JPS63260004A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63260004A
JPS63260004A JP62093764A JP9376487A JPS63260004A JP S63260004 A JPS63260004 A JP S63260004A JP 62093764 A JP62093764 A JP 62093764A JP 9376487 A JP9376487 A JP 9376487A JP S63260004 A JPS63260004 A JP S63260004A
Authority
JP
Japan
Prior art keywords
powder
container
sintering
heat treatment
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62093764A
Other languages
Japanese (ja)
Inventor
Toshio Umemura
梅村 敏夫
Hiroyasu Murase
村瀬 広恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62093764A priority Critical patent/JPS63260004A/en
Publication of JPS63260004A publication Critical patent/JPS63260004A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet which has a higher anisotropy and the higher density of the sinter by a method wherein a molding of magnetic powder whose thermal expansion coefficient is anisotropic prepared in a magnetic field is subjected to an anisotropic pressurized heat treatment during or before a sintering process. CONSTITUTION:Nd-Fe-B alloy powder obtained by a powder metallurgy method is molded by compression in a magnetic field. A stainless steel container 2 in which the magnetic powder is molded is placed in a high temperature static hydraulic pressure applicator 1 and a pressure is applied to the stainless steel container 2 for an anisotropic pressurized heat treatment and then sintering/annealing is performed by a temperature control. The thermal expansion coefficient of Nd2Fe14B1, the main phase of this magnet, is a positive value about 4.8X10<-6>/ deg.C along the direction of an easy-to-magnetize axis, while it is a negative value about -3.3X10<-6>/ deg.C along the direction of an axis perpendicular to the easy-to-magnetize axis. From this point of view, in accordance with the temperature rise under the high pressure applied to the side surface through the cylindrical container, a moment along the longitudinal direction of the container is created in the C-axis and the rotation of the powder is controlled along the longitudinal direction of the container so that the orientation can be improved, whereby a permanent magnet with excellent magnetic characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に異方性配向の永久磁石の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates in particular to a method for manufacturing anisotropically oriented permanent magnets.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭59−46008号公報に示され
たNd −Fe −H系焼結磁石の製造工程図である。
FIG. 3 is a manufacturing process diagram of a Nd-Fe-H based sintered magnet disclosed in, for example, Japanese Unexamined Patent Publication No. 59-46008.

図に示されているようにこの焼結磁石の製法は、Nd 
、 Fe 、およびBからなる合金を鋳造し、これを粗
粉砕、微粉砕して得た粉末を磁界中で圧縮成形し、次い
で焼結、焼鈍したものに着磁して磁石とする。
As shown in the figure, the manufacturing method of this sintered magnet is Nd
, Fe, and B, and the resulting powder is compression molded in a magnetic field, then sintered and annealed, and then magnetized to form a magnet.

標準組成としてNd1lS Fe12 BBの合金を釘
雰囲気中で高周波溶解またはアーク溶解で鋳造する。得
られた鋳塊をジ謬−クラッシャーなどで粗粉砕(≦50
0μF+りしたのちボールミル、ジェットミルなどで平
均粒径3μの粉末にする。これを10 KOe程度の強
磁場中で配向させ、0.5〜5 toシーのプレス圧で
圧縮して粉末成形体を作る。次いで真空中またはAr雰
囲気中、温度1000〜1)50’0で焼結させ、これ
に保磁力を向上させるために真空中またはに雰囲気中、
温度600〜700°0で焼鈍を施すことによシ、・例
えば刊行物(J、Appl。
An alloy of Nd11S Fe12 BB as a standard composition is cast by high frequency melting or arc melting in a nail atmosphere. The obtained ingot is coarsely crushed (≦50
After heating to 0μF+, use a ball mill, jet mill, etc. to make powder with an average particle size of 3μ. This is oriented in a strong magnetic field of about 10 KOe and compressed with a press pressure of 0.5 to 5 KOe to produce a powder compact. Next, it is sintered in vacuum or in an Ar atmosphere at a temperature of 1000 to 1) 50'0, and in order to improve the coercive force, in vacuum or in an Ar atmosphere,
By annealing at a temperature of 600-700°0, for example in the publication (J, Appl.

phys、第55巻第6号(1986年発行)第208
3〜2089頁)に示すように従来のSm −Co系希
土類磁石のエネルギー積を上回る焼結磁石を得ている。
phys, Vol. 55, No. 6 (published in 1986), No. 208
As shown in pages 3 to 2089), a sintered magnet with an energy product exceeding that of conventional Sm--Co rare earth magnets has been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に従う製造法による異方性焼結磁石の各結晶粒の磁
化容易軸(以後C軸と記述)の配向分布状態は、X線回
折から知ることができる。第5図は従来法による上記磁
石のX線強度パターン図であり、縦軸は粉末成形体の磁
場による異方性付与方向に垂直な面(006)面のX線
回折強度を示し、横軸はC軸の異方性付与方向からの傾
きである。図より明らかにC軸の配向が不完全であるこ
とが推察できる。この配向の不完全性は主に成形時のポ
ンチから各粉末に伝わる力の乱雑性から生じる乱れであ
る。
The orientation distribution state of the easy axis of magnetization (hereinafter referred to as the C axis) of each crystal grain of the anisotropic sintered magnet produced by the manufacturing method according to the above can be known from X-ray diffraction. FIG. 5 is an X-ray intensity pattern diagram of the above magnet according to the conventional method, where the vertical axis shows the X-ray diffraction intensity of the (006) plane perpendicular to the direction of anisotropy imparted by the magnetic field to the powder compact, and the horizontal axis is the inclination of the C-axis from the anisotropy imparting direction. From the figure, it can be clearly inferred that the orientation of the C axis is incomplete. This imperfection in orientation is mainly caused by the randomness of the force transmitted from the punch to each powder during molding.

この発明は上記のような問題点を改善するためになされ
たもので、異方性がより高く、焼結体の密度のより高い
永久磁石の製造方法を得ることを目的とする。
This invention was made to improve the above-mentioned problems, and aims to provide a method for manufacturing a permanent magnet having higher anisotropy and a higher density sintered body.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の永久磁石の製造方法は、熱膨張係数が等方的
でない磁性粉末を磁場中で成形する工程、上記成形され
た磁性粉末を焼結時および焼結前の少なくとも一方で異
方的加圧熱処理する工程、並びに上記加圧熱処理された
成形磁性粉末を焼結する工程を施すものである。
The method for manufacturing a permanent magnet of the present invention includes a step of molding magnetic powder having a non-isotropic coefficient of thermal expansion in a magnetic field, and anisotropic processing of the molded magnetic powder at least either during sintering or before sintering. A process of applying pressure heat treatment and a process of sintering the shaped magnetic powder subjected to the above-mentioned pressure and heat treatment are performed.

〔作用〕[Effect]

熱膨張係数が等方的でない粉末に異方的外力を加え、同
時に粉末の温度を変化させた場合、粉末には力学的モー
メントが発生し、粉末が回転可能である時、許される回
転が生じる。このような粉末からなる成形体を異方的外
力のもとて温度変化させることによシ、焼結または焼結
過程前に粉末の運動を異方的に制御することが可能で配
向性を改善することができる。
If an anisotropic external force is applied to a powder whose coefficient of thermal expansion is not isotropic and the temperature of the powder is changed at the same time, a mechanical moment is generated in the powder, and when the powder is rotatable, the permissible rotation occurs. . By changing the temperature of a molded body made of such powder under an anisotropic external force, it is possible to control the movement of the powder anisotropically before sintering or the sintering process, and improve the orientation. It can be improved.

〔実施例〕〔Example〕

以下実施例によシこの発明を具体的に説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1 従来と同様の粉末冶金法で得られたNd−Fe−8合金
粉末を磁界中で圧縮成形し、これをこの発明の一実施例
に係わる加圧熱処理状態を示す正面図である第1図に示
すような、口径に対し充分に長い円筒状金属容器内に磁
場による異方性付与方向と長さ方向を平行にして真空密
封する。次いで、ステンレス製容器を熱間静水圧加圧装
置(以下Hrpと記述)内へ設置し、加圧し異方的加圧
熱処理を施したのち温度制御により焼結・焼鈍を行う。
Example 1 Nd-Fe-8 alloy powder obtained by a conventional powder metallurgy method was compression-molded in a magnetic field, and was subjected to pressure heat treatment according to an example of the present invention. As shown in Figure 1, a cylindrical metal container that is sufficiently long with respect to its diameter is vacuum-sealed with the length direction parallel to the direction in which anisotropy is imparted by a magnetic field. Next, the stainless steel container is placed in a hot isostatic pressure device (hereinafter referred to as Hrp), and after being pressurized and subjected to anisotropic pressure heat treatment, sintering and annealing are performed under temperature control.

