JPH1012473A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH1012473A
JPH1012473A JP8166442A JP16644296A JPH1012473A JP H1012473 A JPH1012473 A JP H1012473A JP 8166442 A JP8166442 A JP 8166442A JP 16644296 A JP16644296 A JP 16644296A JP H1012473 A JPH1012473 A JP H1012473A
Authority
JP
Japan
Prior art keywords
oil
permanent magnet
sintered
temperature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8166442A
Other languages
Japanese (ja)
Inventor
Kimio Uchida
公穂 内田
Masahiro Takahashi
昌弘 高橋
Fumitake Taniguchi
文丈 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8166442A priority Critical patent/JPH1012473A/en
Publication of JPH1012473A publication Critical patent/JPH1012473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method wherein a molding is efficiently deoiled and sintered in the manufacturing process of an R-Fe-B system permanent magnet in which a wet molding method is employed. SOLUTION: R-Fe-B (wherein R denotes at least one of rare-earth elements including Y) system permanent magnet raw powder is pulverized into fine powder in the flow of N2 gas or Ar gas with oxygen concentration not higher than 0.01%. The fine powder after pulverization is directly collected into mineral oil or synthetic oil which belongs to the 4th type 2nd petroleum group whose flash point is more than 21 deg.C and less than 70 deg.C specified in the Fire Service Act to make slurry. The slurry material is subjected to the wet molding in a magnetic field and, after the mineral oil or synthetic oil in a molding is removed by vacuum heating, the molding is sintered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高性能希土類永久
磁石焼結体の製造に関するものである。
The present invention relates to the production of high performance rare earth permanent magnet sintered bodies.

【0002】[0002]

【従来の技術】希土類永久磁石の高性能化の手段の内、
低酸素化は磁気特性の改善に寄与する効果が大きいた
め、その方法については、長年に渡って研究が続けられ
ており、多くの提案が形成されている。これらの提案の
内、最近特に注目を集めている低酸素化技術として湿式
成形法がある。この方法は、実質的な無酸素雰囲気下で
希土類永久磁石用原料微粉を作製し、これを大気に触れ
させることなくある種の鉱物油、合成油中に回収してス
ラリー状の原料とし、この原料を磁界中で湿式成形して
成形体とし、一定の条件下で、成形体から油を除去した
後これを大気に触れさせることなく直接焼結し、焼結体
を製作するというものである。こうして得られた焼結体
の含有酸素量は、それ以外の従来方法で製作された焼結
体のものに比べ格段に少なく、このため高い磁気特性を
実現することかできる。
2. Description of the Related Art Among the means for improving the performance of rare earth permanent magnets,
Since hypoxia has a large effect of contributing to the improvement of magnetic properties, the method has been studied for many years and many proposals have been made. Among these proposals, there is a wet molding method as a low-oxygenation technology that has recently attracted particular attention. In this method, a raw material fine powder for a rare earth permanent magnet is produced under a substantially oxygen-free atmosphere, and the fine powder is recovered into a certain kind of mineral oil or synthetic oil without being exposed to the atmosphere to obtain a raw material in the form of a slurry. The raw material is wet-molded in a magnetic field to form a molded body. Under certain conditions, oil is removed from the molded body, and this is directly sintered without being exposed to the atmosphere to produce a sintered body. . The sintered body thus obtained has a much lower oxygen content than those of the sintered bodies manufactured by other conventional methods, so that high magnetic properties can be realized.

【0003】湿式成形法で成形した成形体は、成形条件
等によって含有量は異なるが、一般的には重量百分比率
で2〜20%の鉱物油、合成油、あるいは植物油又はこ
れらの2種類以上の混合から作られる混合油を含んでい
る。従って成形体を焼結する前段階で、これら含有油を
成形体から除去する必要がある。これは油の除去なしに
直接焼結した場合、油に由来する炭素が希土類元素と反
応して炭化物を形成し、これによって磁気特性の低下を
招くからである。上記湿式成形に使用する鉱物油と合成
油としては、例えば1気圧における引火点が70℃以上
で200℃未満の消防法で定めるところの第3石油類に
属し、かつ分留点が400℃以下の常温での動粘度が1
0cst以下、であるものが使用される(特願平7−21
4667号)。従って、成形体からこの様な鉱物油、合
成油を除去するには、分留点近傍での温度で加熱する方
法が効果的である。ただし、酸化しやすい希土類元素を
多量に含有する成形体であるため、実質的な真空中ある
いは非酸化性ガス雰囲気中で行う必要がある。また、脱
油処理後の成形体は、酸化防止のための油が失われた状
態であるためその表面は酸素に対して活性になってい
る。従って、大気に触れることなく引き続き焼結する必
要がある。しかし、大量生産において処理する成形体と
それに付随する容器、搬送機構からなる被加熱物の量が
多く、これらの総熱容量が大きくなった場合には、第4
類第3石油類に属する鉱物油、合成油の除去には長時間
を要し、生産効率上問題があった。
The content of a molded article formed by a wet molding method varies depending on molding conditions and the like, but is generally 2 to 20% by weight of a mineral oil, a synthetic oil, a vegetable oil or two or more kinds of these oils. Contains a blended oil made from blending. Therefore, it is necessary to remove these oils from the molded body before sintering the molded body. This is because, when directly sintered without removing the oil, carbon derived from the oil reacts with the rare earth element to form a carbide, thereby causing deterioration in magnetic properties. The mineral oil and the synthetic oil used in the wet molding are, for example, a third petroleum as defined by the Fire Service Law having a flash point of 70 ° C. or more and less than 200 ° C. at 1 atm, and a fractionation point of 400 ° C. or less. Kinematic viscosity at room temperature is 1
0 cst or less is used (Japanese Patent Application No. Hei 7-21).
No. 4667). Therefore, in order to remove such mineral oil and synthetic oil from the compact, a method of heating at a temperature near the fractionation point is effective. However, since the molded body contains a large amount of rare earth elements that are easily oxidized, it is necessary to perform the molding in a substantial vacuum or in a non-oxidizing gas atmosphere. In addition, the surface of the molded body after the deoiling treatment is active with respect to oxygen because oil for preventing oxidation has been lost. Therefore, it is necessary to continue sintering without exposure to the atmosphere. However, in the case where the amount of the object to be heated composed of the molded body to be processed in mass production, its associated container, and the transport mechanism is large, and the total heat capacity thereof is large, the fourth
It takes a long time to remove mineral oil and synthetic oil belonging to the third petroleum class, and there is a problem in production efficiency.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の提案
が持つ、以上の問題点を解決し、湿式成形法で成形した
希土類永久磁石成形体を効率よく脱油・焼結する方法を
提案しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior proposals and proposes a method for efficiently deoiling and sintering a rare earth permanent magnet formed by a wet forming method. What you want to do.

【0005】[0005]

【課題を解決するための手段】本発明では酸素濃度が
0.01%以下のN2ガス又はArガス気流中で、R−
Fe−B(RはYを含む希土類元素のうちの1種類以
上)系永久磁石粗粉を微粉砕し、粉砕後の微粉を大気に
触れさせずに直接1気圧における引火点が21℃以上で
70℃未満の消防法で定めるところの第4類第2石油類
に属する鉱物油あるいは合成油中に回収してスラリー化
し、このスラリー化した原料を磁界中で湿式成形し、成
形体中の鉱物油、合成油を真空加熱によって除去した後
成形体を焼結して焼結体とすることを特徴とする。消防
法で定めるところの第4類第2石油類に属する鉱物油、
合成油としては、具体的には灯油、軽油、キシレン、テ
レビン油などがあげられる。これらの鉱物油、合成油
は、消防法に定めるところの第4類第3石油類に属する
鉱物油、合成油に比べて分子量が小さく、蒸気圧も高い
ため、より低温で除去が可能である。真空加熱による鉱
物油、合成油の除去では、加熱効率が悪く、脱油処理に
長時間を要するのが欠点であるが、処理量が多い大量生
産ではこの問題がより顕著となる。第4類第2石油類に
属する鉱物油、合成油の使用によって、より低温で即ち
より短時間で除去可能となり、大量生産に適した製造方
法となる。以上の第4類第2石油類に属する鉱物油、合
成油を含有した成形体からの油の除去方法に特に制限は
無いが、真空加熱の温度としては40〜120℃が望ま
しい。加熱温度が40℃未満では、除去効率が低下す
る。また、120℃より高い加熱温度は、大量処理の場
合長時間を要するため好ましくない。真空度としては5
×10-1torr以下、より好ましくは5×10-2torr以下
が望ましい。また、上記真空加熱においては、脱油処理
時間をさらに短縮するために、加熱開始から成形体の品
温がある段階に達するまでの間、脱油室にアルゴン等の
不活性ガスを導入して伝熱性を高め、その後所定の温度
に達し保持する時間を上記真空度下で真空加熱すること
もできる。油が除去された成形体は、大気に触れさせる
ことなく、直接焼結される。この場合の焼結条件も特に
限定されるものではなく、特に焼結温度は永久磁石の組
成によって選定されるものであるが、一般に焼結温度は
1000〜1150℃の範囲とされる。また、真空焼結
を採用する場合には、その真空度は5×10-3torr以
下、より好ましくは5×10-4torr以下とされる。Ar
雰囲気での焼結も、場合によっては採用される。第4類
第2石油類に属する鉱物油、合成油選択のもう一つの利
点は、第4類第3石油類に属する鉱物油、合成油に比べ
て分子量が小さいため、焼結後の残留炭素量の水準がよ
り少なくなるという点である。これは永久磁石の保磁力
の安定化に、極めて有利となる。本発明では、微粉砕に
ジェットミルを用いることが好ましい。微粉砕での粉砕
媒体であるN2ガス又はArガス中の酸素濃度は0.0
1%以下、好ましくは0.005%以下、さらに好まし
くは0.002%以下とされる。酸素濃度が0.01%
より多い場合、粉砕中の微粉の酸化が激しくなり、最終
的に得られる焼結体中の酸素量が多くなって、良好な保
磁力が得られない。粉砕後の微粉は、ジェットミル等の
微粉砕装置の微粉排出口に設置された第2石油類に属す
る鉱物油あるいは合成油中に、大気触れさせずに直接回
収され、スラリー化される。微粉の表面は鉱物油あるい
は合成油によって被覆され、大気と遮断されるため、ス
ラリー状の原料を大気中で取りあつかっても酸化は防止
される。この様にして作製したスラリー状の原料を磁界
中で湿式成形し、得られた成形体を前述した除去条件下
で脱油処理し、次いで焼結することによって、酸素量と
炭素量が共に少ない高磁気特性を有する希土類永久磁石
焼結体を製造することができる。本発明におけるR−F
e−B系永久磁石の組成は、特定のものに限定されるも
のではないが、低い焼結体酸素量、炭素量という本発明
の効果をより発現させるためには、希土類元素の含有量
は重量百分比率で28.0〜31.5%、より好ましく
は28.5〜30.5%とする必要がある。希土類元素
の含有量が28.0%未満では、保磁力が低下する。ま
た、31.5%より多い場合には、残留磁束密度Brが
低下する。また、Bの含有量は重量百分比率で0.9〜
1.5%、より好ましくは0.95〜1.2%とされ
る。Bの含有量が0.9%未満では保磁力が低下する。
また、1.5%より多い場合には、残留磁束密度Brが
低下する。さらに、Feの一部をCo、Al、Nb、G
a、Cuの元素の内の少なくとも一種類以上によって置
換することができる。置換後の各元素の含有量は、永久
磁石焼結体の組成全体に対する重量百分比率でCoは
0.5〜5.0%、Alは0.02〜0.3%、Nbは
0.2〜2.0%、Gaは0.02〜0.2%、Cuは
0.02〜0.2%であることが好ましい。本発明でジ
ェットミル粉砕に供するR−Fe−B系永久磁石粗粉の
製造方法も、特に限定されるものではない。最終的に得
ようとする永久磁石焼結体の組成を溶解組成として、鋳
造法でインゴットを作製し、これを所定の粒度まで粉砕
して使用する。必要に応じて、インゴットに熱処理を施
す、水素吸蔵処理を施すなどを行い、粉砕性を高める方
法も採られる。また、急冷法のいわゆるストリップキャ
スト法で、所定組成を有する薄帯状の合金を作製し、こ
れを所定の粒度まで粉砕して使用してもよい。この場合
も、必要に応じて、薄帯状合金に熱処理や水素吸蔵処理
が施される。またさらに組成の異なる2種類以上のイン
ゴットや薄帯状合金を用意し、これらを上記の方法で粗
粉化した後、最終的に得ようとする永久磁石焼結体の組
成になるように、これらの粗粉を混合して組成を調整
し、粉砕用の粗粉とすることもできる。
According to the present invention, R- gas is supplied in an N2 gas or Ar gas stream having an oxygen concentration of 0.01% or less.
Fe-B (R is at least one of the rare earth elements including Y) -based permanent magnet coarse powder is finely pulverized, and the pulverized fine powder is exposed directly to the atmosphere at a flash point of 21 ° C. or more at 1 atm. It is recovered and slurried in mineral oil or synthetic oil belonging to Class 4 and 2 petroleums as specified by the Fire Service Law of less than 70 ° C, and the slurried raw material is wet-formed in a magnetic field to form After removing oil and synthetic oil by vacuum heating, the molded body is sintered to form a sintered body. Mineral oil belonging to Class 4 Class 2 Petroleum as defined by the Fire Services Act,
Specific examples of the synthetic oil include kerosene, light oil, xylene, and turpentine. These mineral oils and synthetic oils are smaller in molecular weight and higher in vapor pressure than those of mineral oils and synthetic oils belonging to Class 4 and 3 petroleums as defined by the Fire Service Law, so they can be removed at lower temperatures. . The disadvantage of removing mineral oils and synthetic oils by vacuum heating is that the heating efficiency is poor and the deoiling process requires a long time, but this problem becomes more pronounced in mass production with a large amount of treatment. By using mineral oil and synthetic oil belonging to the fourth class and the second petroleum, the oil can be removed at a lower temperature, that is, in a shorter time, and the production method is suitable for mass production. There is no particular limitation on the method of removing oil from a molded product containing mineral oil or synthetic oil belonging to the above-described fourth and second petroleums, but the temperature of vacuum heating is preferably 40 to 120 ° C. When the heating temperature is lower than 40 ° C., the removal efficiency decreases. Further, a heating temperature higher than 120 ° C. is not preferable because it requires a long time in the case of mass processing. The degree of vacuum is 5
It is desirably not more than × 10 -1 torr, more preferably not more than 5 × 10 -2 torr. In the vacuum heating, an inert gas such as argon is introduced into the deoiling chamber from the start of the heating until the temperature of the molded article reaches a certain stage in order to further reduce the deoiling time. It is also possible to increase the heat conductivity, and then perform vacuum heating under the above-mentioned degree of vacuum to reach and maintain a predetermined temperature. The molded body from which the oil has been removed is directly sintered without being exposed to the atmosphere. The sintering conditions in this case are not particularly limited. In particular, the sintering temperature is selected according to the composition of the permanent magnet, but the sintering temperature is generally in the range of 1000 to 1150 ° C. When vacuum sintering is employed, the degree of vacuum is set to 5 × 10 −3 torr or less, more preferably 5 × 10 −4 torr or less. Ar
Sintering in an atmosphere is also employed in some cases. Another advantage of selecting mineral oils and synthetic oils belonging to Class 4 and 2 petroleums is that the molecular weight is smaller than that of mineral oils and synthetic oils belonging to Class 4 and 3 petroleum, so that residual carbon The point is that the level of quantity will be lower. This is extremely advantageous for stabilizing the coercive force of the permanent magnet. In the present invention, it is preferable to use a jet mill for fine pulverization. The oxygen concentration in N2 gas or Ar gas, which is a grinding medium in the fine grinding, is 0.0
The content is 1% or less, preferably 0.005% or less, and more preferably 0.002% or less. Oxygen concentration is 0.01%
If the amount is larger, the oxidation of the fine powder during pulverization becomes severe, the amount of oxygen in the finally obtained sintered body increases, and a good coercive force cannot be obtained. The fine powder after the pulverization is directly collected into a mineral oil or a synthetic oil belonging to the second petroleum, which is provided at a fine powder discharge port of a fine pulverizer such as a jet mill, without being exposed to the atmosphere, and is slurried. Since the surface of the fine powder is coated with mineral oil or synthetic oil and is shielded from the atmosphere, oxidation is prevented even if the slurry-like raw material is used in the atmosphere. The slurry-like raw material thus produced is wet-molded in a magnetic field, and the obtained molded body is deoiled under the above-described removal conditions, and then sintered to reduce both the oxygen content and the carbon content. A rare earth permanent magnet sintered body having high magnetic properties can be manufactured. RF in the present invention
The composition of the eB-based permanent magnet is not limited to a specific one, but the content of the rare earth element must be It is necessary to be 28.0-31.5%, more preferably 28.5-30.5% by weight percentage. If the content of the rare earth element is less than 28.0%, the coercive force decreases. If it is more than 31.5%, the residual magnetic flux density Br decreases. The content of B is 0.9 to 0.9% by weight.
1.5%, more preferably 0.95 to 1.2%. If the B content is less than 0.9%, the coercive force decreases.
If it is more than 1.5%, the residual magnetic flux density Br decreases. Further, part of Fe is changed to Co, Al, Nb, G
It can be replaced by at least one or more of the elements a and Cu. The content of each element after substitution is 0.5 to 5.0% for Co, 0.02 to 0.3% for Al, and 0.2 for Nb in percentage by weight with respect to the entire composition of the permanent magnet sintered body. -2.0%, Ga is preferably 0.02-0.2%, and Cu is preferably 0.02-0.2%. The method for producing the R-Fe-B-based permanent magnet coarse powder to be subjected to jet mill pulverization in the present invention is not particularly limited. An ingot is produced by a casting method using the composition of the permanent magnet sintered body to be finally obtained as a melting composition, and this is ground to a predetermined particle size for use. If necessary, the ingot may be subjected to a heat treatment, a hydrogen storage treatment, or the like to improve the pulverizability. Alternatively, a strip-shaped alloy having a predetermined composition may be prepared by a so-called strip casting method of a quenching method, and the alloy may be pulverized to a predetermined particle size before use. Also in this case, a heat treatment or a hydrogen storage treatment is applied to the ribbon-shaped alloy as necessary. Further, two or more kinds of ingots and ribbon-shaped alloys having different compositions are prepared, and after coarsening them by the above-described method, the composition of the permanent magnet sintered body finally obtained is adjusted. Can be mixed to adjust the composition to obtain a coarse powder for pulverization.

【0007】[0007]

【発明の実施の形態】以上本発明の焼結炉の詳細を説明
した。以下は実施例によって、その効果を明らかにす
る。なお、本発明はこの実施例によってその範囲を制約
されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the sintering furnace of the present invention have been described above. Hereinafter, the effect will be clarified by examples. The scope of the present invention is not limited by this embodiment.

【0008】(実施例1)重量百分比率でNd22.5
%、Pr6.3%、Dy1.0%、B1.0%、Co
2.2%、Al0.08%、C0.01%、O0.12
%、N0.007%残部FeからなるNd−Fe−B系
原料粗粉を酸素濃度が0.001%の窒素ガス中でジェ
ットミル粉砕し、これを粉砕機の微粉排出口に設置した
容器中の軽油中に大気に触れさせることなく直接回収し
てスラリー状原料とした。この原料を磁界中で湿式成形
し、50mm×50mm×10mm(110g/ケ)の成形体
とした。この成形体中には、重量百分率で10%の軽油
が含有されていた。この成形体合計110kgと、これを
設置する容器、搬送機構を合せ、総重量250kgの被加
熱物とした。この被加熱物を図1の焼結炉の片側の成形
体保管室1に設置し、真空排気後、同じく真空排気され
ている脱油室2に搬送した。内部加熱ヒータ、外部加熱
ヒータを通電して、それぞれ被加熱物と脱油室内壁を加
熱した。真空排気を継続しながら内部加熱ヒーターにて
加熱を続けたところ通電開始から3時間後に成形体温度
は100℃に達した。この時の脱油室内壁面の温度は1
20℃であった。この段階での脱油室内の真空度は4×
10-2torrであった。後の調査では、蒸発した油による
室内の汚染は見られなかった。脱油処理が終了した被加
熱物をあらかじめ真空排気してある調整室3を経由して
焼結室4に搬送した。焼結室では真空排気の条件下で昇
温を開始し、2時間後に成形体の温度は1090℃に達
した。この時の室内の真空度は5×10-4torrであっ
た。この温度で3時間保持した後加熱を停止し、成形体
の温度が900℃に達した時点で、あらかじめ真空に排
気してあった冷却室5に搬送した。冷却室ではヘリウム
ガスを被加熱物に吹き付け、強制的に冷却した。3時間
後被加熱物を炉外へ出炉した。焼結体は良好な形態であ
り、その分析値は重量百分比率でNd22.5%、Pr
6.3%、Dy1.0%、B1.0%、Co2.2%、
Al0.08%C0.05%、O0.15%、N0.0
55%残部Feであった。焼結体密度は7.62g/cc
であった。この焼結体を熱処理し、その磁気特性を測定
したところ、Br13.9KG、iHc14.4KO
e、(BH)m46.3MGOeという良好な値が得ら
れた。上記ロットを追う形で、同一内容の成形体を同
量、この焼結炉の他の1系統の脱油室で処理し、以降の
工程も同一の手順で行った。こちらの処理ロットについ
ても良好な結果を得た。
Example 1 Nd22.5 in weight percentage
%, Pr6.3%, Dy1.0%, B1.0%, Co
2.2%, Al 0.08%, C 0.01%, O 0.12
%, N 0.007% N-Fe-B-based raw material coarse powder composed of the balance Fe is jet mill-pulverized in nitrogen gas having an oxygen concentration of 0.001%, and this is placed in a container installed at the fine powder outlet of the pulverizer. Was directly collected in light oil without contacting the atmosphere to obtain a slurry raw material. This raw material was wet-molded in a magnetic field to obtain a molded body of 50 mm × 50 mm × 10 mm (110 g / piece). The molded product contained 10% by weight of light oil. A total of 110 kg of the molded body, a container in which the molded body was installed, and a transport mechanism were combined to obtain a heated object having a total weight of 250 kg. The object to be heated was placed in the compact storage room 1 on one side of the sintering furnace shown in FIG. 1, evacuated, and then transferred to a deoiling chamber 2 which was also evacuated. The internal heater and the external heater were energized to heat the object to be heated and the interior wall of the deoiling chamber, respectively. When the heating was continued by the internal heater while the evacuation was continued, the temperature of the molded body reached 100 ° C. 3 hours after the start of energization. At this time, the temperature of the wall surface of the deoiling chamber is 1
20 ° C. The degree of vacuum in the deoiling chamber at this stage is 4 ×
It was 10-2 torr. Subsequent investigations did not show any contamination of the room by the evaporated oil. The heated object after the deoiling treatment was conveyed to the sintering chamber 4 via the adjusting chamber 3 which had been evacuated in advance. In the sintering chamber, the temperature was raised under the condition of evacuation, and after 2 hours, the temperature of the compact reached 1090 ° C. At this time, the degree of vacuum in the room was 5.times.10@-4 torr. After maintaining at this temperature for 3 hours, heating was stopped, and when the temperature of the molded body reached 900 ° C., it was transported to the cooling chamber 5 which had been evacuated in advance. In the cooling chamber, a helium gas was sprayed on the object to be heated to forcibly cool the object. After 3 hours, the object to be heated was taken out of the furnace. The sintered body is in a good form, and its analysis value is Nd 22.5% by weight percentage, Pr
6.3%, Dy 1.0%, B 1.0%, Co 2.2%,
Al 0.08% C 0.05%, O 0.15%, N 0.0
The remaining Fe was 55%. The sintered body density is 7.62g / cc
Met. This sintered body was heat-treated and its magnetic properties were measured to find Br13.9KG, iHc14.4KO.
e, a good value of (BH) m46.3MGOe was obtained. In the form of following the lot, the same amount of the same shaped body was processed in another deoiling chamber of this sintering furnace, and the subsequent steps were performed in the same procedure. Good results were also obtained for this processing lot.

【0009】(実施例2)重量百分比率でNd23.5
%、Pr4.3%、Dy1.8%、B1.1%、Co
2.2%、Al0.12%、Ga0.1%、Cu0.1
%、C0.02%O0.014%、N0.008%残部
FeからなるNd−Fe−B系原料粗粉を酸素濃度が
0.0005%のアルゴンガス中でジェットミル粉砕
し、これを粉砕機の微粉排出口に設置した容器中のテレ
ビン油中に大気に触れさせることなく直接回収してスラ
リー状原料とした。この原料を実施例1と同一の条件で
湿式成形し、50mm×50mm×10mmの成形体を合計1
65Kg準備した。容器と搬送機構を合わせて合計330
Kgの被加熱物を構成し、図2に示す焼結炉の成形体保管
室7、調整室8を経由して脱油室9の一方に搬入した。
脱油室では、真空排気を停止した後アルゴンガスを65
0mmHgまで導入し、これを攪拌しながら、内部加熱
ヒーター、外部加熱ヒーターを通電して、それぞれ被加
熱物と脱油室内壁を加熱した。成形体の温度が45℃に
到達した段階で、再度真空排気を行い、先に導入したア
ルゴンガスを除去した。この時の脱油室内壁面の温度は
80℃であった。真空排気を継続しながら内部加熱ヒー
ターにて加熱を続けたところ通電開始から2時間後に成
形体温度は80℃、室内の真空度は3×10-2torrに到
達した。この時の脱油室内壁面の温度は120℃であっ
た。後の調査では、蒸発した油による室内の汚染は見ら
れなかった。被加熱物を再び調達室8を経由して焼結室
10に搬送し、実施例1と同様の手順で焼結した。昇温
開始後3時間で成形体の温度が1080℃に達したた
め、この温度で4時間保持し焼結した。1080℃での
炉内の真空度は4×10-4torrであった。通電停止後焼
結体の温度が900℃に達したのを確認後、冷却室11
に搬送し、実施例1と同じ方法で強制冷却した。被加熱
物はこの4時間後、炉外に出炉した。焼結体は良好な焼
結形態であり、その分析値はNd23.5%、Pr4.
3%、Dy1.8%、B1.1%、Co2.2%、Al
0.12%、Ga0.1%、Cu0.1%、C0.05
%、O0.17%、N0.006%残部Feであった。
この焼結体の密度は7.61g/ccであった。焼結体を
熱処理し、その磁気特性を測定したところ、Br13.
6KG、iHc15.9KOe、(BH)m 44.8M
GOeという良好な値を得た。このロットを追う形で、
同一内容の成形体の同量からなる第2ロットを用意し、
これを図2の焼結炉のもう一方の脱油室で処理し、以降
の工程も同一の手順を行った。その結果、上記と同じ
く、良好な結果を得た。
Example 2 Nd 23.5 in weight percentage
%, Pr 4.3%, Dy 1.8%, B1.1%, Co
2.2%, Al 0.12%, Ga 0.1%, Cu 0.1
%, C 0.02% O 0.014%, N 0.008% Nd-Fe-B-based raw material coarse powder consisting of the balance Fe is jet mill-pulverized in an argon gas having an oxygen concentration of 0.0005%. The turpentine in the container installed at the fine powder discharge port was directly recovered without contacting the atmosphere to obtain a slurry raw material. This raw material was wet-molded under the same conditions as in Example 1 to obtain a 50 mm × 50 mm × 10 mm molded body in a total of 1
65 kg was prepared. 330 in total including container and transport mechanism
A heated object of Kg was formed, and was carried into one of the deoiling chambers 9 via the compact storage chamber 7 and the adjustment chamber 8 of the sintering furnace shown in FIG.
In the deoiling chamber, after stopping the evacuation, 65 g of argon gas was discharged.
The mixture was introduced to 0 mmHg, and while being stirred, the internal heater and the external heater were energized to heat the object to be heated and the inner wall of the deoiling chamber, respectively. When the temperature of the molded body reached 45 ° C., vacuum evacuation was performed again to remove the previously introduced argon gas. At this time, the temperature of the wall surface of the deoiling chamber was 80 ° C. When the heating was continued by the internal heater while continuing the evacuation, the temperature of the compact reached 80 ° C. and the degree of vacuum in the room reached 3 × 10 −2 torr two hours after the start of energization. At this time, the temperature of the wall surface of the deoiling chamber was 120 ° C. Subsequent investigations did not show any contamination of the room by the evaporated oil. The object to be heated was transported again to the sintering chamber 10 via the procurement chamber 8, and sintered in the same procedure as in Example 1. Since the temperature of the molded body reached 1080 ° C. in 3 hours after the start of the temperature rise, it was held at this temperature for 4 hours and sintered. The degree of vacuum in the furnace at 1080 DEG C. was 4.times.10@-4 torr. After the power supply was stopped, it was confirmed that the temperature of the sintered body had reached 900 ° C.
And forcedly cooled in the same manner as in Example 1. After 4 hours, the object to be heated was taken out of the furnace. The sintered body was in a good sintered form, and its analysis values were Nd 23.5%, Pr4.
3%, Dy 1.8%, B 1.1%, Co 2.2%, Al
0.12%, Ga 0.1%, Cu 0.1%, C0.05
%, O 0.17%, N 0.006% balance Fe.
The density of this sintered body was 7.61 g / cc. The sintered body was heat-treated and its magnetic properties were measured.
6KG, iHc15.9KOe, (BH) m 44.8M
A good value of GOe was obtained. Following this lot,
Prepare a second lot consisting of the same amount of compacts with the same contents,
This was processed in the other deoiling chamber of the sintering furnace shown in FIG. 2, and the same procedure was performed in the subsequent steps. As a result, similar to the above, good results were obtained.

【0010】(実施例3)重量百分比率でNd25.5
%、Dy4.5%、B1.1%、Nb0.25%、Al
0.08%、Co2.0%、Ga0.08%、Cu0.
1%、C0.01%、O0.14%、N0.007%残
部FeからなるNd−Fe−B系原料粗粉を酸素濃度が
0.0001%以下(検出限界以下)の窒素ガス中でジ
ェットミル粉砕し、これを粉砕機の微粉排出口に設置し
た容器中の灯油中に、大気に直接触れさせることなく直
接回収して、スラリー状原料とした。この原料を実施例
1と同一の条件で成形し、50mm×50mm×10mmの成
形体を合計50Kg準備した。容器と搬送機構を合わせて
合計170Kgの被加熱物を構成し、図3に示す焼結炉の
成形体保管室13に設置し、真空排気後脱油室14に搬
送した。脱油室では、実施例1と同一の手順で脱油処理
を行い、通電開始から1時間後に成形体の温度は60
℃、室内の真空度は3×10-2torrに到達した。この時
の、脱油室内壁面の温度は120℃であった。後の調査
では、蒸発した油による室内の汚染は見られなかった。
脱油処理後、被加熱物を焼結室15に搬送し、真空排気
下で昇温した。昇温開始後1.5時間で、成形体の温度
は1090℃、炉内真空度は5.0×10-4torrに到達
した。この温度で2時間保持した時点で真空排気を停止
し、炉内にアルゴンガスを500mmHgになるまで導入
し、次いで焼結温度を1100℃まで上昇した。この温
度で2時間保持した後、通電を停止した。この間、炉内
アルゴンガスの内圧が500mmHgを越えないよう、排
気系16、17で自動制御を行った。通常停止後焼結体
の温度が900℃以下に達したのを確認し、冷却室18
に搬送し、実施例1と同様に強制冷却した。被加熱物は
2時間後、炉外へ出炉した。焼結体は良好な焼結形態で
あり、その分析値はNd25.5%、Dy4.5%、B
1.1%、Nb0.25%、Al0.08%、Co2.
0%、Ga0.08%、Cu0.1%、C0.04%、
O0.18%、N0.06%、残部Feであった。この
焼結体の密度は7.64g/ccであった。焼結体を熱処
理し、その磁気特性を測定したところ、Br12.9K
G、iHc22KOe、(BH)m40.1MGOeと
いう良好な値を得た。このロットを追う形で、同一内容
の成形体の同量からなるロットを用意し、これを図3の
焼結炉で順次上記と同一条件で処理したところ、全ての
ロットにおいて、上記と同じく良好な結果が得られた。
Example 3 Nd25.5 in weight percentage
%, Dy4.5%, B1.1%, Nb0.25%, Al
0.08%, Co 2.0%, Ga 0.08%, Cu0.
1%, 0.01% C, 0.14% O, 0.007% N Nd-Fe-B-based raw material coarse powder consisting of Fe in a nitrogen gas having an oxygen concentration of 0.0001% or less (detection limit or less) is jetted. This was pulverized in a mill, and this was directly collected in kerosene in a container provided at a fine powder discharge port of the pulverizer without directly contacting the atmosphere to obtain a slurry raw material. This raw material was molded under the same conditions as in Example 1, and a total of 50 kg of a molded body of 50 mm × 50 mm × 10 mm was prepared. A total of 170 kg of an object to be heated was constituted by combining the container and the transfer mechanism, installed in the compact storage room 13 of the sintering furnace shown in FIG. In the deoiling chamber, the deoiling treatment was performed in the same procedure as in Example 1, and the temperature of the molded body was 60 hours after the start of energization.
℃, the degree of vacuum in the room reached 3 × 10 -2 torr. At this time, the temperature of the wall surface of the deoiling chamber was 120 ° C. Subsequent investigations did not show any contamination of the room by the evaporated oil.
After the deoiling treatment, the object to be heated was transferred to the sintering chamber 15 and heated under vacuum evacuation. 1.5 hours after the start of the temperature rise, the temperature of the compact reached 1090 ° C., and the degree of vacuum in the furnace reached 5.0 × 10 −4 torr. When the temperature was maintained at this temperature for 2 hours, the evacuation was stopped, argon gas was introduced into the furnace until the pressure reached 500 mmHg, and then the sintering temperature was raised to 1100 ° C. After maintaining at this temperature for 2 hours, the energization was stopped. During this time, automatic control was performed by the exhaust systems 16 and 17 so that the internal pressure of the argon gas in the furnace did not exceed 500 mmHg. After the normal shutdown, it was confirmed that the temperature of the sintered body had reached 900 ° C. or less.
And forcedly cooled in the same manner as in Example 1. After 2 hours, the object to be heated was taken out of the furnace. The sintered body was in a good sintered form, and the analysis values were Nd 25.5%, Dy 4.5%, B
1.1%, Nb 0.25%, Al 0.08%, Co2.
0%, Ga 0.08%, Cu 0.1%, C 0.04%,
O was 0.18%, N was 0.06%, and the balance was Fe. The density of this sintered body was 7.64 g / cc. The sintered body was heat-treated and its magnetic properties were measured.
G, iHc22KOe, (BH) m40.1MGOe, good values were obtained. Following this lot, a lot consisting of the same amount of a compact having the same contents was prepared and was sequentially processed in the sintering furnace shown in FIG. 3 under the same conditions as above. Results were obtained.

【0011】[0011]

【発明の効果】以上に述べたように、本発明によって、
油を多量に含む希土類磁石成形体を大量に効率良く脱油
・焼結処理することが可能である。これによって、含有
酸素量と炭素量が少なく高い磁気特性を有する希土類永
久磁石が工業的に量産できることになり、その意義は真
に大きい。
As described above, according to the present invention,
It is possible to efficiently deoil and sinter a rare earth magnet molded body containing a large amount of oil in a large amount. As a result, rare earth permanent magnets having a small amount of oxygen and a small amount of carbon and having high magnetic properties can be industrially mass-produced, and its significance is truly significant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための焼結炉の平面図の1例
である。
FIG. 1 is an example of a plan view of a sintering furnace for carrying out the present invention.

【図2】本発明を実施するための焼結炉の平面図の他の
1例である。
FIG. 2 is another example of a plan view of a sintering furnace for carrying out the present invention.

【図3】本発明を実施するための焼結炉の平面図の別の
1例である。
FIG. 3 is another example of a plan view of a sintering furnace for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 成形体保管室、 2 脱油室、 3 調整室、 4
焼結室、5 冷却室、 6 被加熱物、7 成形体保
管室、8 調整室、9 脱油室 10 焼結室、11 冷却室、 12 被加熱物、13
成形体保管室、14 脱油室、15 焼結室、 16
メカニカルブースタポンプ、17 ロータリーポン
プ、 18 冷却室、 19 被加熱物、20 導入ガ
ス配管、21 加熱ヒータ、22 ロータリーポンプ、
23 加圧冷却装置、24 断熱扉、25 メカニカル
ブースターポンプ26 ロータリーポンプ
1 molded product storage room, 2 deoiling room, 3 adjustment room, 4
Sintering room, 5 cooling room, 6 heated object, 7 compact storage room, 8 adjustment room, 9 deoiling room 10 sintering room, 11 cooling room, 12 heated object, 13
Molded body storage room, 14 Deoiling room, 15 Sintering room, 16
Mechanical booster pump, 17 rotary pump, 18 cooling chamber, 19 object to be heated, 20 introduced gas pipe, 21 heater, 22 rotary pump,
23 Pressurized cooling device, 24 Insulated door, 25 Mechanical booster pump 26 Rotary pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素濃度が0.01%以下のN2ガス又
はArガス気流中で、R−Fe−B(RはYを含む希土
類元素のうちの1種類以上)系永久磁石粗粉を微粉砕
し、粉砕後の微粉を大気に触れさせずに直接1気圧にお
ける引火点が21℃以上で70℃未満の消防法で定める
ところの第4類第2石油類に属する鉱物油あるいは合成
油中に回収してスラリー化し、このスラリー化した原料
を磁界中で湿式成形し、成形体中の鉱物油、合成油を真
空加熱によって除去した後、成形体を焼結することを特
徴とする希土類永久磁石の製造方法。
1. An R-Fe-B (R is one or more of rare earth elements including Y) -based permanent magnet coarse powder in an N2 gas or Ar gas stream having an oxygen concentration of 0.01% or less. In mineral oil or synthetic oil belonging to Class 4 Class 2 petroleum as defined by the Fire Service Law with a flash point at 1 atm or more and less than 70 ° C without directly contacting the fine powder after grinding with the atmosphere. The slurry is formed into a slurry, and the slurried raw material is wet-formed in a magnetic field, and after removing mineral oil and synthetic oil in the formed body by vacuum heating, the formed body is sintered. Manufacturing method of magnet.
JP8166442A 1996-06-26 1996-06-26 Manufacture of rare-earth permanent magnet Pending JPH1012473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166442A JPH1012473A (en) 1996-06-26 1996-06-26 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166442A JPH1012473A (en) 1996-06-26 1996-06-26 Manufacture of rare-earth permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007145476A Division JP4613186B2 (en) 2007-05-31 2007-05-31 Rare earth permanent magnet manufacturing method

Publications (1)

Publication Number Publication Date
JPH1012473A true JPH1012473A (en) 1998-01-16

Family

ID=15831488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166442A Pending JPH1012473A (en) 1996-06-26 1996-06-26 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH1012473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
JP2009295638A (en) * 2008-06-02 2009-12-17 Tdk Corp Method for manufacturing r-t-b magnet
CN103650079A (en) * 2011-06-30 2014-03-19 日立金属株式会社 Process for producing decarbonized reclaimed material from R-Fe-B permanent magnet alloy
CN109097540A (en) * 2018-07-23 2018-12-28 沈阳中北真空技术有限公司 A kind of parallel vacuum Equipment for Heating Processing and vacuum heat-treating method
CN112121468A (en) * 2020-09-19 2020-12-25 周力 Easy-to-clean rare earth feed liquid deoiling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
JP2009295638A (en) * 2008-06-02 2009-12-17 Tdk Corp Method for manufacturing r-t-b magnet
CN103650079A (en) * 2011-06-30 2014-03-19 日立金属株式会社 Process for producing decarbonized reclaimed material from R-Fe-B permanent magnet alloy
US9657367B2 (en) 2011-06-30 2017-05-23 Hitachi Metals, Ltd. Method for producing R-Fe-B based permanent magnet alloy recycled material having removed carbon
CN109097540A (en) * 2018-07-23 2018-12-28 沈阳中北真空技术有限公司 A kind of parallel vacuum Equipment for Heating Processing and vacuum heat-treating method
CN112121468A (en) * 2020-09-19 2020-12-25 周力 Easy-to-clean rare earth feed liquid deoiling device

Similar Documents

Publication Publication Date Title
CN107871582B (en) R-Fe-B sintered magnet
CN107871581B (en) Method for preparing R-Fe-B sintered magnet
US5858123A (en) Rare earth permanent magnet and method for producing the same
EP1195779B1 (en) Rare-earth sintered magnet and method of producing the same
JP5532922B2 (en) R-Fe-B rare earth sintered magnet
KR102527128B1 (en) R-T-B rare earth permanent magnet material, manufacturing method and application
EP1780736B1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
EP2388350A1 (en) Method for producing r-t-b sintered magnet
US8317937B2 (en) Alloy for sintered R-T-B-M magnet and method for producing same
WO2006112403A1 (en) Rare earth sintered magnet and process for producing the same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
Tenaud et al. Recent improvements in NdFeB sintered magnets
WO2021200873A1 (en) R-t-b-based permanent magnet and method for producing same, motor, and automobile
JPH1012473A (en) Manufacture of rare-earth permanent magnet
CN111091945B (en) R-T-B series permanent magnetic material, raw material composition, preparation method and application
JP4730550B2 (en) Lubricant removal method
US7018485B2 (en) Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus
JP4613186B2 (en) Rare earth permanent magnet manufacturing method
JPH0475304B2 (en)
JP2007234953A (en) Lubricant removing method, and rare earth sintered magnet manufacturing method
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JP2009038197A (en) Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
JP2007059619A (en) Removal method of lubricant
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051026

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070531