JPS6329908A - Manufacture of r-fe-b rare earth magnet - Google Patents

Manufacture of r-fe-b rare earth magnet

Info

Publication number
JPS6329908A
JPS6329908A JP61172988A JP17298886A JPS6329908A JP S6329908 A JPS6329908 A JP S6329908A JP 61172988 A JP61172988 A JP 61172988A JP 17298886 A JP17298886 A JP 17298886A JP S6329908 A JPS6329908 A JP S6329908A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
heat treatment
less
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61172988A
Other languages
Japanese (ja)
Inventor
Yasuto Nozawa
野沢 康人
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61172988A priority Critical patent/JPS6329908A/en
Publication of JPS6329908A publication Critical patent/JPS6329908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase coercive force to a permanent magnet manufactured, and to display a large effect for improving heat stability by bringing a specific alloy, mean crystal grain size of which extends over 0.01-0.5mum, to an anisotropic state through warm processing and thereafter executing specific heat treatment. CONSTITUTION:An R-Fe-B group alloy, mean crystal grain size of which extends over 0.01-0.5mum, is brought to an anisotropic state through warm working, and thermally treated. R in the alloy represents one kind or more of rare earth elements containing Y, and the alloy includes an R-Fe-Co-B group alloy, one part of Fe of which is replaced with Co, and an R-Fe-B-M group alloy or an R-Fe-Co-B-M group alloy using the combination of one kind or more of Si, Al, Nb, Zr, Hf, Mo, Ga, P, C as additional elements (M). Heat treatment consists of processes in which the alloy is heated at a temperature to 900 deg.C from 600 deg.C, held for the time to 240 min from 0 min, and cooled at a cooling rate of 1 deg.C/sec or more. Accordingly, a permanent magnet thus manufactured has coercive force larger than conventional devices, and has a large effect for improving heat stability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超急冷法を利用したR−Fe−B系希土類6n
石(RはYを含む希土類元素の1種または2種以上の組
み合わせを示す。)の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides R-Fe-B rare earth 6n using an ultra-quenching method.
The present invention relates to a method for producing stone (R represents one type or a combination of two or more types of rare earth elements including Y).

〔従来の技術〕[Conventional technology]

高エネルギー積を有するR−Fe−B系希土類磁石の製
造プロセスは2種に大別できる。
The manufacturing process of R-Fe-B rare earth magnets having a high energy product can be roughly divided into two types.

第1の方法は特開昭59−46008号公報及び特開昭
59−64733号公報などに見られるように、R−F
e−B系合金のインゴットを粉砕し、磁場中成型後焼結
するというSm 、Co系希土類磁石の製造に用いられ
ていた方法と同様の粉末冶金プロセスである。
The first method is the R-F
This is a powder metallurgy process similar to the method used to manufacture Sm, Co-based rare earth magnets, in which an ingot of e-B alloy is crushed, molded in a magnetic field, and then sintered.

この方法は種々の形状の磁石を製造できる利点があるた
め実用的な方法である。しかしながら、熱安定性を満た
すために、資源的に希少で、価格の高いDyを添加する
必要があるという欠点がある。
This method is a practical method because it has the advantage of being able to manufacture magnets of various shapes. However, there is a drawback that in order to satisfy thermal stability, it is necessary to add Dy, which is a rare resource and is expensive.

第2の方法は、例えば、特開昭60−100402号公
報に記載されているように、超急冷法により製造された
合金粉を600〜750℃でホットプレスにより圧密化
した後、すえ込み加工を行い、圧縮方向に異方性を付与
した異方性磁石を得る方法である。
The second method is, for example, as described in Japanese Patent Application Laid-Open No. 100402/1982, after compacting alloy powder produced by an ultra-quenching method by hot pressing at 600 to 750°C, swaging is performed. This is a method of obtaining an anisotropic magnet with anisotropy in the compression direction.

この方法により作られた磁石は、同じ保磁力レベルで比
較すると、焼結体に比べて良好な熱安定性を有するとい
う特長がある。
Magnets made by this method have the advantage of having better thermal stability than sintered bodies when compared at the same coercive force level.

しかしながら、熱安定のより一層の向上という点から保
磁力のより大きな磁石が求められていた。
However, in order to further improve thermal stability, a magnet with a larger coercive force has been desired.

本発明は、超急冷法と温間加工を利用した異方性磁石の
保磁力を増大させる製造方法を提供する事を目的てする
An object of the present invention is to provide a manufacturing method for increasing the coercive force of an anisotropic magnet using an ultra-quenching method and warm working.

〔問題を解決するだめの手段] 本発明では、上記口約達成のため下記のように技術的手
段を用いた。
[Means for solving the problem] In the present invention, the following technical means are used to achieve the above-mentioned agreement.

すなわち、平均結晶粒径0.01〜0.5μmのR−F
e−B系合金(RはYを含む1種又は2種以上の希土類
元素、又Feの一部をCoで置換したR−Fe−Co−
B系合金を含み、更に添加元素(M)としてSi、  
AI!、Nb、Zr、Hf、Mo、Ga、P。
That is, R-F with an average crystal grain size of 0.01 to 0.5 μm
e-B alloy (R is one or more rare earth elements including Y, or R-Fe-Co- in which a part of Fe is replaced with Co)
Contains B-based alloy, and further contains Si as an additional element (M),
AI! , Nb, Zr, Hf, Mo, Ga, P.

Cの1種又は2種以上の組み合わせを用いたR−Fe−
B−M系合金、R−Fe−Co −B−M系合金を含む
)を温間加工により異方性化した後、熱処理を施すこと
により上記目的を達成した。
R-Fe- using one type or a combination of two or more types of C
The above object was achieved by heat-treating a material (including B-M alloy and R-Fe-Co-B-M alloy) by warm working to make it anisotropic.

上記合金は、好ましくはR:11〜18atχ、B:4
〜1lat%、Co : 30atX以下、残部Feお
よび不可避不純物からなる組成としたものであり、更に
好ましくはR:11〜18atX、B:4〜11atχ
、co=30atx以下、添加物: 0.001〜3a
tχ (添加物MはSl 、A I! + Nb + 
Zr 、Hf+Mo、Ga、P、Cの1種又は2種以上
の組み合せ)残部Feおよび不可避不純物からなる組成
としたものである。
The above alloy preferably has R: 11 to 18atχ, B: 4
-1at%, Co: 30atX or less, balance Fe and unavoidable impurities, more preferably R: 11-18atX, B: 4-11atχ
, co=30atx or less, additives: 0.001-3a
tχ (Additive M is Sl, A I! + Nb +
One or a combination of two or more of Zr, Hf+Mo, Ga, P, and C); the balance is Fe and unavoidable impurities.

上記熱処理は、R−Fe−B系合金を600℃以上90
0℃以下の温度に加熱後、0分以上240分以下保持し
、1℃/sec以上の冷却速度で冷却する過程から成る
ことが好ましい。
The above heat treatment is applied to the R-Fe-B alloy at temperatures above 600°C and 90°C.
Preferably, the process includes heating to a temperature of 0° C. or lower, holding the temperature for 0 to 240 minutes, and cooling at a cooling rate of 1° C./sec or higher.

本発明においてR−Fe−B系合金の平均結晶粒径が0
.5μmを超えると、IHcが低下し、160℃におけ
る不可逆減磁率が10%以上となって著しく熱安定性を
低下させるため不都合である。又平均粒径0.01μm
未満であると1.Hcが低く、所定の永久磁石特性を得
る事ができない。よって平均結晶粒径を0.01μm以
上0.5μm以下と限定した。
In the present invention, the average grain size of the R-Fe-B alloy is 0.
.. If it exceeds 5 μm, it is disadvantageous because the IHc decreases and the irreversible demagnetization rate at 160° C. becomes 10% or more, resulting in a significant decrease in thermal stability. Also, the average particle size is 0.01μm
If it is less than 1. Hc is low, making it impossible to obtain desired permanent magnet characteristics. Therefore, the average crystal grain size was limited to 0.01 μm or more and 0.5 μm or less.

平均結晶粒径0.01μm以上0.5μm以下のR−F
e−B系合金は以下プロセスによって作製する。
R-F with average crystal grain size of 0.01 μm or more and 0.5 μm or less
The e-B alloy is produced by the following process.

まず所定の組成の合金を高周波溶解アーク溶解等で作成
し、本合金を超急冷法によりフレーク化あるいは粉末化
する。超急冷は単ロール法、双ロール法、超音波ガスア
トマイズ法、高圧水アトマイズ法、高圧油アトマイズ法
等の方法により行なう。これらの方法により作製したR
−Fe−B系合金は通常非晶質あるいは非晶質と結晶質
の混合物、あるいは微結晶集合体であるので、そのまま
あるいは500℃以上800℃以下の温度に加熱する事
により平均結晶粒径を0.01μm以上0.5μm以下
に調整する。一般に等方性R−Fe−B系合金の残留磁
束密度は7.5 k G以下であるので。8kG以上の
残留磁束密度を有するR−Fe−B系合金は異方性化し
ていると言える。
First, an alloy with a predetermined composition is created by high-frequency melting arc melting or the like, and the alloy is turned into flakes or powder by an ultra-quenching method. Ultra-quenching is carried out by methods such as a single roll method, a twin roll method, an ultrasonic gas atomization method, a high pressure water atomization method, and a high pressure oil atomization method. R produced by these methods
-Fe-B alloys are usually amorphous, a mixture of amorphous and crystalline, or a microcrystalline aggregate, so the average grain size can be reduced by heating it as is or by heating it to a temperature of 500°C to 800°C. Adjust to 0.01 μm or more and 0.5 μm or less. Generally, the residual magnetic flux density of an isotropic R-Fe-B alloy is 7.5 kG or less. It can be said that an R-Fe-B alloy having a residual magnetic flux density of 8 kG or more is anisotropic.

本発明において用いる異方性化のための温間加工の方法
としては、ホットプレス、すえ込み、圧延、押し出し等
がある。これらの加工において、加工温度600〜75
0℃であり、歪速変が1O−4〜10°であれば異方性
化が可能である。
Examples of the warm working method used in the present invention for anisotropy include hot pressing, swaging, rolling, and extrusion. In these processes, the processing temperature is 600 to 75
If the temperature is 0° C. and the strain rate variation is 10 −4 to 10°, anisotropy can be achieved.

塑性加工により、異方性化したR−Fe−B系合金の結
晶粒はC軸方向につぶれた形をしている。
The crystal grains of the R-Fe-B alloy that have become anisotropic due to plastic working are crushed in the C-axis direction.

結晶粒のC軸に垂直方向の平均径(c)とC軸方向の平
均径(a)の比c / aの平均値が2以上であれば、
残留磁束密度が8kG以上得られるため望ましい。
If the average value of the ratio c/a of the average diameter (c) in the direction perpendicular to the C-axis of the crystal grains and the average diameter (a) in the C-axis direction is 2 or more,
This is desirable because a residual magnetic flux density of 8 kG or more can be obtained.

塑性変形の手段が温間すえ込みの場合時に高い磁気特性
が得られる。
High magnetic properties can sometimes be obtained when the means of plastic deformation is warm swaging.

R−Fe−B系合金は主相としてRzFe+ 4Bある
いはRz(Fe、Co) +4Bを有する合金を意味す
る。永久磁石として望ましい成分範囲を定めた理由は以
下の通りである。
R-Fe-B alloy means an alloy having RzFe+4B or Rz(Fe, Co)+4B as a main phase. The reason for determining the desirable range of components for a permanent magnet is as follows.

R(Yを希土類元素の1種又は2種以上の組み合せ)が
1latχ未満の場合は充分な、Hcが得られず、18
atχを超えるとBrの低下が生ずる。
If R (Y is one type of rare earth element or a combination of two or more types) is less than 1 latχ, sufficient Hc cannot be obtained, and 18
Exceeding atχ causes a decrease in Br.

よってR量は11〜18atχとした。Therefore, the R amount was set to 11 to 18 atχ.

B量が4atχ未満の場合は本系磁石の主相であるRz
Fe+aB相の形成が充分でなく、Br 、 1Hcと
もに低い。又、B量が1latχを越える場合は、磁気
特性的に好ましくない相の出現によりBrが低下する。
When the amount of B is less than 4atχ, Rz, which is the main phase of the magnet of this system,
Formation of Fe+aB phase is insufficient, and both Br and 1Hc are low. Furthermore, when the amount of B exceeds 1 latχ, Br decreases due to the appearance of phases that are unfavorable in terms of magnetic properties.

よって、B量は4〜1latχとした。Therefore, the amount of B was set to 4 to 1 latχ.

Colが30atχを越えるとキューリー点は向上する
が主相の異方性定数が低下し、高、Hcが得られない。
When Col exceeds 30 atχ, the Curie point improves, but the anisotropy constant of the main phase decreases, making it impossible to obtain high Hc.

よって、co量は30at%以下とした。Therefore, the amount of co was set to 30 at% or less.

また、添加元素として、加えても良い元素を定めた理由
は以下の通りである。
Moreover, the reason for determining the elements that may be added as additive elements is as follows.

Siはキューリー点を上昇させ、A6. Nb 、 G
a 。
Si raises the Curie point and A6. Nb, G
a.

Pは保磁力を上昇させる効果がある。P has the effect of increasing coercive force.

Cは希土類元素の電解において混入しやすい元素である
が、少量であれば、磁気特性に悪影■5を与えない。N
b 、Zr + Hf + Nb 、Moは耐食性を向
上させる。
C is an element that is likely to be mixed in during the electrolysis of rare earth elements, but if it is in a small amount, it will not adversely affect the magnetic properties (5). N
b, Zr + Hf + Nb, and Mo improve corrosion resistance.

これら元素の添加量が、O,0O1atZ未満の場合は
、添加物の効果が不充分であり、3at%を越えるとB
rの低下が大きく好ましくない。従って、添加物量は0
.001〜3atχとした。
If the amount of these elements added is less than O,0O1atZ, the effect of the additive is insufficient, and if it exceeds 3at%, B
This is not preferable because it causes a large decrease in r. Therefore, the amount of additive is 0
.. 001 to 3atχ.

なお、本発明の合金中にはフェロボロンに含まれる不純
物、Ndや他の希土類元素の還元の際に混入する還元材
、不純物が存在してもよい。
Note that impurities contained in ferroboron, reducing agents mixed in during reduction of Nd and other rare earth elements, and impurities may be present in the alloy of the present invention.

温間加工により異方性化したR−Fe−B系磁石に対し
て熱処理を加える事により、iff石の保磁力を増加さ
せる事ができる。
By applying heat treatment to an R-Fe-B magnet that has been made anisotropic through warm working, the coercive force of the IF stone can be increased.

熱処理温度は600 ℃以上、900 ℃以下が望まし
い。その理由は、熱処理温度が600℃未満では、保磁
力の増加が見られず、900℃より高い場合には、熱処
理前よりも保磁力が低下するためである。
The heat treatment temperature is preferably 600°C or higher and 900°C or lower. The reason for this is that when the heat treatment temperature is less than 600°C, no increase in coercive force is observed, and when it is higher than 900°C, the coercive force is lower than before the heat treatment.

保持時間は、試料の温度が均一になる時間でよい。従っ
て工業的生産性を考慮し240分以下とした。
The holding time may be a time during which the temperature of the sample becomes uniform. Therefore, in consideration of industrial productivity, the duration was set to 240 minutes or less.

冷却速度はl ℃/sec以上必要である。冷却速度が
1℃/sec未満では、熱処理前よりも保磁力が低下す
る。なお、ここで冷却速度は、熱処理風るまでの平均冷
却速度を意味するものである。
The cooling rate must be 1° C./sec or more. If the cooling rate is less than 1° C./sec, the coercive force will be lower than before the heat treatment. Note that the cooling rate here means the average cooling rate until the heat treatment is completed.

〔実施例〕〔Example〕

以下実施例により本発明を更に詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例I Nd+7Fe+sBe合金をアーク溶解により作製し、
本合金をAr雰囲気中で単ロール法によりフレーク状薄
片を作製した。ロール周速は30m/secで得られた
薄片は約30μmの厚さをもった不定形でありX線回折
の結果、非晶質と結晶質の混合物であることが解った。
Example I Nd+7Fe+sBe alloy was produced by arc melting,
A flake-like thin piece of this alloy was produced by a single roll method in an Ar atmosphere. The thin piece obtained at a roll circumferential speed of 30 m/sec was amorphous with a thickness of about 30 μm, and was found to be a mixture of amorphous and crystalline as a result of X-ray diffraction.

この薄片を32メツシユ以下となるように粗粉砕し、金
型成型により成形体を作製した。成形圧は5 ton 
/ caであり、磁場印加は行っていない。成形体の密
度は5−8g/ccである。得られた成形体を700℃
でホットプレスした。ホットプレスの温度は700“C
で圧力は2ton/cI11である。ホットプレスによ
って得られた密度は7.30 g /ccで、ホントプ
レスによって高密度化が充分はかれた。高密度化された
バルク体を更に700℃ですえ込み加工した。試料の高
さはすえ込み加工の前後で圧縮比率が3になるように調
整した。(すえ込み前の高さをhoとし、すえ込み後の
高さをhとするとh o / h = 3 )すえ込み
加工された試料をAr雰囲気中で750℃に加熱し、6
0分保持した後、水冷した。この時の冷却速度は7℃/
secであった。
This flake was coarsely ground to 32 meshes or less, and molded into a molded body. Molding pressure is 5 tons
/ca, and no magnetic field was applied. The density of the molded body is 5-8 g/cc. The obtained molded body was heated to 700℃
Hot pressed. The temperature of the hot press is 700"C
The pressure is 2 ton/cI11. The density obtained by hot pressing was 7.30 g/cc, and the density was sufficiently increased by real pressing. The densified bulk body was further processed at 700°C. The height of the sample was adjusted so that the compression ratio was 3 before and after swaging. (If the height before swaging is ho and the height after swaging is h, then h o / h = 3) The swaged sample was heated to 750°C in an Ar atmosphere, and 6
After holding for 0 minutes, it was cooled with water. The cooling rate at this time is 7℃/
It was sec.

熱処理前後の6P1気特性を第1表に示す。熱処理によ
り保磁力が向上する事が分かる。
Table 1 shows the 6P1 characteristics before and after heat treatment. It can be seen that the coercive force is improved by heat treatment.

第  1  表 実施例2 圧縮比以外は実施例1と同じ方法によりR−Fe−B系
永久磁石を作製した。結果を第2表に示す。
Table 1 Example 2 An R-Fe-B permanent magnet was produced in the same manner as in Example 1 except for the compression ratio. The results are shown in Table 2.

圧縮比にかかわらず、熱処理後の保磁力が上昇している
事がわかる。
It can be seen that the coercive force increases after heat treatment regardless of the compression ratio.

第  2  表 実施例3 熱処理における保持時間以外は、実施例1と同じ方法に
よりR−Fe−B系永久磁石を作製した。
Table 2 Example 3 An R-Fe-B permanent magnet was produced by the same method as in Example 1 except for the holding time in the heat treatment.

結果を第3表に示す。The results are shown in Table 3.

第  3  表 実施例4 熱処理温度を変え保持時間を10分にした以外は実施例
1と同し方法によりR−Fe−B系永久磁石を作製した
。結果を第4表に示す。
Table 3 Example 4 An R-Fe-B permanent magnet was produced in the same manner as in Example 1 except that the heat treatment temperature was changed and the holding time was changed to 10 minutes. The results are shown in Table 4.

第4表 実施例5 保持時間を10分にし、冷却方法を変えた以外は実施例
1と同じ方法によりR−Fe−B系永久Eu石を作製し
た。結果を第5表に示す。
Table 4 Example 5 An R-Fe-B permanent Eu stone was produced by the same method as in Example 1 except that the holding time was 10 minutes and the cooling method was changed. The results are shown in Table 5.

第  5  表 実施例6 組成を変えた以外は実施例1と同じ方法によりR−Fe
−B系永久磁石を作製した。結果を第0表に示す。
Table 5 Example 6 R-Fe was prepared in the same manner as in Example 1 except for changing the composition.
-B series permanent magnets were produced. The results are shown in Table 0.

第  6  表 実施例7 すえ込み温度を変える事により、結晶粒径を変化させた
以外は実施例1と同様の方法により、異方性ボンド磁石
を作成した。結果を第7表に示す。
Table 6 Example 7 An anisotropic bonded magnet was produced in the same manner as in Example 1 except that the crystal grain size was changed by changing the swaging temperature. The results are shown in Table 7.

平均結晶粒径0.001μm以上0.5μm以下では良
好な磁気特性を有する事が分かる。
It can be seen that an average crystal grain size of 0.001 μm or more and 0.5 μm or less has good magnetic properties.

第7表 〔効果〕 以上のように、本発明によるR−Fe−B系永久磁石は
従来のものよりも保磁力が大きく、熱安定性の改良に大
きな効果を有する。
Table 7 [Effects] As described above, the R-Fe-B permanent magnet according to the present invention has a larger coercive force than the conventional magnet, and has a great effect on improving thermal stability.

Claims (4)

【特許請求の範囲】[Claims] (1)平均結晶粒径が0.01〜0.5μmであるR−
Fe−B系合金(RはYを含む1種又は2種以上の希土
類元素、又Feの一部をCoで置換したR−Fe−Co
−B系合金を含み、更に添加元素(M)としてSi、A
l、Nb、Zr、Hf、Mo、Ga、P、Cの1種又は
2種以上の組合せを用いたR−Fe−B−M系合金、R
−Fe−Co−B−M系合金を含む)を温間加工により
異方性化した後、熱処理を施すことを特徴とするR−F
e−B系永久磁石の製造方法。
(1) R- with an average crystal grain size of 0.01 to 0.5 μm
Fe-B alloy (R is one or more rare earth elements including Y, or R-Fe-Co in which a part of Fe is replaced with Co)
- Contains B-based alloy, and further includes Si and A as additional elements (M)
R-Fe-B-M alloy using one or a combination of two or more of L, Nb, Zr, Hf, Mo, Ga, P, and C, R
- Fe-Co-B-M alloy) is made anisotropic by warm working, and then subjected to heat treatment.
A method for manufacturing an e-B permanent magnet.
(2)温間加工により異方性化したR−Fe−B系合金
を600℃以上900℃以下の温度に加熱後、0分以上
240分以下保持し、1℃/sec以上の冷却速度で冷
却する過程から成る事を特徴とする特許請求の範囲第1
項記載のR−Fe−B系永久磁石の製造方法。
(2) After heating the R-Fe-B alloy that has been made anisotropic by warm working to a temperature of 600°C or more and 900°C or less, hold it for 0 minutes or more and 240 minutes or less, and cool it at a cooling rate of 1°C/sec or more. Claim 1, characterized in that the process comprises a cooling process.
A method for producing an R-Fe-B permanent magnet as described in 2.
(3)R−Fe−B系合金がR:11〜18at%、B
:4〜11at%、Co:30at%以下、残部Fe及
び不可避不純物からなる事を特徴とする特許請求の範囲
第1項記載のR−Fe−B系永久磁石の製造方法。
(3) R-Fe-B alloy has R: 11 to 18 at%, B
4 to 11 at%, Co: 30 at% or less, and the remainder Fe and unavoidable impurities.
(4)前記添加元素の添加量が0.001〜3at%で
ある事を特徴とする特許請求の範囲第1項記載のR−F
e−B系永久磁石の製造方法。
(4) R-F according to claim 1, characterized in that the amount of the additional element added is 0.001 to 3 at%.
A method for manufacturing an e-B permanent magnet.
JP61172988A 1986-07-23 1986-07-23 Manufacture of r-fe-b rare earth magnet Pending JPS6329908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61172988A JPS6329908A (en) 1986-07-23 1986-07-23 Manufacture of r-fe-b rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61172988A JPS6329908A (en) 1986-07-23 1986-07-23 Manufacture of r-fe-b rare earth magnet

Publications (1)

Publication Number Publication Date
JPS6329908A true JPS6329908A (en) 1988-02-08

Family

ID=15952092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61172988A Pending JPS6329908A (en) 1986-07-23 1986-07-23 Manufacture of r-fe-b rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6329908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399502A (en) * 1986-06-12 1988-04-30 Toshiba Corp Permanent magnet and manufacture thereof
JPH03260018A (en) * 1990-03-09 1991-11-20 Fuji Elelctrochem Co Ltd Manufacture of anisotropic rare earth metal permanent magnet
JPH03261104A (en) * 1990-03-09 1991-11-21 Fuji Elelctrochem Co Ltd Manufacture of anisotropic rare earth permanent magnet
JPWO2002103719A1 (en) * 2001-06-19 2004-10-07 三菱電機株式会社 Rare earth permanent magnet material
JP2016029679A (en) * 2014-07-25 2016-03-03 トヨタ自動車株式会社 Method for producing rare earth magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399502A (en) * 1986-06-12 1988-04-30 Toshiba Corp Permanent magnet and manufacture thereof
JPH03260018A (en) * 1990-03-09 1991-11-20 Fuji Elelctrochem Co Ltd Manufacture of anisotropic rare earth metal permanent magnet
JPH03261104A (en) * 1990-03-09 1991-11-21 Fuji Elelctrochem Co Ltd Manufacture of anisotropic rare earth permanent magnet
JPWO2002103719A1 (en) * 2001-06-19 2004-10-07 三菱電機株式会社 Rare earth permanent magnet material
JP2016029679A (en) * 2014-07-25 2016-03-03 トヨタ自動車株式会社 Method for producing rare earth magnet

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH02288305A (en) Rare earth magnet and manufacture thereof
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH06346101A (en) Magnetically anisotropic powder and its production
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JPS6230846A (en) Production of permanent magnet material
JPH01274401A (en) Permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS6077961A (en) Permanent magnet material and its manufacture
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPH04143221A (en) Production of permanent magnet
JP3649291B2 (en) Method for producing R-T-B system anisotropic magnetic powder for bonded magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS63286515A (en) Manufacture of permanent magnet
JPH04346607A (en) Production of permanent magnet powder
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder