JP2003342618A - Method for manufacturing anisotropic rare-earth magnet powder - Google Patents

Method for manufacturing anisotropic rare-earth magnet powder

Info

Publication number
JP2003342618A
JP2003342618A JP2002148117A JP2002148117A JP2003342618A JP 2003342618 A JP2003342618 A JP 2003342618A JP 2002148117 A JP2002148117 A JP 2002148117A JP 2002148117 A JP2002148117 A JP 2002148117A JP 2003342618 A JP2003342618 A JP 2003342618A
Authority
JP
Japan
Prior art keywords
magnet
powder
temperature
metal cylinder
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002148117A
Other languages
Japanese (ja)
Inventor
Hitomi Yamada
人巳 山田
Yasuhiko Iriyama
恭彦 入山
Shinji Nakayama
信治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002148117A priority Critical patent/JP2003342618A/en
Publication of JP2003342618A publication Critical patent/JP2003342618A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved technique on a method for manufacturing a magnet powder in a simplified process, which is used for manufacture of an Nd-Fe-B-based bonded magnet, and produces a magnet with high performance due to own anisotropy. <P>SOLUTION: This method for manufacturing the magnet powder comprises preheating a metal tube filled with a rapidly quenched powder so as to hold it in an atmosphere having a lower temperature than the crystallization temperature of a magnet alloy, to make the temperature of the rapidly quenched powder reach approximately the atmospheric temperature, then heating it to 650-900°C and uniaxially compressing it. Thereby the method provides the magnet powder while preventing the particles from coarsening. Alternatively, the method for manufacturing the magnet powder is characterized by uniaxially compressing the powder at such a working speed as to adjust the strain rate defined by ln(L<SB>0</SB>/L)/T (wherein, L<SB>0</SB>indicates a height of the metal tube before compression; L indicates a height of the metal tube after compression; and T indicates a compression time (second)), into a range of 0.5-3.0 per second, to increase a degree of the anisotropy. Both of the methods are preferably jointly performed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Nd−Fe−B系
希土類磁石合金の粉末であって、異方性を有するものの
製造方法に関する。本発明はまた、この異方性を有する
磁石粉末を使用したボンド磁石にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Nd-Fe-B rare earth magnet alloy powder having anisotropy. The present invention also relates to a bonded magnet using the magnet powder having this anisotropy.

【0002】[0002]

【従来の技術】Nd−Fe−B系磁石は、高い磁気特性
を有するため、各種のOA機器やAV装置を構成するモ
ーターの部品として、広く使用されている。よく知られ
ているように、Nd−Fe−B系磁石は、その使用の態
様によって、焼結磁石、熱間加工磁石およびボンド磁石
に大別される。
2. Description of the Related Art Nd-Fe-B magnets have high magnetic properties and are therefore widely used as parts of motors constituting various OA equipment and AV equipment. As is well known, Nd-Fe-B based magnets are roughly classified into sintered magnets, hot-worked magnets and bonded magnets depending on the mode of use.

【0003】これらの中で、ボンド磁石は、磁石粉末と
樹脂バインダーとを混合して成形するという工程にした
がって製造されるため、形状の自由度が大きく、寸法精
度の高い製品が得られるのが利点である。前記したOA
機器・AV装置用のモーターの部品は、薄肉かつ精密な
ものでなければならないので、ボンド磁石がよく用いら
れている。
Among these, the bonded magnet is manufactured by a process of mixing magnet powder and a resin binder and molding, so that a product having a high degree of freedom in shape and high dimensional accuracy can be obtained. It is an advantage. OA mentioned above
Bonded magnets are often used because motor parts for equipment and AV devices must be thin and precise.

【0004】しかし、現在のボンド磁石は結晶の方向が
ランダムな等方性磁石が主流であって、それらは異方性
の磁石にくらべて、磁石成分自体のエネルギー積が小さ
い。加えて、ボンド磁石はバインダーの介在により磁性
相の体積占有率が低くなることもあって、磁石としての
エネルギー積は、焼結磁石や熱間加工磁石の20〜30
%程度に止まっているのが現状である。
However, most of the current bonded magnets are isotropic magnets in which the crystal orientation is random, and they have a smaller energy product of the magnet component itself than anisotropic magnets. In addition, the volume occupancy of the magnetic phase of the bonded magnet may be low due to the inclusion of the binder, and the energy product of the magnet is 20 to 30 that of a sintered magnet or a hot-worked magnet.
The current situation is that it has stopped at about%.

【0005】そこで、ボンド磁石のエネルギー積を高め
ることが求められ、そのための方法が、種々検討されて
いる。一例を挙げれば、Nd−Fe−B系の熱間加工磁
石を粉砕して粉末としたものを、ボンド磁石の材料とし
て使用する技術がある(J.App1.Phys.,64,10,5293-529
5)。この技術によれば、在来の等方性ボンド磁石より
も高いエネルギー積をもつボンド磁石が得られるが、製
造工程が複雑であるため、コストがかかるのが難点であ
る。
Therefore, it is required to increase the energy product of the bonded magnet, and various methods have been studied. As an example, there is a technique of using a powder of a Nd-Fe-B hot-worked magnet pulverized and used as a material for a bonded magnet (J.App1.Phys., 64, 10, 5293- 529
Five). According to this technique, a bonded magnet having an energy product higher than that of a conventional isotropic bonded magnet can be obtained, but the manufacturing process is complicated, and thus it is difficult to increase the cost.