図において、(1)はHIPの加圧熱処理スペース、(
21はステンレス容器、(3)は粉末成形体である。即
ち、従来と同様の粉末冶金法によシ得られた平均粒径3
.i+mのNd15 Fe12 )18合金粉末を、N
2またはM雰囲気中で乾式磁場中圧縮することによシ長
さ方向に異方性を持つ10φx(10〜30)鱈の粉末
成形体を得た。これをIOX 30 fiの内容積を持
つステンレス製の薄板(〜0.1m1)でできた容器へ
充填して、l X 10  torr以下に真空排気し
たのち密封した。その際、離型剤として容器の内壁KE
Nを塗布した。
In the figure, (1) is the HIP pressurized heat treatment space, (
21 is a stainless steel container, and (3) is a powder compact. That is, the average particle size 3 obtained by the conventional powder metallurgy method
.. i + m Nd15 Fe12 )18 alloy powder, N
By compressing in a dry magnetic field in a 2 or M atmosphere, a 10φx (10 to 30) cod powder compact having anisotropy in the length direction was obtained. This was filled into a container made of a thin stainless steel plate (~0.1 m1) having an internal volume of IOX 30 fi, evacuated to below 1 x 10 torr, and then sealed. At that time, the inner wall of the container KE is used as a mold release agent.
N was applied.

この磁石の主相であるNd2 fie1481の単結晶
の熱膨張係数は、磁化容易軸方向(ただし、粉末成形体
では実質的に磁場による成形体への異方性付与方向)が
正の値〜4F3 X 10 /lであるのに対し、これ
に垂直な軸方向では負の値〜−33X 10−’/lで
ある。このことから、上記円筒状容器を介しての側面か
らの萬圧下で温度上昇に伴いC軸には容器の長さ方向へ
のモーメントが発生する。Nd−Fe−8合金粉末の焼
結は粒界に析出する主に間からなる液相による液相焼結
であることが知られて2す、焼結温度以下での高圧下で
の回転とともに焼結中でさえ粉末の回転が容器の長さ方
向に制御され、配向性の改善が可能である。
The thermal expansion coefficient of the single crystal of Nd2 fie1481, which is the main phase of this magnet, has a positive value in the easy magnetization axis direction (in the case of a powder compact, the direction in which anisotropy is essentially imparted to the compact by the magnetic field). X 10 /l, whereas in the axial direction perpendicular to this, it is a negative value ~-33X 10-'/l. Therefore, under the pressure applied from the side surface of the cylindrical container, a moment is generated in the longitudinal direction of the container along the C-axis as the temperature increases. It is known that the sintering of Nd-Fe-8 alloy powder is liquid phase sintering with a liquid phase mainly consisting of interstitial particles precipitated at the grain boundaries2. Even during sintering, the rotation of the powder is controlled along the length of the container, allowing for improved orientation.

上記形状の金属製容器の使用は、FLIPの使用条件下
(高温、高圧)にあって容器を介して成形体に長さ方向
に垂直な方向で等方的でろって長さ方向にこれより低い
圧力が加わることを目的としたものである。粉末成形体
に力が加わった時の粉末の運動は粉末間の内部摩擦によ
シ複雑で、ヤ〉センの式で表わされているように円筒容
器の両端部をのぞき粉末に加わる力は側面方向から受け
る力に対し長さ方向で低くなる。
When using a metal container with the above shape, under the conditions of use of FLIP (high temperature, high pressure), it is necessary to pass the container through the container to the molded body isotropically in a direction perpendicular to the length direction. The purpose is to apply low pressure. When a force is applied to a powder compact, the movement of the powder is complicated due to internal friction between the powders, and as expressed by Yassen's equation, the force applied to the powder when looking at both ends of the cylindrical container is The force received from the sides becomes lower in the length direction.

ここで行った焼成パターンは、2000 Kgf/dに
加圧後10’c/minで昇温して減圧したとき108
0°Cで2時間保持し、急冷した。次いで常圧下、65
0°0で1時間保持した後急冷した。このようにして得
られた焼結体のC軸の配向状態を示したちのが第4図の
X線強度パターン図である。第5図との比較により分布
の偏差が減少して2如、配向性の改善がなされているこ
とが認められる。
The firing pattern used here was that after pressurizing to 2000 kgf/d, the temperature was raised at 10'c/min and the pressure was reduced to 108 kgf/d.
It was held at 0°C for 2 hours and then rapidly cooled. Then under normal pressure, 65
After being held at 0°0 for 1 hour, it was rapidly cooled. The X-ray intensity pattern diagram in FIG. 4 shows the orientation state of the C axis of the sintered body thus obtained. Comparison with FIG. 5 shows that the deviation of the distribution has decreased and the orientation has been improved.

上記の方法で得られた磁石の特性を表に示す。The characteristics of the magnet obtained by the above method are shown in the table.

比較例 上記従来法、即ち上記実施例の異方的加圧熱処理を除き
、上記のようにして磁石を得、その特性を表に示す。
Comparative Example A magnet was obtained as described above except for the conventional method described above, that is, the anisotropic pressure heat treatment of the above example, and its characteristics are shown in the table.

表 実施例2 従来と同様の粉末冶金法で得られたIJd−Fe −8
合金粉末を磁界中で圧縮成形し、これをこの発明の他の
実施例に係わる加圧熱処理状態を示す正面図の第2図に
示すようなカーボン製プレス型に磁場による異方性付与
方向とプレス方向が直交するように充填する。次いで、
真空中またはAr雰囲気中で加圧したのち温度制御によ
シ焼結・焼鈍を行う。
Table Example 2 IJd-Fe-8 obtained by a conventional powder metallurgy method
The alloy powder is compression-molded in a magnetic field, and then placed in a carbon press mold as shown in FIG. Fill so that the pressing directions are perpendicular. Then,
After pressurizing in vacuum or Ar atmosphere, sintering and annealing are performed under temperature control.

因において、(41は上ポンチ、(51は下ポンチ、+
61はプレス型、(7)は尚周波コイルである。即ち、
従来と同様の粉末冶金法で得九粒径1−10声mのNd
1s Fe1288合金粉末を、 N2または釘の不活
性雰囲気内で磁場中圧縮することにより、長さ方向に異
方性を持つlOφ×(10〜30)器の粉末成形体を得
た。これを口径4Qs+sX4Qmのカーボン製プレス
型に異方性方向がプレス方向と直交するように充填し、
型を熱間プレス装置の真空槽に設置して5 X 10 
torr まで排気した。その際、離型剤として容器の
内壁にHN (ボロシナイトライド)を塗布した。
In the equation, (41 is the upper punch, (51 is the lower punch, +
61 is a press mold, and (7) is a high frequency coil. That is,
Nd with a grain size of 1-10 m obtained using the same powder metallurgy method as the conventional method.
By compressing the 1s Fe1288 alloy powder in a magnetic field in an inert atmosphere of N2 or nails, a powder compact of lOφ×(10 to 30) size having anisotropy in the length direction was obtained. This was filled into a carbon press mold with a diameter of 4Qs+sX4Qm so that the anisotropic direction was perpendicular to the pressing direction.
Place the mold in a vacuum chamber of a hot press machine and make a 5 x 10
Exhausted to torr. At that time, HN (borosininitride) was applied to the inner wall of the container as a mold release agent.

この磁石の主相であるNdz Feu Blの単結晶の
熱膨張係数は、磁化容易軸方向(ただし粉末成形体では
実質的に磁場による成形体への異方性付与方向)が正の
値〜4.8 X 10 /’Oであるのに対し、これに
垂直な軸方向では負の値〜−3,3x IQ/’Cであ
る。
The thermal expansion coefficient of the single crystal of Ndz Feu Bl, which is the main phase of this magnet, has a positive value in the axis of easy magnetization (in the case of a powder compact, the direction in which anisotropy is essentially imparted to the compact by the magnetic field). .8 X 10 /'O, whereas in the axial direction perpendicular to this, it is a negative value ~-3,3x IQ/'C.

このことから、プレス型内に充填され加圧された状態の
粉末には、温度上昇に伴いそのO軸をプレス方向からず
らせるようなモーメントが発生する。
Therefore, when the powder is filled and pressurized in a press die, a moment is generated that shifts its O axis from the pressing direction as the temperature rises.

Nd −Fe −B合金粉末の焼結は粒界に析出する主
にNdからなる液相による液相焼結であることが知られ
ている。このため焼結温度に至るプレス圧下で配向性を
改善させることがでさると共に、焼結中でさえ粉末の回
転が制御でき配向性の改善が期待できる。圧力が加わり
焼結温度に達するまでの温度上昇の過程で、粉末は成形
体がプレス方向とこれに垂直な方向から受ける力が釣合
うように回転する。さらに温度が上昇し焼結温度に達し
たのち成形体は焼結して収縮し、これに加わる外力はポ
ンチ方向からの一軸性となり、各粒子は応力緩和するよ
う異方性を改善する方向に平均的に回転する。
It is known that sintering of Nd-Fe-B alloy powder is liquid phase sintering using a liquid phase mainly composed of Nd precipitated at grain boundaries. For this reason, it is possible to improve the orientation under the press pressure that reaches the sintering temperature, and even during sintering, the rotation of the powder can be controlled, and an improvement in the orientation can be expected. As pressure is applied and the temperature rises to reach the sintering temperature, the powder rotates so that the forces exerted on the compact in the pressing direction and in the direction perpendicular to this are balanced. After the temperature further rises and reaches the sintering temperature, the compact is sintered and shrinks, and the external force applied to it becomes uniaxial from the punch direction, and each particle moves in a direction that improves anisotropy to relieve stress. rotates averagely.

ここで行った焼成パターンは、1000 Kgf/、(
に加圧後10’o/minの昇温速度で昇温して減圧し
たのち、10130’Oまで加熱し、この温度で2時間
保持した。次いで650’Oまで−100’C/匣nで
急冷し、この温度で1時間保持したのち室温まで急冷し
た。
The firing pattern used here was 1000 Kgf/, (
After pressurizing to , the temperature was raised at a temperature increase rate of 10'o/min and the pressure was reduced, and then heated to 10130'o and maintained at this temperature for 2 hours. It was then rapidly cooled to 650'O at -100'C/box, held at this temperature for 1 hour, and then rapidly cooled to room temperature.

このようにして得られた焼結体のO軸の配向分布状態を
示す強度パターン図は第4図と同様であり、第4図との
比較により分布の備差の減少が見られ、配向性の改善が
なされていることが認められる。
The intensity pattern diagram showing the orientation distribution state of the O axis of the sintered body obtained in this way is similar to that shown in Figure 4, and a comparison with Figure 4 shows that the difference in the distribution has decreased, and the orientation It is recognized that improvements have been made.

上記の方法で得られた磁石の特性を表に示T。The characteristics of the magnet obtained by the above method are shown in the table.

上記表より、この発明の実施例により、配向性に特に優
れ、従って磁気特性に優れた永久磁石を製造できること
が解る。
From the above table, it can be seen that according to the examples of the present invention, permanent magnets with particularly excellent orientation and therefore excellent magnetic properties can be manufactured.

また、上記実施例Kgいが、粉末の配向抑制は熱膨張を
利用している。このため、熱膨張を大きくと9より大き
な作用を利用でさるように、加圧する前に粉末または成
形体の温度を像く保ち温度幅を拡げる方がより効果的で
ある。
Further, in the above embodiment, thermal expansion is used to suppress the orientation of the powder. For this reason, it is more effective to maintain the temperature of the powder or compact before pressurizing and widen the temperature range, such as by increasing the thermal expansion to take advantage of a larger effect than 9.

なお上記実施例では成形体の容器に細長いパイプ状の形
状のものを採用したが、逆に平たい円板状容器でも同様
の効果が期待できる。ただし、この時の成形体の充填に
際しては円板の面に平行に異方性付与方向が向くように
されておればよ(、円板上でラジカル方向に向いていて
もよい。
In the above embodiments, an elongated pipe-shaped container was used for the molded product, but the same effect can be expected by using a flat disk-shaped container. However, when filling the molded body at this time, it is only necessary that the anisotropy imparting direction is oriented parallel to the surface of the disk (or it may be oriented in the radical direction on the disk).

又、上記実施例では磁場中成形と加圧熱処理が別の工程
として述べられているが、この2工程は男らかに一組の
工程として受けとることができる。
Further, in the above embodiments, the magnetic field molding and the pressure heat treatment are described as separate processes, but these two processes can be considered as one set of processes.

すなわち、磁場中成形した状態のまま上記熱処理を施す
ことにより同様の効果を示す。
That is, the same effect can be obtained by applying the above heat treatment while molded in a magnetic field.

又、異方的加圧熱処理は少なくとも焼結時又は焼結前に
施せば所期の目的を達成できることは言うまでもない。
It goes without saying that the desired objective can be achieved if the anisotropic pressure heat treatment is performed at least during or before sintering.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおシ、この発明は熱膨張係数が等方向で
ない磁性粉末を磁場中で成形する工程、上記成形された
磁性粉末を焼結時および焼結前の少なくとも一方で異方
的加圧熱処理する工程、並びに上記加圧熱処理された成
形磁性粉末を焼結する工程を施すことにより、異方性が
より高く、焼結体の密度のより高い永久磁石の製造を得
ることができる。
As explained above, the present invention includes a step of molding magnetic powder whose coefficient of thermal expansion is not isotropic in a magnetic field, and anisotropic pressure heat treatment of the molded magnetic powder at least during and before sintering. By performing the step of sintering the molded magnetic powder subjected to the pressure heat treatment, it is possible to manufacture a permanent magnet with higher anisotropy and higher density of the sintered body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる加圧熱処理状態を
示す正面図、第2図はこの発明の他の実施例に係わる加
熱処理状態を示す正面図、第3図は従来の製造工程図、
%4図はこの発明の実施例による永久磁石のX線強度パ
ターン図、第5図は従来法による永久磁石のX線強度パ
ターン図である。 図において、(1)はHIPの加熱処理スペース、(2
1はステンレス容器、(3)は粉末成形体、(41は上
ポンチ、(5)は下ポンチ、(6)はプレス型、(7)
は高周波コイルである。 なお、各図中同一符号は同−又は相当部分を示す。
FIG. 1 is a front view showing a pressurized heat treatment state according to one embodiment of the present invention, FIG. 2 is a front view showing a heat treatment state according to another embodiment of the present invention, and FIG. 3 is a front view showing a conventional manufacturing process. figure,
%4 is an X-ray intensity pattern diagram of a permanent magnet according to an embodiment of the present invention, and FIG. 5 is an X-ray intensity pattern diagram of a permanent magnet according to a conventional method. In the figure, (1) is the HIP heat treatment space, (2
1 is a stainless steel container, (3) is a powder compact, (41 is an upper punch, (5) is a lower punch, (6) is a press mold, (7)
is a high frequency coil. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)熱膨張係数が等方的でない磁性粉末を磁場中で成
形する工程、上記成形された磁性粉末を焼結時および焼
結前の少なくとも一方で異方的加圧熱処理する工程、並
びに上記加圧熱処理された成形磁性粉末を焼結する工程
を施す永久磁石の製造方法。
(1) A step of molding magnetic powder with a non-isotropic thermal expansion coefficient in a magnetic field, a step of anisotropic pressure heat treatment of the molded magnetic powder at least once during sintering and before sintering, and the above-mentioned A method for producing a permanent magnet, which involves a process of sintering compacted magnetic powder that has been subjected to pressure heat treatment.
(2)磁性粉末がNd、FeおよびBを基本成分とする
合金である特許請求の範囲第1項記載の永久磁石の製造
方法。
(2) The method for manufacturing a permanent magnet according to claim 1, wherein the magnetic powder is an alloy containing Nd, Fe, and B as basic components.
(3)加圧熱処理工程と焼結工程を同時に施す特許請求
の範囲第1項又は第2項記載の永久磁石の製造方法。
(3) The method for manufacturing a permanent magnet according to claim 1 or 2, wherein the pressure heat treatment step and the sintering step are performed simultaneously.
JP62093764A 1987-04-16 1987-04-16 Manufacture of permanent magnet Pending JPS63260004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62093764A JPS63260004A (en) 1987-04-16 1987-04-16 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62093764A JPS63260004A (en) 1987-04-16 1987-04-16 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63260004A true JPS63260004A (en) 1988-10-27

Family

ID=14091495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62093764A Pending JPS63260004A (en) 1987-04-16 1987-04-16 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63260004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893764A (en) * 1994-09-28 1996-04-09 Ricoh Co Ltd Bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893764A (en) * 1994-09-28 1996-04-09 Ricoh Co Ltd Bearing device

Similar Documents

Publication Publication Date Title
CN1153232C (en) Method for making rareearth permanent magnet material by discharge plasma sintering
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
EP1770177B1 (en) Method for preparing a magnetostrictive material
JPS6136047B2 (en)
JPS6181603A (en) Preparation of rare earth magnet
JPS63260004A (en) Manufacture of permanent magnet
JPS6151901A (en) Manufacture of permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JP4127599B2 (en) Sintered body manufacturing method and sintered body and magnetostrictive material manufactured thereby
JPH01175207A (en) Manufacture of permanent magnet
JPH05308030A (en) Method of controlling residual magnetic induction of sintered magnet and product made the method
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JPH0732102B2 (en) Rare earth alloy permanent magnet manufacturing method
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet
JP2583113B2 (en) Rare earth magnet manufacturing method
JP2003342618A (en) Method for manufacturing anisotropic rare-earth magnet powder
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPH05315180A (en) Sputtering target material for forming magnetic film for high-density recording and manufacture thereof