JPH04214806A - Manufacture of rare earth anisotropic permanent magnet powder - Google Patents

Manufacture of rare earth anisotropic permanent magnet powder

Info

Publication number
JPH04214806A
JPH04214806A JP2215035A JP21503590A JPH04214806A JP H04214806 A JPH04214806 A JP H04214806A JP 2215035 A JP2215035 A JP 2215035A JP 21503590 A JP21503590 A JP 21503590A JP H04214806 A JPH04214806 A JP H04214806A
Authority
JP
Japan
Prior art keywords
magnet powder
powder
rare earth
coercive force
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215035A
Other languages
Japanese (ja)
Inventor
Mihiro Sumiyama
隅山 望洋
Hiroshi Hasegawa
寛 長谷川
Shiro Sasaki
史郎 佐々木
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Intermetallics Co Ltd filed Critical Showa Denko KK
Priority to JP2215035A priority Critical patent/JPH04214806A/en
Publication of JPH04214806A publication Critical patent/JPH04214806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain permanent magnet powder having high coercive force and improve in anisotropy by subjecting a rare earth-Fe-B based alloy having a specified compsn. to hot plastic working in specified conditions and pulverizing it. CONSTITUTION:An alloy consisting fundamentally of rare earth elements (including Y), T (transition metal consisting essentially of Fe) and B and constituted of RxT(100-x-y-z)ByCuz is subjected to hydrogen absorption and dehydrogenation treatment to obtain magnet powder having <=10mum mean grain size. In the formula, 12<=x<=18, 4<=y<=10 and 0.05<z<=6 (atm%) are satisfied. This magnet powder is subjected to hot plastic working in the conditions of 600 to 900 deg.CX>=5/s strain rate and >=60% deforming rate and is then pulverized. In such a manner, the magnet powder for an anisotropic resin bond magnet having high coercive force and about >=60% orientating rate can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素(但しYを含み、以下Rと表すこと
もある)と遷移金属(Feを必須とし、以下Tと表すこ
ともある)およびボロン、特に希土類元素−鉄−ボロン
を基本成分とし、ボンド磁石に使用される異方性永久磁
石粉末の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses rare earth elements (including Y, sometimes referred to as R hereinafter) and transition metals (essentially containing Fe, hereinafter sometimes referred to as T). The present invention also relates to a method for producing an anisotropic permanent magnet powder that has boron, particularly rare earth element-iron-boron, as a basic component and is used in bonded magnets.

磁石粉末と樹脂とを混合し、押出成形、圧縮成形あるい
は射出成形により、樹脂ボンド永久磁石(複合磁石)を
得ることは周知のことである、特に最近希土類合金系の
優れた磁石特性を活かした希土類ボンド永久磁石が注目
されてきている。本発明は、かかる希土類ボンド永久磁
石に用いられる磁石粉末の特性を改良する製造方法に関
するものである。
It is well known that resin-bonded permanent magnets (composite magnets) can be obtained by mixing magnet powder and resin and then extrusion molding, compression molding, or injection molding. Rare earth bonded permanent magnets are attracting attention. The present invention relates to a manufacturing method for improving the characteristics of magnet powder used in such rare earth bonded permanent magnets.

[従来の技術] 従来のR−T−B系(代表的にはNd−Fe−B系)合
金磁石粉末の製造法としては、(a)合金インゴットや
永久磁石を機械的に粉砕する方法がある(特開昭59−
219904号公報)。
[Prior Art] Conventional methods for producing R-T-B (typically Nd-Fe-B) alloy magnet powder include (a) mechanically crushing alloy ingots and permanent magnets; Yes (Unexamined Japanese Patent Publication No. 1983-
219904).

さらに、(b)溶融状態のR−T−B系合金を液体急冷
法により得たリボンを粉砕する方法もある(特開昭57
−210934号、特開昭59−64739号公報)。
Furthermore, there is also a method (b) of pulverizing a ribbon obtained from a molten R-T-B alloy by a liquid quenching method (Japanese Patent Laid-Open No. 57
-210934, JP-A-59-64739).

得られた粉末には必要に応じて熱処理を行って磁気特性
の保磁力の向上を図る。
The obtained powder is heat treated as necessary to improve the coercive force of the magnetic properties.