【0006】出願人は、Nd−Fe−B系磁石合金が、
熱間で塑性変形させると磁気異方性を生じるという特徴
を利用し、かつ工程を単純にしてコストを低減したボン
ド磁石の製造方法を提供することを意図して開発を進
め、さきに、Nd−Fe−B系磁石合金の急冷リボンか
ら得た粉末を金属の容器に充填し、内部を真空にするか
または不活性ガス雰囲気にして密閉したものを、温度6
50〜900℃で一軸方向に圧縮加工することにより塑
性変形を起こさせ、後に容器を開いて異方性をもった磁
石合金粉末を製造する方法を確立し、すでに開示した
(特開平10−199717)。
The Applicant has found that Nd-Fe-B system magnet alloys are
Utilizing the characteristic that magnetic anisotropy is generated when plastically deformed while hot, and with the intention of providing a method for manufacturing a bonded magnet in which the process is simplified and the cost is reduced, the development is advanced. A powder obtained from a quenched ribbon of a —Fe—B based magnet alloy was filled in a metal container, and the inside of the container was evacuated or made an inert gas atmosphere, and the container was sealed at a temperature of 6
A method for producing a magnetic alloy powder having anisotropy by causing plastic deformation by uniaxially compressing at 50 to 900 ° C. and then opening the container has been established and has already been disclosed (JP-A-10-199717). ).

【0007】この方法は、上記した既知の方法のよう
に、いったん高密度化した素材を経ることがないので、
工程が単純になったという点で改良されているばかり
か、塑性変形後に得られる磁石合金の粉末の集合体が、
既知の方法に従ったときに得られる合金塊よりも、容易
に破砕できるという点でも有利である。しかし、工業的
実施に当って、金属容器への粉末の充填−真空吸引−密
閉の工程を−層簡単にすること、またワンバッチの生産
量を大きくすることが、課題として登場してきた。
This method does not pass through a material once densified unlike the known method described above.
Not only has the process been improved in that it has become simpler, but the aggregate of magnet alloy powder obtained after plastic deformation is
It is also advantageous in that it can be crushed more easily than the alloy mass obtained when the known method is followed. However, in industrial implementation, it has become an issue to simplify the process of filling powder into a metal container-vacuum suction-sealing-and simplifying the production amount of one batch.

【0008】この課題を、出願人は、雰囲気制御可能な
加熱プレスを用いることにより解決して、これもすでに
提案した(特開平11−233323)。すなわち、提
案の技術は、Nd−Fe−B系磁石合金の超急冷リボン
から得た急冷粉末を金属筒内に充填して雰囲気制御可能
な加熱プレス内に置き、非酸化性雰囲気下に、温度65
0〜900℃で、この金属筒ごと、上下のパンチでその
軸方向に一軸圧縮加工して潰し、磁石合金の粒子に塑性
変形を生じさせることにより異方性化したのち、磁石粉
末の塊を取り出して粉砕することからなる。
The applicant has solved this problem by using a heating press capable of controlling the atmosphere, and has already proposed this (Japanese Patent Laid-Open No. 11-233323). That is, the proposed technique is to fill a metal cylinder with a quenching powder obtained from an ultra-quenching ribbon of an Nd-Fe-B-based magnet alloy and place it in a heating press capable of controlling the atmosphere, in a non-oxidizing atmosphere, at a temperature of 65
At 0 to 900 ° C., the metal cylinder is uniaxially compressed by the upper and lower punches in the axial direction to be crushed, and the particles of the magnet alloy are plastically deformed to anisotropy. It consists of taking out and crushing.

【0009】この磁石粉末の製造方法は、金属筒の密閉
を必要としないという点で工程が簡易化され、それに伴
って製造コストの低減が可能になったが、一方で、ワン
バッチの生産量を著しく大きくしようと企てた場合、得
られる磁石粉末の磁気特性が低下することが経験され
た。その原因を追及したところ、一軸圧縮加工に至るま
での加熱の間に、磁石合金粉末の粒子が粗大化して、超
急冷の効果が減殺されるという機構がわかった。
The method of manufacturing this magnet powder simplifies the process in that the metal cylinder is not required to be hermetically sealed, and accordingly, the manufacturing cost can be reduced. It was experienced that the magnetic properties of the resulting magnet powder deteriorated when attempted to be significantly larger. Upon investigating the cause, it was found that during heating up to uniaxial compression processing, the particles of the magnet alloy powder become coarse and the effect of ultra-quenching is diminished.

【0010】つまり、超急冷粉末を金属筒内に充填して
雰囲気制御可能な加熱プレス内に置き、その加工温度で
ある650〜900℃への昇温を待つ間、充填された粉
末の内部の方はまだ低温であるが、外側の、金属筒に近
い部分の粉末は結晶化温度を超える温度に達してしま
い、粗大化が進むのである。それゆえ、このような状況
を避けて、650〜900℃への昇温を実現しなければ
ならない。結晶化温度は、合金組成によって若干異なる
が、ほぼ500℃であるから、それを超える高温にさら
される時間を、なるべく短くすることが必要である。
That is, while the ultra-quenched powder is filled in a metal cylinder and placed in a heating press capable of controlling the atmosphere, while waiting for the processing temperature to rise to 650 to 900 ° C., the inside of the filled powder is Although the temperature is still low, the powder in the outer portion close to the metal cylinder reaches a temperature exceeding the crystallization temperature, and coarsening progresses. Therefore, it is necessary to avoid such a situation and realize the temperature rise to 650 to 900 ° C. The crystallization temperature is approximately 500 ° C. although it varies slightly depending on the alloy composition, and therefore the time of exposure to high temperatures exceeding that temperature must be shortened as much as possible.

