a certain time, and then the molded body is further heated to reach the firing temperature T s C. Thereby, before reaching T s ° C., the molded body is held at a temperature close to T s for a certain period of time, and as a result, the composition fluctuation of the molded body is delayed for a certain period of time. That is, it becomes possible to switch the firing atmosphere from a vacuum atmosphere to an inert gas atmosphere at a relatively late point. As a result, it is possible to more reliably suppress a decrease in sintered density.

なお、この保持は、tでの成形体の温度を(T−40)℃又は(T−20)℃のいずれとした場合に行っても有効である。例えば、tでの成形体の温度を(T−40)℃とした場合は、上記保持の最中に焼成雰囲気の切り替えを行ってもよい。一方、tでの成形体の温度を(T−20)℃とした場合は、真空雰囲気で(T−40)℃での保持を行った後、更に成形体の加熱を行い、(T−20)℃に達した時点以降に焼成雰囲気の切り替えを行うこととなる。 This holding is effective even when the temperature of the molded body at t 1 is (T s −40) ° C. or (T s −20) ° C. For example, when the temperature of the molded body at t 1 is (T s −40) ° C., the firing atmosphere may be switched during the holding. On the other hand, when the temperature of the molded body at t 1 is (T s −20) ° C., after holding at (T s −40) ° C. in a vacuum atmosphere, the molded body is further heated ( T s -20) The firing atmosphere is switched after reaching the temperature.

成形体の温度を(T−40)℃に保持する場合、その保持時間は、15〜45分とすることが好ましく、30分とすることがより好ましい。成形体の温度を(T−40)℃に保持する時間が短すぎると、tでの雰囲気切り換えの効果が小さくなる傾向があり、成形体の温度を(T−40)℃に保持する時間が長すぎると、成形体が過焼結して、得られる磁石の磁気特性が低下する傾向がある。そこで、成形体の温度を(T−40)℃に保持する時間を上記の好適範囲内とすることによって、これらの傾向を抑制して上記のような効果が良好に得られるようになる。 When the temperature of the molded body is held at (T s -40) ° C, the holding time is preferably 15 to 45 minutes, and more preferably 30 minutes. If the time for maintaining the temperature of the compact at (T s -40) ° C. is too short, the effect of switching the atmosphere at t 2 tends to be small, and the temperature of the compact is maintained at (T s -40) ° C. When the time to do is too long, a molded object will oversinter and there exists a tendency for the magnetic characteristic of the magnet obtained to fall. Therefore, by setting the time for maintaining the temperature of the molded body at (T s -40) ° C. within the above preferable range, these tendencies can be suppressed and the above effects can be obtained satisfactorily.

また、不活性ガス雰囲気においては、その気圧を50Pa〜80kPaとすることが好ましい。不活性ガス雰囲気の気圧が小さ過ぎると、成形体からの希土類元素(例えばNd)の蒸発を抑制し難くなる傾向があり、不活性ガス雰囲気の気圧が大き過ぎると、成形体内の微細な空隙に侵入した不活性ガスが成形体外へ抜け難くなり、焼結密度が上昇し難い傾向がある。そこで、不活性ガス雰囲気の気圧を上記の好適範囲内とすることによって、これらの傾向を抑制することができる。   In an inert gas atmosphere, the pressure is preferably 50 Pa to 80 kPa. If the pressure of the inert gas atmosphere is too small, it tends to be difficult to suppress the evaporation of rare earth elements (for example, Nd) from the molded body. If the pressure of the inert gas atmosphere is too large, fine voids in the molded body are formed. The inactive gas that has entered tends to be difficult to escape from the molded body, and the sintered density tends not to increase. Therefore, these tendencies can be suppressed by setting the pressure of the inert gas atmosphere within the above-mentioned preferable range.

本実施形態において、昇温度工程及び温度保持工程は、例えば、成形体を平板状の焼成治具に設置した状態とし、この成形体を加熱することで行うことができる。この際、成形体は、当該成形体が有する側面のうちの最大面積を有している側面が焼成治具に対向するように、焼成治具に設置することが好ましい。これにより、焼成時に、成形体の最も大きい側面が焼成治具によって封止されることから、成形体からのNd等の希土類元素が蒸発することを更に防止することができると共に、成形体と不純物ガスとの反応を防止することができる。また、これと同様の効果が得られることから、成形体の表面のうち焼成雰囲気(真空または不活性ガス雰囲気)に曝される面積S(cm)(成形体の表面のうち焼成治具と接していない表面の面積)と、成形体の重量W(g)との比S/Wを、0.8以下とすることが好ましい。なお、成形体の寸法が小さくなるほど、S/Wは大きくなる。 In the present embodiment, the temperature raising step and the temperature holding step can be performed by, for example, setting the molded body in a state where it is placed on a flat plate-like firing jig and heating the molded body. At this time, the molded body is preferably installed on the firing jig such that the side surface having the largest area among the side surfaces of the molded body faces the firing jig. Thereby, at the time of firing, the largest side surface of the molded body is sealed by the firing jig, so that it is possible to further prevent evaporation of rare earth elements such as Nd from the molded body, as well as the molded body and impurities. Reaction with gas can be prevented. Further, since the same effect is obtained, the area S (cm 2 ) exposed to the firing atmosphere (vacuum or inert gas atmosphere) on the surface of the molded body (the firing jig on the surface of the molded body) The ratio S / W of the surface area not in contact) and the weight W (g) of the molded body is preferably 0.8 or less. In addition, S / W becomes large, so that the dimension of a molded object becomes small.

<ステップ4:時効処理工程>
上記の昇温度工程及び温度保持工程後に得られた焼結体には、その磁気特性を向上させるため、例えば、焼成時よりも低い温度で加熱する時効処理を施すことが好ましい。時効処理は、例えば、700〜900℃で1〜3時間、更に500〜700℃で1〜3時間加熱する2段階加熱や、600℃付近で1〜3時間加熱する1段階加熱によって行う。
<Step 4: Aging process>
In order to improve the magnetic properties of the sintered body obtained after the temperature raising step and the temperature holding step, for example, it is preferable to perform an aging treatment by heating at a temperature lower than that during firing. The aging treatment is performed, for example, by two-step heating at 700 to 900 ° C. for 1 to 3 hours, further heating at 500 to 700 ° C. for 1 to 3 hours, or one-step heating at about 600 ° C. for 1 to 3 hours.

時効処理後の焼結体(R−T−B系磁石)は、表面を平滑化する処理等を施されたり、所望のサイズに切断されたりしてもよい。また、得られたR−T−B系磁石の表面に防錆するための保護層を更に形成させてもよい。このようにして、実用に供することが可能なR−T−B系磁石を得ることができる。   The sintered body (R-T-B magnet) after the aging treatment may be subjected to a treatment for smoothing the surface or may be cut into a desired size. Moreover, you may further form the protective layer for anti-rusting on the surface of the obtained RTB type magnet. In this manner, an R-T-B magnet that can be put to practical use can be obtained.

上述したような実施形態の製造方法により、R−T−B系の磁石が得られるが、上記製造方法において、焼結後に得られた焼結体の密度は、7.58g/cm以上であることが好ましく、7.60g/cm以上であることがより好ましい。焼結体がこのような密度を有していると、得られる磁石も高密度となり、優れた磁気特性を有するものとなり得る。Hcjは2175kA/m以上であることが好ましい。そして、上記本実施形態の製造方法によれば、Nd等の蒸発等を抑制することができ、成形体の組成の変動を抑制できる。 According to the manufacturing method of the embodiment as described above, an RTB-based magnet is obtained. In the above manufacturing method, the density of the sintered body obtained after sintering is 7.58 g / cm 3 or more. It is preferable that it is 7.60 g / cm 3 or more. When the sintered body has such a density, the obtained magnet also has a high density and can have excellent magnetic properties. Hcj is preferably 2175 kA / m or more. And according to the manufacturing method of the said embodiment, evaporation etc. of Nd etc. can be suppressed and the fluctuation | variation of the composition of a molded object can be suppressed.

以上、本発明に係るR−T−B系磁石の製造方法の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。   As mentioned above, although preferred embodiment of the manufacturing method of the RTB type magnet which concerns on this invention was described, this invention is not necessarily limited to embodiment mentioned above.

例えば、上述の実施形態では、焼成後の焼結体に対して時効処理を施したが、焼成後の焼結体において十分な磁気特性が得られている場合は、時効処理は必ずしも実施しなくてもよい。また、本発明のR−T−B系磁石の製造方法は、必要に応じて、上述した工程以外の工程を更に含んでいてもよい。   For example, in the above-described embodiment, the aging treatment is performed on the sintered body after firing. However, when sufficient magnetic properties are obtained in the sintered body after firing, the aging treatment is not necessarily performed. May be. Moreover, the manufacturing method of the RTB system magnet of this invention may further include processes other than the process mentioned above as needed.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.

(実施例1)
Nd−Fe−B系磁石の原料(磁性材料)として、Ndを12.0原子%、Bを6.1原子%、残部としてFeを含有する原料合金を準備した。この合金を水素吸蔵炉にて粗粉砕した後、ジェットミルを用いて、原料合金の平均粒径が4μmとなるまで微粉砕することにより、磁性粉末を得た。なお、原料合金の粗粉砕及び微粉砕は低酸素雰囲気下で行った。次に、得られた磁性粉末を、成形装置を用いて、配向磁場下で圧縮成形して、成形体を得た。
(Example 1)
As a raw material (magnetic material) for the Nd—Fe—B magnet, a raw material alloy containing 12.0 atomic% Nd, 6.1 atomic% B, and Fe as the balance was prepared. The alloy was coarsely pulverized in a hydrogen storage furnace, and then finely pulverized using a jet mill until the average particle size of the raw material alloy became 4 μm to obtain a magnetic powder. The raw alloy was roughly pulverized and finely pulverized in a low oxygen atmosphere. Next, the obtained magnetic powder was compression-molded under an orientation magnetic field using a molding apparatus to obtain a molded body.

次に、焼成炉内に成形体を設置し、この成形体に対し、以下に示す焼成条件(温度及び雰囲気)で焼成を行い、実施例1の焼結体を得た。まず、成形体の焼成温度Tは1090℃と設定し、次のような温度プロファイルにしたがって成形体の加熱・冷却を行った。すなわち、まず、成形体を加熱して成形体の温度を(T−40)℃に到達させた。それから、成形体を更に加熱して成形体の温度を焼成温度(Ts)に到達させ、この温度で4時間保持し、その後、成形体を冷却した。 Next, the compact was placed in a firing furnace, and the compact was fired under the following firing conditions (temperature and atmosphere) to obtain a sintered body of Example 1. First, the firing temperature T s of the molded body was set to 1090 ° C., it was heated and cooling of the shaped body according to the following temperature profile, such as. That is, first, the molded body was heated so that the temperature of the molded body reached (T s -40) ° C. Then, the compact was further heated so that the temperature of the compact reached the firing temperature (Ts), held at this temperature for 4 hours, and then the compact was cooled.

また、焼成時の焼成炉内の雰囲気は次の通りとした。まず、焼成炉内の雰囲気を真空(5Pa以下の真空状態)で焼成を開始した。それから、成形体の(T−40)℃に到達した時点で、焼成炉内にArガスを導入して、焼成炉内のArガスの気圧を80kPaとし、その後、焼成炉内をこのAr雰囲気に維持した。すなわち、実施例1では、成形体の(T−40)℃に到達した時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えた。 The atmosphere in the firing furnace during firing was as follows. First, firing was started in a vacuum (a vacuum state of 5 Pa or less) in the firing furnace. Then, when the molded body reaches (T s -40) ° C., Ar gas is introduced into the firing furnace, and the pressure of Ar gas in the firing furnace is set to 80 kPa. Maintained. That is, in Example 1, when the compact reached (T s −40) ° C., the firing atmosphere of the compact was switched from a vacuum atmosphere to an Ar atmosphere.

次に、アルキメデス法を用いて、得られた焼結体の密度(単位:g/cm)を測定した。また、B−Hトレーサーを用いて、焼結体の磁気特性(Hcj)を測定した。また、蛍光X線分析を用いて、焼結体におけるNdの含有率(単位;原子%)を測定し、焼結体におけるNdの含有率と磁性粉末(上記原料合金)におけるNdの含有率との差分(以下、「Nd差分」と記す。)を算出した。各測定結果を表1に示す。 Next, the density (unit: g / cm 3 ) of the obtained sintered body was measured using the Archimedes method. Moreover, the magnetic characteristic (Hcj) of the sintered compact was measured using the BH tracer. Also, the content (unit: atomic%) of Nd in the sintered body is measured using fluorescent X-ray analysis, and the content of Nd in the sintered body and the content of Nd in the magnetic powder (the raw material alloy) (Hereinafter referred to as “Nd difference”). Table 1 shows the measurement results.

(実施例2)
実施例2では、成形体の温度を(T−30)℃に到達させた時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えたこと以外は、実施例1と同様にして焼結体を得た。
(Example 2)
In Example 2, when the temperature of the molded body reached (T s -30) ° C., the firing atmosphere of the molded body was changed from the vacuum atmosphere to the Ar atmosphere in the same manner as in Example 1. A sintered body was obtained.

そして、実施例1と同様の方法で、実施例2の焼結体の密度、Hcj及びNd差分を測定した。各測定結果を表1に示す。   And the density, Hcj, and Nd difference of the sintered compact of Example 2 were measured by the same method as Example 1. Table 1 shows the measurement results.

(実施例3)
実施例3では、成形体の温度を(T−20)℃に到達させた時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えたこと以外は、実施例1と同様にして焼結体を得た。
(Example 3)
In Example 3, when the temperature of the molded body was reached to (T s -20) ° C, the firing atmosphere of the molded body was changed from the vacuum atmosphere to the Ar atmosphere in the same manner as in Example 1. A sintered body was obtained.

そして、実施例1と同様の方法で、実施例3の焼結体の密度、Hcj及びNd差分を測定した。各測定結果を表1に示す。   And the density, Hcj, and Nd difference of the sintered compact of Example 3 were measured by the same method as Example 1. Table 1 shows the measurement results.

(実施例4)
実施例4では、成形体の温度をT℃に到達させた時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えたこと以外は、実施例1と同様にして焼結体を得た。
(Example 4)
In Example 4, the sintered body was obtained in the same manner as in Example 1 except that the firing atmosphere of the molded body was switched from the vacuum atmosphere to the Ar atmosphere when the temperature of the molded body reached T s ° C. Obtained.

そして、実施例1と同様の方法で、実施例4の焼結体の密度、Hcj及びNd差分を測定した。各測定結果を表1に示す。   And the density, Hcj, and Nd difference of the sintered compact of Example 4 were measured by the same method as Example 1. Table 1 shows the measurement results.

(実施例5)
実施例5では、成形体の温度をT℃に到達させた後、この温度に保持して30分経過した時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えたこと以外は、実施例1と同様にして焼結体を得た。
(Example 5)
In Example 5, after the temperature of the molded body was reached to T s ° C. and maintained at this temperature for 30 minutes, the firing atmosphere of the molded body was changed from a vacuum atmosphere to an Ar atmosphere. In the same manner as in Example 1, a sintered body was obtained.

そして、実施例1と同様の方法で、実施例5の焼結体の密度、Hcj及びNd差分を測定した。各結果を表1に示す。   And the density, Hcj, and Nd difference of the sintered compact of Example 5 were measured by the same method as Example 1. The results are shown in Table 1.

(比較例1)
比較例1では、成形体の温度をT℃に到達させた後、この温度に保持して50分経過した時点で、成形体の焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えたこと以外は、実施例1と同様にして焼結体を得た。
(Comparative Example 1)
In Comparative Example 1, the temperature of the molded body was made to reach T s ° C, and when the temperature was maintained at this temperature for 50 minutes, the firing atmosphere of the molded body was changed from the vacuum atmosphere to the Ar atmosphere. In the same manner as in Example 1, a sintered body was obtained.

そして、実施例1と同様の方法で、比較例1の焼結体の密度、Hcj及びNd差分を測定した。各結果を表1に示す。   Then, the density, Hcj, and Nd difference of the sintered body of Comparative Example 1 were measured by the same method as in Example 1. The results are shown in Table 1.

(比較例2)
焼成を、常に真空雰囲気で行ったこと、すなわち、焼成雰囲気を、真空雰囲気からAr雰囲気へ切り替えなかったこと以外は、実施例1と同様の方法で、比較例2の焼結体を得た。
(Comparative Example 2)
A sintered body of Comparative Example 2 was obtained in the same manner as in Example 1 except that firing was always performed in a vacuum atmosphere, that is, the firing atmosphere was not switched from a vacuum atmosphere to an Ar atmosphere.

そして、実施例1と同様の方法で、比較例2の焼結体の密度、Hcj及びNd差分を測定した。各測定結果を表1に示す。   And the density, Hcj, and Nd difference of the sintered compact of the comparative example 2 were measured by the same method as Example 1. Table 1 shows the measurement results.

表1に示すように、実施例1〜5では、比較例1、2に比べて、Nd差分が小さいことが確認された。すなわち、実施例1〜5では、比較例1、2に比べて、焼成中における成形体の組成の変動が抑制され、磁気特性のばらつきが小さいことが確認された。また、実施例1〜5では、比較例1、2に比べて、Hcjが高いことが確認された。更に、実施例1〜5のいずれにおいても、焼結体の密度が7.58g/cm以上に維持され、密度の減少が十分に抑制されていることが確認された As shown in Table 1, in Examples 1 to 5, it was confirmed that the Nd difference was small compared to Comparative Examples 1 and 2. That is, in Examples 1-5, compared with Comparative Examples 1 and 2, it was confirmed that the variation in the composition of the molded body during firing was suppressed and the variation in magnetic properties was small. In Examples 1 to 5, it was confirmed that Hcj was higher than those in Comparative Examples 1 and 2. Furthermore, in any of Examples 1 to 5, it was confirmed that the density of the sintered body was maintained at 7.58 g / cm 3 or more, and the decrease in density was sufficiently suppressed.

実施形態に係るR−T−B系磁石の製造方法が備える昇温工程及び温度保持工程で行う成形体の加熱の温度プロファイルの一例を示す図である。It is a figure which shows an example of the temperature profile of the heating of the molded object performed at the temperature rising process with which the manufacturing method of the RTB type magnet which concerns on embodiment is equipped, and a temperature holding process.

符号の説明Explanation of symbols

・・・焼成温度、t・・・昇温工程において、成形体の温度をT℃に到達させる前の時点、t・・・成形体の温度を焼成温度T℃に保持して50分経過させる前の時点。 T s ... Firing temperature, t 1 ... Temperature raising step, before the temperature of the molded body reaches T s C., t 2 ... Temperature of the molded body is maintained at the firing temperature T s C. And before 50 minutes.

Claims (4)

磁性材料から成形体を形成する成形工程と、
前記成形体を加熱して前記成形体の温度を焼成温度T℃に到達させる昇温工程と、
更に前記成形体の温度をT℃に保持する温度保持工程と、を備え、
前記昇温工程又は前記温度保持工程において、その雰囲気を真空雰囲気から不活性ガス雰囲気へ切り替え、且つ、前記真空雰囲気から前記不活性ガス雰囲気への切り替えを、下記t以降t以前に行う、R−T−B系磁石の製造方法。
:前記成形体の温度をT℃に到達させる前の時点
:前記t以降、前記成形体の温度をT℃に到達させ、更にT℃に保持して50分経過させる前の時点
A molding step of forming a molded body from a magnetic material;
A temperature raising step of heating the shaped body to reach the firing temperature T s ° C.
And a temperature holding step for holding the temperature of the molded body at T s ° C.
In the Atsushi Nobori step or the temperature holding step, switching the atmosphere to an inert gas atmosphere from the vacuum atmosphere, and the switching of the the inert gas atmosphere from the vacuum atmosphere is performed in the following t 1 after t 2 previously, A method for producing an R-T-B magnet.
t 1 : Time before the temperature of the molded body reaches T s ° C. t 2 : After the time t 1 , the temperature of the molded body reaches T s ° C., and is further maintained at T s C. for 50 minutes. Time before
前記tが、前記成形体の温度を(T−40)℃に到達させた時点である、請求項1に記載のR−T−B系磁石の製造方法。 Wherein t 1 is the is the time at which to reach the (T s -40) ℃ temperature of the molded body, method for manufacturing the R-T-B magnet according to claim 1. 前記昇温工程において、前記成形体の温度を(T−40)℃に一定時間保持した後に、前記成形体の温度をT℃に到達させる、請求項1または2に記載のR−T−B系磁石の製造方法。 3. The RT according to claim 1, wherein, in the temperature raising step, the temperature of the molded body is maintained at (T s −40) ° C. for a predetermined time, and then the temperature of the molded body is reached to T s C. -Manufacturing method of B type magnet. 前記不活性ガス雰囲気の気圧を50Pa〜80kPaとする、請求項1〜3のいずれか一項に記載のR−T−B系磁石の製造方法。
The manufacturing method of the RTB system magnet as described in any one of Claims 1-3 which makes the atmospheric pressure of the said inert gas atmosphere 50 Pa-80 kPa.
JP2008145068A 2008-06-02 2008-06-02 Method for manufacturing r-t-b magnet Pending JP2009295638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145068A JP2009295638A (en) 2008-06-02 2008-06-02 Method for manufacturing r-t-b magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145068A JP2009295638A (en) 2008-06-02 2008-06-02 Method for manufacturing r-t-b magnet

Publications (1)

Publication Number Publication Date
JP2009295638A true JP2009295638A (en) 2009-12-17

Family

ID=41543597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145068A Pending JP2009295638A (en) 2008-06-02 2008-06-02 Method for manufacturing r-t-b magnet

Country Status (1)

Country Link
JP (1) JP2009295638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139305A1 (en) * 2012-11-20 2014-05-22 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
JP2018078301A (en) * 2017-12-05 2018-05-17 株式会社東芝 Permanent magnet and motor using the same, power generator, and motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet
JPS5867801A (en) * 1981-10-16 1983-04-22 Sumitomo Special Metals Co Ltd Preparation of rare earth/cobalt permanent magnet
JPH1012473A (en) * 1996-06-26 1998-01-16 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet
JPS5867801A (en) * 1981-10-16 1983-04-22 Sumitomo Special Metals Co Ltd Preparation of rare earth/cobalt permanent magnet
JPH1012473A (en) * 1996-06-26 1998-01-16 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139305A1 (en) * 2012-11-20 2014-05-22 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
JP2014103239A (en) * 2012-11-20 2014-06-05 Toshiba Corp Permanent magnet, and motor and generator using the same
US10593448B2 (en) * 2012-11-20 2020-03-17 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
JP2018078301A (en) * 2017-12-05 2018-05-17 株式会社東芝 Permanent magnet and motor using the same, power generator, and motor vehicle

Similar Documents

Publication Publication Date Title
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP5906874B2 (en) Manufacturing method of RTB-based permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
WO2016121790A1 (en) Method for producing r-t-b sintered magnet
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP5969750B2 (en) Rare earth permanent magnet manufacturing method
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
JPWO2019151244A1 (en) permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP2007327102A (en) Method for removing lubricant
JP2009295638A (en) Method for manufacturing r-t-b magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
JP4305927B2 (en) Lubricant removal method
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JP7360307B2 (en) Rare earth iron ring magnet and its manufacturing method
CN113690039A (en) Rare earth sintered magnet and method for producing same
JP2016169438A (en) R-t-b-based rare earth sintered magnet and alloy for r-t-b-based rare earth sintered magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP4353430B2 (en) Method for removing lubricant and method for producing rare earth sintered magnet
WO2022249908A1 (en) Method for producing rare earth-iron ring magnet and method for producing same
JP2007227466A (en) Method of manufacturing rare-earth sintered magnet, and method of manufacturing granules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612