しかしながら(a)の方法により機械的に微粉砕した磁
石粉末をボンド磁石とすると残留磁化及び保磁力の両方
が低下するという欠点が古くから知られていた。この欠
点を克服することを意図した方法として、 (c)R−T−B合金を水素雰囲気中で水素化し次に粉
砕し、平均粒径10μm〜500μmの粉末を得、続い
て600〜1000℃で脱水素する方法(特開昭62−
23903号)がある。
However, it has been known for a long time that if a bonded magnet is made from magnetic powder mechanically pulverized by the method (a), both residual magnetization and coercive force are reduced. As a method intended to overcome this drawback, (c) the R-T-B alloy is hydrogenated in a hydrogen atmosphere and then ground to obtain a powder with an average particle size of 10 μm to 500 μm, followed by heating at 600 to 1000 °C. A method of dehydrogenation using
No. 23903).

さらに、特開平1−132136号にて提案された方法
があり、これは (d)R−T−B合金のインゴットまたは粉末を水素化
、脱水素化処理して、微細結晶の再結晶集合組織を得る
ことにより、保磁力の高い粉末を得、必要により上記再
結晶集合組織を有するインゴットまたは粉末を塑性加工
して磁気異方性を有する磁石粉末を製造することを提案
する。
Furthermore, there is a method proposed in JP-A No. 1-132136, which involves (d) hydrogenating and dehydrogenating an ingot or powder of R-T-B alloy to obtain a recrystallized texture of fine crystals. We propose to obtain a powder with a high coercive force by obtaining the above-mentioned results, and, if necessary, to plastically process the ingot or powder having the above-mentioned recrystallized texture to produce a magnet powder having magnetic anisotropy.

[発明が解決しようとする課題] 上述の従来技術によって希土類元素と鉄、ボロンを基本
成分とする永久磁石粉末の製造は可能であるが、これら
の製造法は次のごとき欠点を有している。
[Problems to be Solved by the Invention] Although it is possible to manufacture permanent magnet powder whose basic components are rare earth elements, iron, and boron using the above-mentioned conventional techniques, these manufacturing methods have the following drawbacks. .

(a)の方法により得られた磁石粉末は、粉砕時の歪や
粉砕時に生じる粉末表面の変質により特性が劣化しやす
く、磁気特性が必ずしも充分ではない。さらに、この方
法により得られた磁石粉末に熱処理を施すことにより磁
石粉末の歪も緩和され、主相のR2Fe14B相の周囲
にR−rich相が形成されているため、磁石粉末は5
〜13KOeの高保磁力を示すが、ボンド磁石用の磁石
粉末として使用した場合、圧縮成形磁石の製造において
、成形圧力の増加と共にボンド磁石の保磁力が低下し、
5ton/cm2の成型圧で保磁力が5KOe以下にな
り、ボンド磁石として実用できないという欠点があった
The magnetic powder obtained by the method (a) tends to deteriorate in characteristics due to distortion during pulverization and alteration of the powder surface that occurs during pulverization, and its magnetic characteristics are not necessarily sufficient. Furthermore, by heat-treating the magnet powder obtained by this method, the distortion of the magnet powder is relaxed, and an R-rich phase is formed around the main phase R2Fe14B phase, so the magnet powder has a
It exhibits a high coercive force of ~13 KOe, but when used as magnet powder for bonded magnets, the coercive force of the bonded magnet decreases as the molding pressure increases in the production of compression molded magnets.
At a molding pressure of 5 ton/cm2, the coercive force was less than 5 KOe, which had the disadvantage that it could not be put to practical use as a bonded magnet.

(b)の方法で得られた磁石粉末は、その磁気特性は等
方性であるため最大エネルギ積が低いが、8〜15KO
e程度の高保磁力を示し、ボンド磁石用の粉末として使
用した場合も、8〜15KOe程度の高保磁力を示す。
The magnetic powder obtained by method (b) has isotropic magnetic properties, so the maximum energy product is low, but
It shows a high coercive force of about 8 to 15 KOe when used as a powder for bonded magnets.

しかし着磁場を35KOe以上も必要とするため、実用
的には用途に制限がある。また、この方法を発展させた
ダイアブセット法により異方性の磁石粉末がえられるが
、この方法は生産性が悪いという欠点がある。
However, since it requires a magnetizing field of 35 KOe or more, its practical use is limited. Furthermore, anisotropic magnet powder can be obtained by the die-abset method, which is a development of this method, but this method has the disadvantage of poor productivity.

(c)の方法で得られた磁石粉末は実質的に等方性であ
り、また(c)の方法を本発明者が実験したところ異方
性は得られなかった。
The magnet powder obtained by the method (c) is substantially isotropic, and when the inventor conducted an experiment using the method (c), no anisotropy was obtained.

(d)の方法でえられた再結晶集合組織の磁石粉末は、
粉末内の主相のR2Fe14B相が微細であり、(a)
の方法のような粉砕による保磁力の低下は小さいが、再
結晶による集合組織形成法で得られる磁石粉末は異方性
が小さい。異方性の程度を高める手段として(d)に開
示されている熱間塑性加工につき本発明者は詳しく検討
したところ、異方性が得られないことを確認した。
The magnet powder with the recrystallized texture obtained by the method (d) is
The main phase R2Fe14B phase in the powder is fine, (a)
Although the decrease in coercive force due to pulverization is small, the magnet powder obtained by the texture formation method by recrystallization has small anisotropy. The present inventor conducted a detailed study on the hot plastic working disclosed in (d) as a means to increase the degree of anisotropy, and confirmed that anisotropy could not be obtained.

したがって、本発明者らは磁石粉末を機械的粉砕および
ボンド磁石化(圧縮成形)した場合でも保磁力が高く、
配向率60%以上の異方性の磁石粉末を得るべく、磁石
の組成および熱間塑性加工条件等の製造方法を検討した
Therefore, the present inventors found that even when magnetic powder is mechanically pulverized and bonded magnetized (compression molded), the coercive force is high;
In order to obtain anisotropic magnet powder with an orientation rate of 60% or more, we investigated the manufacturing method, including the composition of the magnet and hot plastic working conditions.

[課題を解決するための手段] その結果、合金組成としてR−T−B−Cu系を用い、
この合金に吸水素、脱水素処理を施すことにより得られ
た微細結晶粉末に変形率60%以上の熱間塑性加工を6
00〜900℃で歪速度5/s以上で施すことにより、
ボンド磁石製造工程における保磁力の低下が少ないこと
を見出し、本発明に至ったものである。すなわち、本発
明は磁石粉末の組成と熱間組成加工条件を明確に規定す
るものである。この方法により塑性加工された合金を4
5μm程度までさらに粉砕しても保磁力8KOe以上で
配向率60%以上の粉末が得られる。
[Means for solving the problem] As a result, using the R-T-B-Cu system as the alloy composition,
The microcrystalline powder obtained by subjecting this alloy to hydrogen absorption and dehydrogenation treatment is subjected to hot plastic working with a deformation rate of 60% or more.
By applying at a strain rate of 5/s or more at 00 to 900°C,
The inventors discovered that the decrease in coercive force during the manufacturing process of bonded magnets was small, leading to the present invention. That is, the present invention clearly defines the composition of the magnet powder and the hot composition processing conditions. The alloy plastically worked by this method is
Even if the powder is further pulverized to about 5 μm, a powder with a coercive force of 8 KOe or more and an orientation rate of 60% or more can be obtained.

すなわち、本発明は、希土類元素(但しYを含む)とT
(Feを必須元素とする遷移金属)とボロン(B)とを
基本成分とし、組成が下記:RxT(100−x−y−
z)ByCuz12≦x≦18、4≦y≦10、 0.05<z≦6(at%) である合金を吸水素、脱水素処理することにより平均結
晶粒径10μm以下の磁石粉末を得、この磁石粉末を温
度600〜900℃、歪速度5/s以上、変形率60%
以上の加工条件で熱間塑性加工を行い、その後、粉砕す
ることを特徴とする。
That is, the present invention provides rare earth elements (including Y) and T.
(transition metal whose essential element is Fe) and boron (B), and the composition is as follows: RxT (100-x-y-
z) ByCuz12≦x≦18, 4≦y≦10, 0.05<z≦6 (at%) By subjecting an alloy to hydrogen absorption and dehydrogenation treatment to obtain magnet powder with an average crystal grain size of 10 μm or less, This magnet powder is heated at a temperature of 600 to 900°C, a strain rate of 5/s or more, and a deformation rate of 60%.
It is characterized by performing hot plastic working under the above processing conditions, and then pulverizing.

以下Nd−Fe−B−Cu系合金に関し、本発明を説明
する。
The present invention will be described below with regard to Nd-Fe-B-Cu alloys.

本発明の合金においてNd含有量(x)は12〜18a
t%である。xが12at%未満であるとNdrich
相が不足となり、磁性が低下する。
In the alloy of the present invention, the Nd content (x) is 12 to 18a
t%. Ndrich when x is less than 12at%
The phase becomes insufficient and the magnetism decreases.

又、xが18at%を超えるとBrが低下するためにx
=12〜18at%であることが必要である。またB含
有量(y)は4〜10at%である。yが4at%未満
であると磁気的にソフトな相であるα−Fe、Nd2F
e17相が析出し、磁気特性が低下し、10at%を超
えると熱間加工時における変形抵抗が増加するのみなら
ず、結晶粒の微細化が阻害されるためy=4〜10at
%であることが必要である。TはFeが全量であるか、
あるいはFeと好ましくは20at%以下のCoから構
成される。
Also, when x exceeds 18 at%, Br decreases, so x
=12 to 18 at%. Further, the B content (y) is 4 to 10 at%. When y is less than 4 at%, α-Fe, Nd2F, which is a magnetically soft phase
The e17 phase precipitates, deteriorating the magnetic properties, and if it exceeds 10 at%, not only does the deformation resistance during hot working increase, but also the refinement of crystal grains is inhibited.
%. Is T the total amount of Fe?
Alternatively, it is composed of Fe and preferably 20 at% or less of Co.

本発明の組成としてNd−Fe−B系合金に添加元素と
してCuを添加することが必須である。
As the composition of the present invention, it is essential to add Cu as an additive element to the Nd-Fe-B alloy.

Cuは鋳造時の結晶粒径に関係なく、吸水素、脱水素処
理された合金の組織を微細均一化する。最終的粒径は鋳
造時の結晶粒径には依存しなくなる。またCuは熱間加
工において配向性を向上させる。但し、Cu添加効果は
0.05at%程度から認められるがCu添加量を6%
以上とした場合、Cuは非磁性元素であるため残留磁化
Brが減少し、磁気特性が低下する。したがってCu添
加量としては、6at%以下とする必要があり、特に1
〜3at%が好ましい。また、その他の添加元素として
、Nd−Fe−B系合金の磁気特性向上を目的としてC
o、Ga、Nb、Ti、V、Cr、Mo、Mn、Bi、
Al、Si、Zr等を添加してもよい。
Regardless of the crystal grain size at the time of casting, Cu makes the structure of the alloy subjected to hydrogen absorption and dehydrogenation treatment fine and uniform. The final grain size no longer depends on the grain size at the time of casting. Further, Cu improves orientation during hot working. However, the effect of Cu addition is recognized from around 0.05at%, but when the amount of Cu added is 6%
In the above case, since Cu is a nonmagnetic element, the residual magnetization Br decreases and the magnetic properties deteriorate. Therefore, the amount of Cu added needs to be 6 at% or less, especially 1
~3 at% is preferable. In addition, as other additive elements, C is added to improve the magnetic properties of Nd-Fe-B alloys.
o, Ga, Nb, Ti, V, Cr, Mo, Mn, Bi,
Al, Si, Zr, etc. may be added.

本発明者はNd−Fe−B−Cu系合金に関して、加工
温度750℃の場合の歪速度と粉砕粉末(45μm以下
)の保磁力、配向率の関係を検討した。その結果、歪速
度が増すにつれて保磁力は向上の傾向を示し、歪速度を
5/s以上、好ましくは10/s以上とすることにより
、粉末の保磁力(iHc)は10KOe以上となったが
、配向率の変化は殆どなかった。さらに歪速度20/s
の場合の圧延加工温度と粉砕粉末(45μm以下)の保
磁力(iHc)および配向率の関係を検討した。その結
果、加工温度が高くなるにつれて粉末の保磁力は低下す
るが、配向率と最大エネルギ積は向上の傾向を示すこと
を見出した。変形率はいずれも60%以上である。
The present inventor investigated the relationship between strain rate, coercive force of pulverized powder (45 μm or less), and orientation rate at a processing temperature of 750° C. regarding Nd-Fe-B-Cu alloys. As a result, the coercive force showed a tendency to improve as the strain rate increased, and by setting the strain rate to 5/s or more, preferably 10/s or more, the coercive force (iHc) of the powder became 10 KOe or more. , there was almost no change in the orientation rate. Furthermore, the strain rate is 20/s
The relationship between the rolling temperature and the coercive force (iHc) and orientation rate of the pulverized powder (45 μm or less) was investigated in the case of . As a result, it was found that as the processing temperature increases, the coercive force of the powder decreases, but the orientation rate and maximum energy product tend to improve. The deformation rate is 60% or more in all cases.

したがって、歪速度は5/s以上とすることにより最大
エネルギ積と加工率の両方に好ましい影響を与えること
が分かった。なお、Cu無添加のNd−Fe−B系につ
いても同様に歪速度と磁気特性の影響を調査したがその
影響は殆どなかった(後述の表1の比較例1、2参照)
Therefore, it has been found that setting the strain rate to 5/s or more has a favorable effect on both the maximum energy product and the processing rate. In addition, we similarly investigated the effects of strain rate and magnetic properties on the Nd-Fe-B system without Cu addition, but found that there was almost no effect (see Comparative Examples 1 and 2 in Table 1 below).
.

初期(熱間塑性加工前)のNd−Fe−B−Cu系白金
の平均結晶粒径を10μm以下と規定した理由は、その
後の熱間加工により再結晶を生じ、結晶粒径が粗大化し
すぎることを防ぐためである。再結晶により平均結晶粒
径が10μm以上になると、後工程の粉砕により保磁力
が低下する。粉砕後の保磁力低下を防ぐには、本発明の
熱間加工条件を前提とすると初期平均結晶粒径が10μ
m以下でなければならない。
The reason why the initial average crystal grain size of Nd-Fe-B-Cu platinum (before hot plastic working) was specified to be 10 μm or less is that recrystallization occurs during subsequent hot working and the crystal grain size becomes too coarse. This is to prevent this. When the average crystal grain size becomes 10 μm or more due to recrystallization, the coercive force decreases due to pulverization in the subsequent process. In order to prevent a decrease in coercive force after pulverization, assuming the hot working conditions of the present invention, the initial average grain size should be 10μ.
Must be less than m.

上述の塑性の合金粉末で平均結晶粒径10μm以下の粉
末を得るには、水素化・脱水素処理を行うことが必要で
ある。該処理条件としてはNd−Fe−B−Cu系合金
インゴットを1〜3mm程度に粉砕し、水素ガス1気圧
雰囲気中で700〜800℃に加熱することにより、粉
末中に充分に水素を吸収させ、その後、0.3Torr
以下の真空中で再度600〜850℃に加熱保持するこ
とが好ましい。
In order to obtain the above-mentioned plastic alloy powder with an average crystal grain size of 10 μm or less, it is necessary to perform hydrogenation/dehydrogenation treatment. The processing conditions include crushing a Nd-Fe-B-Cu alloy ingot to about 1 to 3 mm and heating it to 700 to 800°C in an atmosphere of 1 atm of hydrogen gas, so that hydrogen is sufficiently absorbed into the powder. , then 0.3Torr
It is preferable to heat and maintain the temperature at 600 to 850° C. again in a vacuum as described below.

熱間塑性加工法としては、熱間鍛造、熱間圧延、ホット
プレス等があるが、生産性、条件制御の観点から熱間圧
延が好ましい。
Examples of hot plastic working methods include hot forging, hot rolling, and hot pressing, but hot rolling is preferable from the viewpoint of productivity and condition control.

なお、実際の塑性加工では得られた平均結晶粒径が10
μm以下である1〜3mmの粉砕粒を鋼製のシース中に
充分に充填後、真空封止し、加熱後熱間塑性加工を行う
In addition, in actual plastic working, the average grain size obtained was 10
After sufficiently filling a steel sheath with pulverized particles having a size of 1 to 3 mm (μm or less), the sheath is vacuum-sealed, heated, and then subjected to hot plastic working.

このような検討の結果、Cuを添加したR−Fe−B系
合金においては、熱間加工温度600〜900℃、好ま
しくは700〜800℃とし、歪速度を5/s以上とす
ることにより、特性が良好な異方性ボンド磁石を製造で
きることが分かつた。
As a result of these studies, in the R-Fe-B alloy containing Cu, by setting the hot working temperature to 600 to 900°C, preferably 700 to 800°C, and setting the strain rate to 5/s or more, It was found that an anisotropic bonded magnet with good properties could be manufactured.

特性の指標としては、(a)例えば45μm程度まで粉
砕した粉末において保磁力(iHc)8KOe以上であ
ること(粉末自体の保磁力)、(b)配向率60%以上
であること、(c)ボンド磁石の保磁力(BHc)が5
KOe以上であることである。
As indicators of properties, (a) the coercive force (iHc) of the powder pulverized to about 45 μm is 8 KOe or more (the coercive force of the powder itself), (b) the orientation rate is 60% or more, (c) The coercive force (BHc) of the bonded magnet is 5
It must be KOe or higher.

ここで配向率はσr(‖)/{σr(‖)+σr(⊥)
}×100とする。
Here, the orientation rate is σr(‖)/{σr(‖)+σr(⊥)
}×100.

ただしσr(‖)は粉末を磁場中で配向し、磁場に平行
な方向のσrの測定値、 σr(⊥)はそれに垂直な方向のσrの測定値である。
However, σr(‖) is the measured value of σr in the direction parallel to the magnetic field when the powder is oriented in a magnetic field, and σr(⊥) is the measured value of σr in the direction perpendicular to the magnetic field.

[作用] 実施例の表1に示すように、本発明の磁石粉末の結晶粒
径は平均10μm以下の微結晶から成っている。この粉
末が異方性を発現させる原因としては微結晶が水素化・
脱水素処理中の再結晶により得られたことが考えられる
。しかし例えば従来技術(d)の方法で見られるように
微結晶を単に熱処理により再結晶をさせた場合、再結晶
成長の優先方向が必ずしも一方向にそろうとは限らない
。よって、本発明では加工歪エネルギを加え再結晶させ
ることにより異方性を向上させるものである。しかし、
再結晶粒が全て10μm以上に成長した場合は、粉砕に
より粉末の保磁力が著しく低下し磁石にならないので、
本発明では平均結晶粒径を10μm以下とする。
[Function] As shown in Table 1 of Examples, the magnet powder of the present invention consists of microcrystals with an average crystal grain size of 10 μm or less. The reason why this powder develops anisotropy is that the microcrystals are hydrogenated and
It is thought that it was obtained by recrystallization during dehydrogenation treatment. However, when microcrystals are simply recrystallized by heat treatment, as in the method of prior art (d), the preferential direction of recrystallization growth is not necessarily aligned in one direction. Therefore, in the present invention, the anisotropy is improved by applying processing strain energy to recrystallize. but,
If all the recrystallized grains have grown to 10 μm or more, the coercive force of the powder will significantly decrease due to pulverization and it will not become a magnet.
In the present invention, the average crystal grain size is set to 10 μm or less.

また、吸水素、脱水素処理と熱間加工を併用せず、熱間
加工のみで結晶の微細化および再結晶を生じさせた場合
は、表1比較例に示すように、結晶粒径が均一に10μ
m以下の微結晶は得られない。このため、熱間加工のみ
で得た試料を45μm以下まで粉砕すると、粗大結晶が
多いためか、粉砕により保磁力が低下し、ボンド磁石と
して良好な特性が得られない。
In addition, when crystal refinement and recrystallization are caused only by hot working without using hydrogen absorption and dehydrogenation treatment together with hot working, the crystal grain size is uniform, as shown in Table 1 Comparative Example. 10μ to
Microcrystals smaller than m cannot be obtained. For this reason, when a sample obtained only by hot working is crushed to a size of 45 μm or less, the coercive force decreases due to the crushing, probably because there are many coarse crystals, and good characteristics as a bonded magnet cannot be obtained.

Cuは5/s以上の歪速度の熱間加工条件下では主相(
Nd2Fe14B相)の配向性向上に重要な役割を果た
している。
Cu forms a main phase (
It plays an important role in improving the orientation of the Nd2Fe14B phase).

Cuは主にNd−rich相内に存在し、主相の配向性
向上を助けていると推定される。
It is estimated that Cu mainly exists in the Nd-rich phase and helps improve the orientation of the main phase.

Nd2Fe14B結晶は加工の際、加工圧力の方向と磁
化容易方向が同じになり易い性質がある。
Nd2Fe14B crystal has a property that during processing, the direction of processing pressure tends to be the same as the direction of easy magnetization.

上述のように、組成、熱間加工条件等の製造条件を定め
て再結晶成長を制御し、かつ方向性を制御することによ
り、粉末(45μm以下)化によっても保磁力が低下せ
ず、かつ異方化配向性の良い粉末を得ることができる。
As mentioned above, by controlling the recrystallization growth by determining the manufacturing conditions such as composition and hot processing conditions, and controlling the directionality, the coercive force does not decrease even when powdered (45 μm or less) and A powder with good anisotropic orientation can be obtained.

以下、実施例により本発明を詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〔実施例〕〔Example〕

合金組成として表1の組成となるように真空高周波溶解
炉で溶製し、合金インゴットを得た。該インゴットを真
空中で1100℃8時間の均質化処理を行った。その後
アルゴン雰囲気中で、該合金をジョウクラッシャーによ
り1〜3mmに粗粉砕し、水素処理炉内で3時間真空中
に保持した。水素処理炉を1気圧の水素雰囲気とし、8
00℃まで加熱保持し充分に水素を吸収させ炉冷した。
The alloy composition was melted in a vacuum high-frequency melting furnace to obtain an alloy ingot having the composition shown in Table 1. The ingot was subjected to homogenization treatment at 1100° C. for 8 hours in a vacuum. Thereafter, in an argon atmosphere, the alloy was coarsely crushed to 1 to 3 mm using a jaw crusher and kept in a vacuum for 3 hours in a hydrogen treatment furnace. Set the hydrogen treatment furnace to a hydrogen atmosphere of 1 atm, and
The mixture was heated to 00° C. to sufficiently absorb hydrogen and cooled in the furnace.

ついで水素処理炉内を10−3Torrの真空とし、7
00℃まで加熱保持し脱水素処理した。
Next, the inside of the hydrogen treatment furnace was set to a vacuum of 10-3 Torr, and
The mixture was heated to 00°C and dehydrogenated.

水素処理を終了した磁石粉末を炭素鋼製シース中に約5
0gを充分密に充填し、真空中に300℃、1時間保持
後密封した。
Approximately 50% of the hydrogen-treated magnet powder is placed in a carbon steel sheath.
0 g was packed sufficiently tightly, kept in vacuum at 300°C for 1 hour, and then sealed.

熱間圧延を下記の条件で繰返し実施した。Hot rolling was repeatedly carried out under the following conditions.

加工温度 700℃ 歪速度 10〜30/s 合計変形率 80% 冷却後、シース中より取り出した磁石粉末は、上記熱間
圧延により粒どうしが融着した状態にあるので、アルゴ
ンガス雰囲気中でスタンプミルにより粉砕し、45μm
以下の粉末を得た。表1に該粉末のVSMによる磁気特
性の測定結果を示す。
Processing temperature: 700°C Strain rate: 10-30/s Total deformation rate: 80% After cooling, the magnet powder taken out from the sheath is in a state where the grains are fused together due to the hot rolling, so it is stamped in an argon gas atmosphere. Grind with a mill to 45μm
The following powder was obtained. Table 1 shows the results of measuring the magnetic properties of the powder using VSM.

比較例として製造条件の異なる場合の例を表1に併せて
示す。
Table 1 also shows examples with different manufacturing conditions as comparative examples.

又、表1に示した磁石粉末に2重量%のエポキシ樹脂を
混合し、15KOeの磁場中で、6ton/cm2の圧
力で圧縮成型後、樹脂を硬化させてボンド磁石を作成し
、得られたボンド磁石の磁気特性を表2に示す。
In addition, 2% by weight of epoxy resin was mixed with the magnet powder shown in Table 1, compression molded at a pressure of 6 ton/cm2 in a magnetic field of 15 KOe, and the resin was cured to create a bonded magnet. Table 2 shows the magnetic properties of the bonded magnet.

[発明の効果] 本発明によれば、特に高価な装置を必要とせず、高性能
な希土類−鉄−ボロン系、特にNd−Fe−B系の異方
性樹脂ボンド磁石用の磁石粉末を得ることができる。
[Effects of the Invention] According to the present invention, it is possible to obtain high-performance rare earth-iron-boron-based, especially Nd-Fe-B-based, anisotropic resin-bonded magnet powder for anisotropic resin bonded magnets without the need for particularly expensive equipment. be able to.

特許出願人 昭和電工株式会社 インターメタリックス株式会社 代理人 弁理士 村井卓雄Patent applicant: Showa Denko Co., Ltd. Intermetallics Co., Ltd. Agent: Patent attorney Takuo Murai

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類元素(但しYを含む)とT(Feを
必須元素とする遷移金属)とボロン(B)とを基本成分
とし、組成が下記: RxT(100−x−y−z)ByCuz12≦x≦1
8、4≦y≦10、 0.05<z≦6(at%) である合金を吸水素、脱水素処理することにより平均結
晶粒径10μm以下の磁石粉末を得、この磁石粉末を温
度600〜900℃、歪速度5/s以上、変形率60%
以上の加工条件で熱間塑性加工し、その後粉砕すること
を特徴とする希土類異方性永久磁石粉末の製造法。
Claim 1: The basic components are rare earth elements (including Y), T (transition metal with Fe as an essential element), and boron (B), and the composition is as follows: RxT (100-x-y-z) ByCuz12≦x≦1
8, 4≦y≦10, 0.05<z≦6 (at%) Magnet powder with an average crystal grain size of 10 μm or less is obtained by hydrogen absorption and dehydrogenation treatment, and this magnet powder is heated at a temperature of 600 μm. ~900℃, strain rate 5/s or more, deformation rate 60%
A method for producing rare earth anisotropic permanent magnet powder, which is characterized by hot plastic processing under the above processing conditions and then pulverization.
JP2215035A 1990-08-16 1990-08-16 Manufacture of rare earth anisotropic permanent magnet powder Pending JPH04214806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215035A JPH04214806A (en) 1990-08-16 1990-08-16 Manufacture of rare earth anisotropic permanent magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215035A JPH04214806A (en) 1990-08-16 1990-08-16 Manufacture of rare earth anisotropic permanent magnet powder

Publications (1)

Publication Number Publication Date
JPH04214806A true JPH04214806A (en) 1992-08-05

Family

ID=16665677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215035A Pending JPH04214806A (en) 1990-08-16 1990-08-16 Manufacture of rare earth anisotropic permanent magnet powder

Country Status (1)

Country Link
JP (1) JPH04214806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
WO2012114530A1 (en) * 2011-02-21 2012-08-30 トヨタ自動車株式会社 Production method for rare-earth magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
JP4723741B2 (en) * 2001-03-16 2011-07-13 昭和電工株式会社 Rare earth magnet alloy ingot quality determination method, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
WO2012114530A1 (en) * 2011-02-21 2012-08-30 トヨタ自動車株式会社 Production method for rare-earth magnet
CN103493159A (en) * 2011-02-21 2014-01-01 丰田自动车株式会社 Production method for rare-earth magnet

Similar Documents

Publication Publication Date Title
EP0302947B1 (en) Rare earth element-iron base permanent magnet and process for its production
KR910001065B1 (en) Permanent magnet
JPH01704A (en) Rare earth-iron permanent magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
US5213631A (en) Rare earth-iron system permanent magnet and process for producing the same
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH07176418A (en) High-performance hot-pressed magnet
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPH04214806A (en) Manufacture of rare earth anisotropic permanent magnet powder
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH01274401A (en) Permanent magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JPH09312230A (en) Manufacturing anisotropic bond magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH04143205A (en) Manufacture of rare earth metal anisortopy permanent magnet powder
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH0142338B2 (en)
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH09115711A (en) Anisotropic bond magnet
JPH05315120A (en) Rare earth sintered magnet and its manufacture
JPS63115307A (en) Manufacture of rare-earth magnet