【0011】一方、一軸圧縮加工による異方性の増大
は、その効果を高めることにより、さらに高い磁気特性
をもった磁石粉末を得ることができ、また、上記の粒子
粗大化による磁気特性の低下を補うことができるから、
異方性の増大にとって、より効果的な加工条件を見出す
ことが望ましい。このような観点から研究し、発明者ら
は、一軸圧縮時の歪み速度が遅すぎては異方性が生じな
いが、過度に速すぎてもかえって不利であり、その間に
適切な範囲があることを見出した。
On the other hand, the increase in the anisotropy due to the uniaxial compression processing makes it possible to obtain a magnet powder having higher magnetic characteristics by enhancing the effect, and also the deterioration of the magnetic characteristics due to the coarsening of the particles. Can be compensated for,
It is desirable to find more effective processing conditions for increasing the anisotropy. From such a viewpoint, the inventors have found that if the strain rate during uniaxial compression is too slow, anisotropy does not occur, but if it is too fast, it is rather disadvantageous, and there is an appropriate range between them. I found that.

【0012】[0012]

【発明が解決しようとする課題】このような、発明者ら
が得た新知見を基礎として成立した本発明の目的は、上
述の、雰囲気制御可能な加熱プレスを用いる異方性磁石
合金粉末の製造方法を改良し、製造過程における粒子の
粗大化を防いで一軸圧縮加工を行なうことと、適切な歪
み速度で加工を行なって異方性の増大をはかることと
の、一方または両方を実現した、ボンド磁石用の異方性
磁石合金粉末の製造方法を提供することにある。その磁
石合金の粉末を使用したボンド磁石を提供することもま
た、本発明の目的に含まれる。
The object of the present invention, which was established based on the new knowledge obtained by the inventors, is to provide an anisotropic magnet alloy powder using the above-mentioned atmosphere-controllable hot press. By improving the manufacturing method, uniaxial compression processing was performed to prevent grain coarsening in the manufacturing process, and one or both of processing at an appropriate strain rate to increase anisotropy was realized. Another object of the present invention is to provide a method for producing anisotropic magnet alloy powder for bonded magnets. It is also included in the object of the present invention to provide a bonded magnet using the powder of the magnet alloy.

【0013】[0013]

【課題を解決するための手段】本発明にしたがうボンド
磁石用の異方性磁石粉末の製造方法において、一軸圧縮
までの加熱のあり方を改善したものは、Nd−Fe−B
系磁石合金の超急冷リボンから得た急冷粉末を金属筒内
に充填したものを、雰囲気制御可能な加熱プレスを用い
て、非酸化性雰囲気下に、この金属筒ごと軸方向に一軸
圧縮加工して磁石合金の粒子に塑性変形を生じさせたの
ち、取り出して粉砕することにより磁石粉末を製造する
方法において、超急冷粉末を充填した金属筒を、磁石合
金の結晶化温度より低い温度の雰囲気に保持する予備加
熱を行なった後、650〜900℃の温度に加熱して一
軸圧縮を行なうことにより、粒子の粗大化を防いで磁石
粉末を得ることを特徴とする。
In the method for producing anisotropic magnet powder for a bonded magnet according to the present invention, the method of heating up to uniaxial compression is improved by Nd-Fe-B.
A metal cylinder filled with quench powder obtained from a super-quenched ribbon of a system magnet alloy was uniaxially compressed along with the metal cylinder in a non-oxidizing atmosphere in a non-oxidizing atmosphere using a hot press capable of controlling the atmosphere. In the method of producing magnet powder by taking out and crushing it after plastic deformation is caused in the particles of the magnet alloy, the metal cylinder filled with the ultra-quenching powder is placed in an atmosphere at a temperature lower than the crystallization temperature of the magnet alloy. After carrying out preheating for holding, the particles are heated to a temperature of 650 to 900 ° C. and uniaxially compressed to prevent coarsening of the particles to obtain a magnet powder.

【0014】本発明にしたがうボンド磁石用の異方性磁
石粉末の製造方法において、一軸圧縮における歪み速度
に注目したものは、加熱温度に関して上記したものと同
様な工程からなる磁石粉末を製造する方法において、一
軸圧縮の速度を、 ln(L0/L)/T [ここで、L0:圧縮前の金属筒の
高さ、L:圧縮後の金属筒の高さ、T:圧縮時間
(秒)] として定義される歪み速度が0.5〜3.0/秒の範囲
となるように調節して実施することにより、異方性の増
大する度合いを高めて磁石粉末を得ることを特徴とす
る。
In the method for producing anisotropic magnet powder for a bonded magnet according to the present invention, the one paying attention to the strain rate in uniaxial compression is a method for producing magnet powder comprising the same steps as those described above for heating temperature. In, the uniaxial compression speed is expressed as ln (L 0 / L) / T [where L 0 is the height of the metal cylinder before compression, L is the height of the metal cylinder after compression, and T is the compression time (second )] Is adjusted so that the strain rate is in the range of 0.5 to 3.0 / sec, and the magnetic powder is obtained by increasing the degree of anisotropy. To do.

【0015】[0015]

【発明の実施形態】予備加熱の温度は、磁石合金の結晶
化温度に近い温度が好ましいが、それを超える高温であ
ってはならない。前記したように、結晶化温度は500
℃近辺であるから、一般に、500±20℃の範囲から
選ぶのが適切である。上述した、加熱方法の選択と、加
工条件の選択とは、どちらか一方でも有効であるが、両
方をあわせて実施すれば、それらの効果がともに得られ
て、いっそう好成績となる。
BEST MODE FOR CARRYING OUT THE INVENTION The preheating temperature is preferably a temperature close to the crystallization temperature of a magnet alloy, but should not be higher than that. As described above, the crystallization temperature is 500.
Since it is around 0 ° C, it is generally appropriate to select from the range of 500 ± 20 ° C. The above-described selection of the heating method and the selection of the processing conditions are effective in either one, but if both are performed together, those effects are obtained together, and the results are even better.

【0016】本発明のボンド磁石は、上記のようにして
製造した異方性磁石粉末を樹脂バインダーと混合し、こ
の混合物に磁場を印加して磁石材料の粉末を配向させた
状態で成形することからなる。バインダーおよび成形方
法の選択や、磁場中での成形に関しては、既知の技術に
従って実施すればよい。
The bonded magnet of the present invention is formed by mixing the anisotropic magnet powder produced as described above with a resin binder and applying a magnetic field to the mixture to orient the magnet material powder. Consists of. Selection of the binder and molding method, and molding in a magnetic field may be performed according to known techniques.

【0017】本発明の異方性希土類磁石粉末の製造方法
で使用するNd−Fe−B系磁石合金としては、下式で
あらわされる組成の合金が好ましい。 RxFe(100-x-y-z-w)CoyBzTw (式中、RはYを含む希土類元素であり、Tは、Ga,
Si,Al,C,Ni,Cu,Zn,In,Mn,N
b,TaおよびTiから選ばれた1種または2種以上の
元素である。x=12.5〜16.0,y=0〜10,
z=4.8〜6.5,w=0〜1)
As the Nd-Fe-B magnet alloy used in the method for producing anisotropic rare earth magnet powder of the present invention, an alloy having a composition represented by the following formula is preferable. RxFe (100-xyzw) CoyBzTw (wherein R is a rare earth element containing Y, T is Ga,
Si, Al, C, Ni, Cu, Zn, In, Mn, N
It is one or more elements selected from b, Ta and Ti. x = 12.5 to 16.0, y = 0 to 10,
z = 4.8 to 6.5, w = 0 to 1)

【0018】磁石合金の組成を上記のように限定した理
由は、前掲の特開平11−233323において説明し
たが、簡単に再録すると、つぎのとおりである。
The reason why the composition of the magnet alloy is limited as described above has been explained in the above-mentioned Japanese Patent Laid-Open No. 11-233323, but a brief re-recording is as follows.

【0019】xが12.5に満たないと磁石の保磁力が
小さく、実用的でない。16を超えると、エネルギー積
が低下してしまう。zが4.8未満では保磁力が低く、
6.5を超えると、塑性加工が困難になる。Coの添加
は、キュリー温度を上昇させるので、磁石の耐熱性が向
上するが、yが10を超えると、磁化が減少する。
When x is less than 12.5, the coercive force of the magnet is too small to be practical. If it exceeds 16, the energy product will decrease. When z is less than 4.8, the coercive force is low,
If it exceeds 6.5, plastic working becomes difficult. Since the addition of Co raises the Curie temperature, the heat resistance of the magnet is improved, but when y exceeds 10, the magnetization decreases.

【0020】成分「T」の微量添加は、保磁力、残留磁
化または最大エネルギー積のいずれかの磁気特性の改善
に役立つ。ただし、一般に1%を超える添加は、磁化の
低下が大きくなるので好ましくない。添加効果は元素の
種類によって異なり、Ga,Si,Alは残留磁化を向
上させ、Cu,Znは保磁力を高める。したがって、製
品とする磁石に要求される特性に応じて、任意添加元素
の種類と添加量を選択すべきである。
The minor addition of component "T" helps improve the magnetic properties, either coercivity, remanence or maximum energy product. However, in general, the addition of more than 1% is not preferable because the decrease in magnetization becomes large. The effect of addition depends on the type of element: Ga, Si, and Al improve the residual magnetization, and Cu and Zn increase the coercive force. Therefore, the type and amount of the optional additional element should be selected according to the characteristics required for the magnet as a product.

【0021】本発明の異方性磁石粉末の製造における、
超急冷リボンの取得とその粉砕の工程は、既知の技術に
したがって実施することができる。塑性加工による異方
性の発現を効果的に行なわせるには、超急冷リボンの結
晶粒径を0.1〜1μm程度に細かくすることが望まし
いことは、さきの発明の開示に当って述べたとおりであ
る。そのほか、超急冷粉末の金属筒への充填と、加熱下
に行なう一軸圧縮に関しては、さきの発明の説明が、そ
のまま当てはまる。ただし、特開平11−233323
の圧縮比や加工率に関する記述は、歪み速度の観点から
する考察を含んでいなかったので、本発明により、それ
らの知見が補充される。
In the production of the anisotropic magnet powder of the present invention,
The process of obtaining the ultra-quenched ribbon and its crushing can be carried out according to known techniques. In order to effectively exert the anisotropy by plastic working, it is desirable to make the crystal grain size of the ultra-quenched ribbon as fine as 0.1 to 1 μm, as described above in the disclosure of the invention. It is as follows. In addition, regarding the filling of the ultra-quenched powder into the metal cylinder and the uniaxial compression performed under heating, the above description of the invention is directly applied. However, JP-A-11-233323
Since the description of the compression ratio and the processing rate of No. 1 did not include consideration from the viewpoint of strain rate, the present invention supplements those findings.

【0022】制御された雰囲気下の、すなわち非酸化性
の雰囲気下の一軸圧縮加工は、前記したように、超急冷
粉末を650〜900℃の温度に加熱した状態で行な
う。650℃に至らない低温では、異方性化が十分に行
なわれず、高いエネルギー積が得られない。一方、90
0℃を超える温度では、合金の保磁力が低くなってしま
う。
The uniaxial compression processing under a controlled atmosphere, that is, under a non-oxidizing atmosphere is carried out in the state where the ultra-quenched powder is heated to a temperature of 650 to 900 ° C., as described above. At a low temperature of less than 650 ° C., anisotropy is not sufficiently achieved and a high energy product cannot be obtained. On the other hand, 90
At temperatures above 0 ° C, the coercive force of the alloy will be low.

【0023】本発明を特徴づける、加熱プレスにおける
加熱に先立つ予備加熱は、マッフル炉のような別の予備
加熱装置において実施するのが有利である。たとえば後
記する実施例にみるように、予備加熱炉の温度を500
℃の一定値にしておき、加熱プレスの温度を720℃の
一定値にしておき、金属筒に充填された粉末の内部の温
度がほぼ500℃に達したあたりで、加熱プレスに移
し、加工に適した温度になるのを待つという手法であ
る。
The preheating prior to the heating in the hot press, which characterizes the invention, is advantageously carried out in another preheating device, such as a muffle furnace. For example, as shown in Examples described later, the temperature of the preheating furnace is set to 500
The temperature of the heating press was kept constant at 720 ° C, and when the temperature inside the powder filled in the metal cylinder reached about 500 ° C, it was transferred to the heating press for processing. It is a method of waiting until it reaches an appropriate temperature.

【0024】[0024]

【実施例】[実施例1]原子%で、Nd:13.33%,
Fe:74.96%,Co:6.06%およびB:5.
65%からなる組成の合金を、高周波加熱により150
0℃の溶湯とし、これを周速24m/秒で回転している
銅製単ロール上に注いで、超急冷リボンとした。このリ
ボンを粒径300μm以下に粉砕して超急冷粉末を得
た。その磁気特性を、磁化容易軸および困難軸につい
て、振動試料型磁力計(VSM)を用いて測定した。結
果は次のとおりで、この磁石粉末は磁気等方性であっ
て、特性の低いものであった。 残留磁化Br(kG):[容易軸]2.8 [困難軸]2.9 保持力iHc(Oe): [容易軸]5.8 [困難軸]5.8
[Example] [Example 1] In atomic%, Nd: 13.33%,
Fe: 74.96%, Co: 6.06% and B: 5.
An alloy with a composition of 65% is heated to 150 by high frequency heating.
A molten metal at 0 ° C. was formed, and this was poured onto a copper single roll rotating at a peripheral speed of 24 m / sec to obtain a super-quenched ribbon. This ribbon was crushed to a particle size of 300 μm or less to obtain an ultra-quenched powder. The magnetic properties were measured using a vibrating sample magnetometer (VSM) for the easy axis and the hard axis. The results are as follows, and this magnet powder was magnetically isotropic and had low characteristics. Remanent magnetization Br (kG): [easy axis] 2.8 [hard axis] 2.9 Coercive force iHc (Oe): [easy axis] 5.8 [hard axis] 5.8

【0025】肉厚5mmの軟鋼板で製作した有底円筒状の
容器に、上記の超急冷粉末10Kgを充填して蓋をした。
蓋は、円筒の縁に嵌め合いにより固定した。これを、従
来法に従って(すなわち比較例として)雰囲気制御可能
な加熱プレス内に置き、アルゴンガスの雰囲気とし、雰
囲気温度を、当初の10分間は1000℃に、それ以降
は700℃に設定して加熱した。容器外周部の温度と、
充填された粉末の中央部の温度とを、シミュレーション
により推定し、グラフに記録した。このグラフを、図1
に示す。加熱開始100分後、粉末の中央部の温度が7
00℃に近づいたので、一軸圧縮を行なって(圧縮比
2.5)取り出し、冷却してから容器を開き、異方性化
された粉末を回収して、粒径300μm以下に粉砕し
た。
A cylindrical container having a bottom and made of a mild steel plate having a thickness of 5 mm was filled with 10 kg of the above ultra-quenched powder, and the container was covered.
The lid was fitted and fixed to the edge of the cylinder. This was placed in a heating press capable of controlling an atmosphere according to a conventional method (that is, as a comparative example), and an atmosphere of argon gas was set. Heated. The temperature of the outer circumference of the container,
The temperature at the center of the filled powder was estimated by simulation and recorded in a graph. This graph is shown in Figure 1.
Shown in. 100 minutes after the start of heating, the temperature of the central part of the powder is 7
Since the temperature was close to 00 ° C., it was uniaxially compressed (compression ratio: 2.5), taken out, cooled, and the container was opened, and the anisotropy powder was recovered and pulverized to a particle size of 300 μm or less.

【0026】得られた粉末を15kOeの磁場で配向さ
せながら、ワックスで固めて磁気特性測定用の試料を得
た。この試料の磁気特性は、下記のとおりであった。 残留磁化Br(kG):[容易軸]11.5 [困難軸]3.0 保持力iHc(Oe): [容易軸]14.0 [困難軸]6.0
The powder thus obtained was hardened with wax while being oriented in a magnetic field of 15 kOe to obtain a sample for measuring magnetic properties. The magnetic properties of this sample were as follows. Remanent magnetization Br (kG): [easy axis] 11.5 [hard axis] 3.0 Coercive force iHc (Oe): [easy axis] 14.0 [hard axis] 6.0

【0027】次に、この磁石粉末に対しエポキシ樹脂を
2重量%の割合で混合し、混合物を金型に充填して磁場
プレスにセットした。15kOeの磁場を印加して磁石粉
末を配向させながら、20ton/cm2の圧力でプレスする
ことにより、圧縮成形体とした。この成形体をアルゴン
雰囲気中150℃で1時間加熱してエポキシ樹脂を硬化
させ、ボンド磁石を得た。得られたボンド磁石の特性を
BHトレーサーにより測定して、次の結果を得た。 残留磁化Br:8.7kG 保磁力iHc:13Oe 最大エネルギー積[BH]max:18MGOe
Next, an epoxy resin was mixed with the magnet powder at a ratio of 2% by weight, and the mixture was filled in a mold and set in a magnetic field press. While applying a magnetic field of 15 kOe to orient the magnet powder, it was pressed at a pressure of 20 ton / cm 2 to obtain a compression molded body. This molded body was heated in an argon atmosphere at 150 ° C. for 1 hour to cure the epoxy resin and obtain a bonded magnet. The characteristics of the obtained bonded magnet were measured with a BH tracer, and the following results were obtained. Remanent magnetization Br: 8.7 kG Coercive force iHc: 13 Oe Maximum energy product [BH] max: 18 MGOe

【0028】前記の金属容器に超急冷粉末を充填したも
のを、(実施例として)温度500℃に設定したマッフ
ル炉に入れて、容器の外周部と粉末の中心部における温
度を、やはりシミュレーションにより推定した。180
分を経て、全体の温度がほぼ設定値に達したと思われた
ので、設定温度720℃の加熱プレスに移して、加熱を
続けるとともに、外周部と粉末中心の温度を推定した。
これらの推定値は、図2のグラフに見るとおりである。
The above metal container filled with ultra-quenched powder was placed in a muffle furnace set at a temperature of 500 ° C. (as an example), and the temperatures at the outer periphery of the container and the center of the powder were also simulated. Estimated. 180
Since it was thought that the whole temperature had almost reached the set value after a lapse of minutes, the temperature was transferred to a heating press having a set temperature of 720 ° C. to continue heating, and the temperatures of the outer peripheral portion and the powder center were estimated.
These estimates are as seen in the graph of FIG.

【0029】加熱プレスにおける240分間の加熱後、
全体の温度が設定温度720℃に達したと推定されたの
で、一軸圧縮を行ない、取り出して冷却し、粉砕するこ
とにより、異方性化された粉末を得た。圧縮、粉砕の条
件は、前記したところと同じである。得られた粉末の、
磁場配向試料の磁気特性は、下記のとおりであった。 残留磁化Br(kG):[容易軸]13.0 [困難軸]2.0 保持力iHc(Oe): [容易軸]15.0 [困難軸]7.0
After heating for 240 minutes in the hot press,
Since it was estimated that the whole temperature reached the set temperature of 720 ° C., an anisotropic powder was obtained by performing uniaxial compression, taking out, cooling and pulverizing. The conditions of compression and crushing are the same as those described above. Of the obtained powder,
The magnetic properties of the magnetic field oriented sample were as follows. Remanent magnetization Br (kG): [easy axis] 13.0 [hard axis] 2.0 Coercive force iHc (Oe): [easy axis] 15.0 [hard axis] 7.0

【0030】この磁石粉末を使用し、前記の操作と同様
にしてボンド磁石を製造し、その磁気特性を測定した。
結果はつぎのとおりであって、本発明の方法によるとき
は磁気特性が改善されることが確認できた。 残留磁化Br:9.5kG 保磁力iHc:14Oe 最大エネルギー積[BH]max:22MGOe
Using this magnet powder, a bonded magnet was manufactured in the same manner as described above, and its magnetic characteristics were measured.
The results are as follows, and it was confirmed that the magnetic characteristics were improved by the method of the present invention. Remanent magnetization Br: 9.5 kG Coercive force iHc: 14 Oe Maximum energy product [BH] max: 22 MGOe

【0031】はじめから加熱プレスで720℃の雰囲気
に置いた場合にくらべ、まず500℃のマッフル炉にお
いて予備加熱した後に加熱プレスに移し、720℃に加
熱した場合の方が、得られる磁石粉末の磁気特性が良好
であり、それに伴ってボンド磁石の性能もすぐれてい
る。加熱所要時間が延長された(100分間→240分
間)にもかかわらず、このような改善が見られたのは、
結晶化温度を超える温度に置くと粒子の粗大化が進み、
磁気特性が劣化するのに対し、結晶化温度未満の温度で
あれば、加熱時間が長くても、それが避けられるという
機構によるものである。
Compared with the case of placing in a 720 ° C. atmosphere with a heating press from the beginning, first, preheating in a muffle furnace at 500 ° C. and then transferring to a heating press and heating to 720 ° C. yielded a magnet powder of The magnetic characteristics are good, and the performance of the bonded magnet is also excellent accordingly. Even though the heating time was extended (100 minutes → 240 minutes), such improvement was seen.
When the temperature is higher than the crystallization temperature, the particles become coarser,
This is because, while the magnetic properties deteriorate, if the temperature is lower than the crystallization temperature, it can be avoided even if the heating time is long.

【0032】[実施例2]実施例1において、軟鋼製の円
筒状容器として、容量1Kgの小型のものを使用して、当
初から720℃に設定された加熱プレスに置くことによ
り、粉末を加熱した。加熱時間は30分間で足りること
が、経験的にわかっていたので、その時間経過後、一軸
圧縮加工を行なった。ここで、前記の式によって定義さ
れる歪み速度を、0.1,0.2,0.5,1.0,
3,5,7および10/秒と変化させて圧縮を行なっ
た。
[Example 2] In Example 1, a small container having a capacity of 1 kg was used as a mild steel cylindrical container, and the powder was heated by placing it in a heating press set at 720 ° C from the beginning. did. Since it was empirically known that a heating time of 30 minutes was sufficient, uniaxial compression processing was performed after the lapse of that time. Here, the strain rate defined by the above equation is calculated as 0.1, 0.2, 0.5, 1.0,
The compression was performed at 3, 5, 7 and 10 / sec.

【0033】得られた異方性化磁石粉末について、最大
エネルギー積[BH]maxを測定し、歪み速度との関係
をプロットして、図3のグラフを得た。この場合、歪み
速度0.5〜3.0/秒の範囲において、38〜40M
GOeという高い最大エネルギー積が達成できた。歪み
速度に配慮しないと、30MGOeにも達しない値であ
るから、一軸圧縮時の歪み速度が磁気特性に与える影響
は顕著である。
The maximum energy product [BH] max of the obtained anisotropy magnet powder was measured, and the relationship with the strain rate was plotted to obtain the graph of FIG. In this case, in the strain rate range of 0.5 to 3.0 / sec, 38 to 40M
A high maximum energy product of GOe was achieved. If the strain rate is not taken into consideration, the value does not reach 30 MGOe, so the effect of the strain rate during uniaxial compression on the magnetic properties is significant.

【0034】この理由は、つぎのよう考えられる。ま
ず、塑性加工時の歪み速度が大きければ、その間に粒子
が成長する余裕がなく、その点では高い歪み速度が有利
に作用する。この事実は、保持力と歪み速度との相関を
調べることにより、確認されている。一方、応力の変化
はといえば、歪み速度が大きくなると金属原子間のすべ
りは小さくなり、磁気特性にとっては不利になる。この
ように、塑性加工に際しては、歪み速度が大きくなると
有利に働く因子と、不利に働く因子とが共存するので、
それら因子の一方が強く働かない中間の歪み速度の領域
で、高い磁気特性が得られることになる。
The reason for this is considered as follows. First, if the strain rate at the time of plastic working is high, there is no room for particles to grow during that period, and in that respect, a high strain rate acts advantageously. This fact has been confirmed by examining the correlation between coercive force and strain rate. On the other hand, as for the change in stress, when the strain rate increases, the slip between metal atoms decreases, which is disadvantageous to the magnetic properties. As described above, in plastic working, a factor that works favorably when the strain rate increases and a factor that works unfavorably coexist.
High magnetic properties can be obtained in the region of intermediate strain rate where one of these factors does not work strongly.

【0035】[0035]

【発明の効果】本発明の、結晶化温度未満の予備加熱を
採用した態様により異方性磁石粉末を製造すれば、さき
に提案した製造方法のもつ利益であるところの、密閉容
器の使用が不必要な簡略化された工程で、異方性の高い
磁気特性をもった磁石粉末が得られるという利益を享受
した上で、とくに大きなバッチで作業をするときにあり
得る粒子の粗大化が防止でき、磁気特性の低下を避ける
ことができる。一方、本発明のいまひとつの態様であ
る、適切な歪み速度で塑性加工を行なう製造方法によれ
ば、磁石合金が潜在的にもつ性能をフルに発揮させるこ
とができる。これら二つの態様を合わせて実施すれば、
すぐれた磁気特性の磁石粉末を大量に得ることができ、
したがって高い性能を持ったボンド磁石を低いコストで
製造することができる。
Industrial Applicability When an anisotropic magnet powder is produced by the embodiment of the present invention which employs preheating below the crystallization temperature, it is possible to use a closed container, which is a benefit of the production method previously proposed. The benefit of being able to obtain magnet powder with highly anisotropic magnetic properties in an unnecessarily simplified process, while avoiding possible particle coarsening, especially when working in large batches It is possible to avoid deterioration of magnetic properties. On the other hand, according to the manufacturing method in which the plastic working is performed at an appropriate strain rate, which is another aspect of the present invention, the performance potentially possessed by the magnet alloy can be fully exhibited. If you combine these two aspects,
It is possible to obtain a large amount of magnet powder with excellent magnetic properties,
Therefore, a bonded magnet having high performance can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の比較例のデータであって、超急冷粉
末の塑性加工に先立つ加熱において、予備加熱を行なわ
ず、直接加工温度の雰囲気の置いた場合の、粉末の容器
と内部の温度の時間変化を示すグラフ。
FIG. 1 is data of a comparative example of the present invention, showing the temperature of the powder container and the internal temperature of the powder in the case where the pre-heating is not performed in the heating prior to the plastic working of the ultra-quenched powder and the atmosphere at the direct processing temperature is placed A graph showing the change over time.

【図2】 本発明の実施例のデータであって、超急冷粉
末の塑性加工に先立つ加熱において、予備加熱を行なっ
た場合の、粉末の容器と内部の温度の時間変化を示すグ
ラフ。
FIG. 2 is data of an example of the present invention, and is a graph showing temporal changes in temperature of the powder container and the internal temperature when preheating is performed in heating prior to plastic working of ultra-quenched powder.

【図3】 本発明の実施例および比較例のデータであっ
て、超急冷粉末の塑性加工時の歪み速度と、得られた磁
石粉末の磁気特性との関係を示すグラフ。
FIG. 3 is a graph showing the data of Examples and Comparative Examples of the present invention, showing the relationship between the strain rate during plastic working of ultra-quenched powder and the magnetic properties of the obtained magnet powder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/06 H01F 1/06 A 1/08 1/04 H (72)発明者 中山 信治 愛知県名古屋市南区大同町ニ丁目30番地 大同特殊鋼株式会社技術開発研究所内 Fターム(参考) 4K017 AA04 BA06 BB01 BB06 BB07 BB08 BB09 BB12 BB13 DA04 EA03 4K018 AA27 BA18 BC08 BD01 GA04 KA46 5E040 AA04 BB03 CA01 HB06 HB07 HB17 NN01 NN18 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 1/06 H01F 1/06 A 1/08 1/04 H (72) Inventor Shinji Nakayama Nagoya City, Aichi Prefecture F-Term in the Technical Development Laboratory, Daido Steel Co., Ltd., Ni-chome 30-30, Daido-cho, Minami-ku (reference) 4K017 AA04 BA06 BB01 BB06 BB07 BB08 BB09 BB12 BB13 DA04 EA03 4K018 AA27 BA18 BC08 BD01 GA04 KA46 5E040 AA04 BB03 CA01 HB06 HB07 HB07 HB07 HB07 HB07 HB07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Nd−Fe−B系磁石合金の超急冷リボ
ンから得た急冷粉末を金属筒内に充填したものを、雰囲
気制御可能な加熱プレスを用いて、非酸化性雰囲気下
に、この金属筒ごと軸方向に一軸圧縮加工して磁石合金
の粒子に塑性変形を生じさせたのち、取り出して粉砕す
ることにより磁石粉末を製造する方法において、超急冷
粉末を充填した金属筒を、磁石合金の結晶化温度より低
い温度の雰囲気に保持する予備加熱を行なった後、65
0〜900℃の加工温度に加熱して一軸圧縮を行なうこ
とにより、粒子の粗大化を防いで磁石粉末を得ることを
特徴とするボンド磁石用の異方性磁石粉末の製造方法。
1. A quenching powder obtained from an ultra-quenching ribbon of Nd-Fe-B based magnet alloy is filled in a metal cylinder and heated in a non-oxidizing atmosphere using a heating press capable of controlling the atmosphere. In the method of producing magnet powder by uniaxially compressing the whole metal cylinder in the axial direction to cause plastic deformation of the particles of the magnet alloy, and then taking out and crushing the metal cylinder, the metal cylinder filled with the ultra-quenching powder is replaced with the magnet alloy. After performing preheating to maintain the atmosphere at a temperature lower than the crystallization temperature of
A method for producing anisotropic magnet powder for a bonded magnet, characterized in that magnet powder is obtained by preventing particle coarsening by heating at a processing temperature of 0 to 900 ° C. and performing uniaxial compression.
【請求項2】 予備加熱の雰囲気温度を500±20℃
の範囲から選んで実施する請求項1の製造方法。
2. The ambient temperature of preheating is 500 ± 20 ° C.
The manufacturing method according to claim 1, which is carried out by selecting from the range.
【請求項3】 Nd−Fe−B系磁石合金の超急冷リボ
ンから得た急冷粉末を金属筒内に充填したものを、雰囲
気制御可能な加熱プレスを用いて、非酸化性雰囲気下
に、この金属筒ごと軸方向に一軸圧縮加工して磁石合金
の粒子に塑性変形を生じさせたのち、取り出して粉砕す
ることにより磁石粉末を製造する方法において、加工の
速度を、 ln(L0/L)/T [ここで、L0:圧縮前の金属筒の
高さ、L:圧縮後の金属筒の高さ、T:圧縮時間
(秒)] として定義される歪み速度が0.5〜3.0/秒の範囲
となるように調節して実施することにより、異方性の増
大する度合いを高めて磁石粉末を得ることを特徴とする
ボンド磁石用の異方性磁石粉末の製造方法。
3. A quenching powder obtained from an ultra-quenching ribbon of Nd-Fe-B magnet alloy is filled in a metal cylinder and heated in a non-oxidizing atmosphere using a hot press capable of controlling the atmosphere. In the method of producing magnet powder by uniaxially compressing the metal cylinder in the axial direction to generate plastic deformation in the particles of the magnet alloy, and then taking out and pulverizing the particles, the processing speed is set to ln (L 0 / L) / T [where L 0 is the height of the metal cylinder before compression, L is the height of the metal cylinder after compression, T is the compression time (seconds)], and the strain rate is 0.5 to 3. A method for producing anisotropic magnet powder for a bonded magnet, characterized in that the degree of anisotropy is increased to obtain the magnet powder by adjusting the content to be within a range of 0 / sec.
【請求項4】 Nd−Fe−B系磁石合金として、下式
であらわされる組成の合金を使用する請求項1または3
の異方性希土類磁石粉末の製造方法。 RxFe(100-x-y-z-w)CoyBzTw (式中、RはYを含む希土類元素であり、Tは、Ga,
Si,Al,C,Ni,Cu,Zn,In,Mn,N
b,TaおよびTiから選ばれた1種または2種以上の
元素である。x=12.5〜16.0,y=0〜10,
z=4.8〜6.5,w=0〜1)
4. The Nd—Fe—B magnet alloy having the composition represented by the following formula is used.
Method for producing anisotropic rare earth magnet powder of. RxFe (100-xyzw) CoyBzTw (wherein R is a rare earth element containing Y, T is Ga,
Si, Al, C, Ni, Cu, Zn, In, Mn, N
It is one or more elements selected from b, Ta and Ti. x = 12.5 to 16.0, y = 0 to 10,
z = 4.8 to 6.5, w = 0 to 1)
【請求項5】 請求項1ないし4のいずれかに記載の方
法により製造された異方性磁石粉末を、樹脂バインダー
と混合し、この混合物に磁場を印加して磁石材料の粉末
を配向させた状態で成形してなるボンド磁石。
5. The anisotropic magnet powder produced by the method according to claim 1, is mixed with a resin binder, and a magnetic field is applied to this mixture to orient the powder of the magnet material. Bonded magnet molded in the state.
JP2002148117A 2002-05-22 2002-05-22 Method for manufacturing anisotropic rare-earth magnet powder Pending JP2003342618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148117A JP2003342618A (en) 2002-05-22 2002-05-22 Method for manufacturing anisotropic rare-earth magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148117A JP2003342618A (en) 2002-05-22 2002-05-22 Method for manufacturing anisotropic rare-earth magnet powder

Publications (1)

Publication Number Publication Date
JP2003342618A true JP2003342618A (en) 2003-12-03

Family

ID=29766828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148117A Pending JP2003342618A (en) 2002-05-22 2002-05-22 Method for manufacturing anisotropic rare-earth magnet powder

Country Status (1)

Country Link
JP (1) JP2003342618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449657C (en) * 2007-03-06 2009-01-07 俞葵 A making method of NdFeB magnetic powder
US10058919B2 (en) 2014-07-08 2018-08-28 Toyota Jidosha Kabushiki Kaisha Manufacturing method for sintered compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449657C (en) * 2007-03-06 2009-01-07 俞葵 A making method of NdFeB magnetic powder
US10058919B2 (en) 2014-07-08 2018-08-28 Toyota Jidosha Kabushiki Kaisha Manufacturing method for sintered compact

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
CN114223044B (en) Method for producing sintered magnet
JP2003342618A (en) Method for manufacturing anisotropic rare-earth magnet powder
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH01274401A (en) Permanent magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP3522207B2 (en) Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JPH05291017A (en) Manufacture of rare earth magnet powder
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2992808B2 (en) permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof