JP3522207B2 - Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet - Google Patents

Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet

Info

Publication number
JP3522207B2
JP3522207B2 JP2000295062A JP2000295062A JP3522207B2 JP 3522207 B2 JP3522207 B2 JP 3522207B2 JP 2000295062 A JP2000295062 A JP 2000295062A JP 2000295062 A JP2000295062 A JP 2000295062A JP 3522207 B2 JP3522207 B2 JP 3522207B2
Authority
JP
Japan
Prior art keywords
dehydrogenation
rare earth
anisotropic bonded
treatment
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000295062A
Other languages
Japanese (ja)
Other versions
JP2001135510A (en
Inventor
克典 岩崎
実 遠藤
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000295062A priority Critical patent/JP3522207B2/en
Publication of JP2001135510A publication Critical patent/JP2001135510A/en
Application granted granted Critical
Publication of JP3522207B2 publication Critical patent/JP3522207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は希土類、遷移金属お
よびホウ素から実質的になる異方性希土類磁石粉末、な
らびに異方性ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to anisotropic rare earth magnet powder consisting essentially of rare earths, transition metals and boron, and anisotropic bonded magnets.

【0002】[0002]

【従来の技術】R−T−B系永久磁石(RはYを含む希
土類元素の少なくとも1種であり、TはFeまたはFe
とCoである)は安価でかつ高い磁気特性を有するもの
として注目を集めている。R−T−B系永久磁石は最終
製品の分類からバルク磁石(焼結磁石あるいは温間加工
磁石)とボンド磁石に大別される。特にボンド磁石はそ
の形状自由度および価格面の有利性から今後重要度が増
すと考えられる。Nd−Fe−B系ボンド磁石用磁粉は
製造方法の違いで幾つかに分類される。例えば、メルト
スピニング法により得られたNd−Fe−B系急冷薄片
を適当な温度で熱処理し、等方性磁粉とする製造方法が
特開昭59−647393号公報に開示されている。また同様の
メルトスピニング法で得られた薄片をホットプレスおよ
びダイアプセットし圧縮方向に異方性を付与した異方性
バルク磁石をいったん作製し、次いで同磁石を粉砕する
ことによって異方性磁粉とする製造方法も知られてい
る。その他、近年注目されている手法として、Sm
17合金に窒化処理を施し格子間に窒素元素を侵入さ
せることによって異方性磁界が飛躍的に向上し、その結
果異方性ボンド磁石用磁粉として利用できる方法があ
る。またこの方法と同様の原理でNbFe11Ti、N
dFe10といったThMn12タイプの合金にも
同様の効果が得られるとの報告がある。更に、Nd−F
e−B系合金に水素吸蔵処理および脱水素処理を行い、
再結晶反応を利用して磁気的に異方性化したNdFe
14B型磁粉を得る方法が知られている(特開平1−132
106号公報、特開平2−4901号公報等)。
2. Description of the Related Art R-T-B system permanent magnets (R is at least one rare earth element including Y, and T is Fe or Fe.
And Co) are attracting attention because they are inexpensive and have high magnetic properties. RTB permanent magnets are roughly classified into bulk magnets (sintered magnets or warm-worked magnets) and bonded magnets according to the classification of the final product. Bond magnets are expected to increase in importance in the future due to their shape flexibility and price advantages. Magnetic powders for Nd-Fe-B based bonded magnets are classified into several types depending on the manufacturing method. For example, Japanese Unexamined Patent Publication (Kokai) No. 59-647393 discloses a method for producing an isotropic magnetic powder by heat-treating Nd-Fe-B-based quenched flakes obtained by the melt spinning method at an appropriate temperature. In addition, a thin piece obtained by the same melt spinning method was hot-pressed and diapset to once prepare an anisotropic bulk magnet with anisotropy in the compression direction, and then the magnet was pulverized to produce anisotropic magnetic powder. A manufacturing method is also known. In addition, as a method that has been receiving attention in recent years, Sm 2 F
anisotropic magnetic field by entering the nitrogen element interstitially subjected to nitriding treatment e 17 alloy is remarkably improved, there is a method that can be used as a result the magnetic powder for an anisotropic bonded magnet. In addition, NbFe 11 Ti, N
It has been reported that a similar effect can be obtained with a ThMn 12 type alloy such as dFe 10 V 2 . Furthermore, Nd-F
e-B alloy is subjected to hydrogen storage treatment and dehydrogenation treatment,
Magnetically anisotropic Nd 2 Fe using recrystallization reaction
A method for obtaining 14 B type magnetic powder is known (Japanese Patent Application Laid-Open No. 1-132).
106 gazette, JP-A-2-4901 gazette, etc.).

【0003】[0003]

【発明が解決しようとする課題】従来法で得られる磁粉
の内、メルトスピニング法によるNd−Fe−B系急冷
薄片は磁気的に等方性であり最終的に得られるボンド磁
石の最大エネルギー績は高々10MGOeにすぎず磁気特性面
で問題がある。また上記従来のNd−Fe−B系異方性
磁粉を配合してなる異方性ボンド磁石は磁気特性が十分
ではなく改良の余地を残していた。一方、SmFe
17型窒化磁粉は主原料としてSmを使用するため資源
的な面で将来性に不安が残る。ThMn12型磁粉は使
用する希土類元素がNdであるため資源的に有利である
が、窒化後の磁気ポテンシャルはNdFe14B型あ
るいはSmFe17型より低い。水素吸蔵処理および
脱水素処理を行い、得られるNd−Fe−B系異方性磁
粉は製造工程をかなり簡略化できるという特徴を有して
いるがNd−Fe−B系バルク磁石の理論値から概算し
て現時点で得られている磁気特性はまだ十分とは言えな
い。この製造方法は脱水素処理工程における相変態をと
もなう再結晶反応を利用しており、最終的に得られるN
d−Fe−B系異方性磁粉の磁気特性はこの反応速度に
大きく依存するものと考えられる。つまりやみくもに強
制的脱水素を行っても相変態が進行せず相変態以前の
相、つまりNdH、α−T、FeBがそのままある
いは一部残ってしまい理想的なR14B相が得られ
ないため最終的に得られる磁気特性は低い。
Among the magnetic powders obtained by the conventional method, the Nd-Fe-B type quenched flakes prepared by the melt spinning method are magnetically isotropic, and the maximum energy performance of the finally obtained bond magnet is obtained. Is at most 10 MGOe and there is a problem in terms of magnetic properties. Further, the anisotropic bonded magnet obtained by blending the conventional Nd-Fe-B type anisotropic magnetic powder has insufficient magnetic properties and leaves room for improvement. On the other hand, Sm 2 Fe
Since 17- type nitride magnetic powder uses Sm as a main raw material, there is concern about its future prospects in terms of resources. The ThMn 12 type magnetic powder is resource-friendly because the rare earth element used is Nd, but the magnetic potential after nitriding is lower than that of Nd 2 Fe 14 B type or Sm 2 Fe 17 type. The Nd-Fe-B type anisotropic magnetic powder obtained by performing hydrogen storage treatment and dehydrogenation treatment has a feature that the manufacturing process can be considerably simplified. However, from the theoretical value of the Nd-Fe-B type bulk magnet, As a rough estimate, the magnetic properties obtained at present are not sufficient. This manufacturing method utilizes a recrystallization reaction accompanied with a phase transformation in the dehydrogenation treatment step, and finally obtains N
It is considered that the magnetic characteristics of the d-Fe-B anisotropic magnetic powder largely depend on this reaction rate. In other words, the phase transformation does not proceed even if the forced dehydrogenation is blindly performed, and the phases before the phase transformation, that is, NdH 2 , α-T, and Fe 2 B remain as they are or a part of them are ideal R 2 T 14 B Since no phase is obtained, the finally obtained magnetic properties are low.

【0004】[0004]

【問題を解決するための手段】本発明者等は理想的なNd
-Fe-B系異方性磁粉を得るため、相変態反応速度(再結晶
反応速度)を脱水素処理工程における真空度でコントロ
ールすることによって、磁気異方性に優れかつ平均結晶
粒径が0.02〜5μmの微細再結晶粒の集合体から実質的
になり、従来に比べて高い磁気特性を有するNd-Fe-B系
異方性磁粉が得られることを知見した。上記課題を解決
した本発明の異方性ボンド磁石用希土類磁石粉末は、母
合金に水素吸蔵処理および脱水素処理を施すことにより
得られもので、平均結晶粒径が0.02〜5μmであり、R2
T14B相(RはYを含む希土類元素の少なくとも1種であ
り、TはFeまたはFeとCoである)を主相とする微細再結
晶粒の集合体から実質的になり、前記脱水素処理におけ
る真空度 (Torr) をyとし、脱水素処理時間 ( ) をxとし
たとき、脱水素処理条件がx= 60 1000 秒の範囲内にお
いてy=Ax z (ただし、− 0.70 ≦z≦− 0.30 )で表さ
れ、もって残留水素量が28〜240 ppmであることを特徴
とする。また本発明の異方性ボンド磁石は、母合金に水
素吸蔵処理および脱水素処理を施して相変態をともなう
再結晶反応を起こすことにより得られた希土類磁石粉末
をバインダーで結合したもので、前記希土類磁石粉末は
0.02〜5μmの平均結晶粒径を有し、R2T14B相(RはY
を含む希土類元素の少なくとも1種であり、TはFeまた
はFeとCoである)を主相とする微細再結晶粒の集合体か
ら実質的になり、前記脱水素処理における真空度 (Torr)
をyとし、脱水素処理時間 ( ) をxとしたとき、脱水素
処理条件がx= 60 1000 秒の範囲内においてy=Ax z
(ただし、− 0.70 ≦z≦− 0.30 )で表され、もって残留
水素量が28〜240 ppmであることを特徴とする。前記希
土類磁石粉末は、Rを25〜35 wt%、Bを0.5〜1.5 wt
%、Coを3〜20 wt%、Ga、Zr、Nb、Hf、Ta、Al、Siお
よびVの群から選択される少なくとも1種をその合計で
0.05〜5wt%、残部Feおよび不可避的不純物からなる組
成を有するものが好ましい。この希土類磁石粉末は母合
金に水素吸蔵処理および脱水素処理を施しNdH2、α−
T、Fe2Bの三相からR2T14B相の微細再結晶粒に変化させ
る、脱水素処理工程における相変態をともなう再結晶反
応により得られるものであり、磁気異方性を有する。
[Means for Solving the Problem] The inventors have found that the ideal Nd
-Fe-B system anisotropic magnetic powder, by controlling the phase transformation reaction rate (recrystallization reaction rate) by the degree of vacuum in the dehydrogenation process, excellent magnetic anisotropy and an average grain size of 0.02 It was found that an Nd-Fe-B anisotropic magnetic powder substantially consisting of aggregates of fine recrystallized grains of ~ 5 µm and having higher magnetic properties than the conventional one can be obtained. The rare earth magnet powder for anisotropic bonded magnets of the present invention, which has solved the above problems, is obtained by subjecting a mother alloy to hydrogen storage treatment and dehydrogenation treatment, and has an average crystal grain size of 0.02 to 5 μm and R 2
The dehydrogenation substantially consists of an aggregate of fine recrystallized grains having a T 14 B phase (R is at least one kind of rare earth element including Y and T is Fe or Fe and Co) as a main phase. In processing
The degree of vacuum (Torr) is y, and the dehydrogenation processing time ( seconds ) is x.
The dehydrogenation condition is within the range of x = 60 to 1000 seconds.
And y = Ax z (where -0.70 ≤ z ≤ -0.30 )
It is, with the residual hydrogen quantity is characterized in that it is a twenty-eight to two hundred forty ppm. Further, the anisotropic bonded magnet of the present invention is obtained by binding a rare earth magnet powder obtained by subjecting a mother alloy to a hydrogen storage treatment and a dehydrogenation treatment to cause a recrystallization reaction accompanied by a phase transformation with a binder. Rare earth magnet powder
R 2 T 14 B phase (R is Y
Which is at least one of rare earth elements including T, and T is Fe or Fe and Co) as a main phase, and is substantially composed of an aggregate of fine recrystallized grains, and the degree of vacuum in the dehydrogenation treatment (Torr)
Is y and the dehydrogenation treatment time ( sec ) is x, dehydrogenation
When the processing condition is within the range of x = 60 to 1000 seconds, y = Ax z
(However, - 0.70 ≦ z ≦ - 0.30 ) represented by, with the residual hydrogen quantity is characterized in that it is a twenty-eight to two hundred and forty ppm. The rare earth magnet powder has an R content of 25 to 35 wt% and a B content of 0.5 to 1.5 wt%.
%, Co of 3 to 20 wt%, at least one selected from the group of Ga, Zr, Nb, Hf, Ta, Al, Si and V in total.
Those having a composition of 0.05 to 5 wt% and the balance Fe and inevitable impurities are preferable. This rare earth magnet powder is produced by applying hydrogen storage treatment and dehydrogenation treatment to the mother alloy to produce NdH 2 , α-
It is obtained by a recrystallization reaction involving a phase transformation in the dehydrogenation process, which changes the three phases of T and Fe 2 B into fine recrystallized grains of the R 2 T 14 B phase, and has magnetic anisotropy.

【0005】本発明者等は脱水素処理時の相変態速度が
磁気異方性化度に影響を与えると考え種々の脱水素処理
条件下で実験を繰り返した。その結果、脱水素処理工程
には一定の規則性があることを見い出した。つまり脱水
素開始後約60〜1000秒の間における一次脱水素処理工程
とそれ以降の二次脱水素処理工程からなるものである。
特に一次脱水素処理速度によって磁気特性を左右する磁
気異方性ポテンシャルが決定されることが分かった。二
次脱水素処理は一次脱水素処理終了後、格子間に残った
余分な水素を放出させるための脱水素処理であり、不可
避ではあるが磁気特性を決定的に左右するほどの大きな
影響は与えない。一次脱水素処理における真空度(Torr)
をy、脱水素処理時間(秒)をxとした場合、x=60〜10
00秒の範囲内では対数グラフ上でほぼ直線に近似でき
y=Ax(ただし、Aは対数グラフ上における近似
直線の切片の値であり、zは前記近似直線の勾配であ
り、−0.70≦z≦−0.30である)という指数関数で表現
され、二次脱水素処理では急激に真空度が高まることが
分かった。ここでxの値を限定した理由はxが60秒以下
では試料以外の炉内水素雰囲気を脱気するための脱水素
を含むため、正味のR14B相生成のための相変態
平衡状態ではないからである。上限の1000秒は試料の質
量、装置の性能によって若干変動するもののこの範囲内
までが一次脱水素処理としてのおおよその目安となるか
らである。試料の処理量あるいは脱水素時のポンプ容量
を調整しz値を意図的に変化させたところ、z値が−0.
70未満では磁化量および保磁力が極めて低い値を示し
た。この現象を詳細に説明すると、一次脱水素処理を高
速で行うため再結晶、成長に必要な核生成方向がランダ
ム方向に発生し、その状態で成長するため磁気的に等方
的になる。更に反応の平衡状態が崩れるため水素吸蔵時
に相分解した各相がそのままの形態で、あるいは一部残
存し実質的なR14B相生成量が減少する。したが
って最終的に得られる磁粉内には水素が多量に残存する
ほか保磁力、磁化量等の磁気特性も低下することにな
る。一方、z値が−0.30を越えると相変態は進行するも
のの余分な水素を放出するための最終目標真空度(例え
ば約0.1Torr)に到達するために長時間を要し、再結晶
粒の粗大化にともなう保磁力の低下を招く。したがって
脱水素速度を −0.70≦z≦−0.30 の範囲内の速度勾
配におさめることによって相変態も適切な速度で進行す
るため高い磁気特性を有する希土類磁石粉末を得ること
が可能となる。
The present inventors considered that the phase transformation rate during dehydrogenation treatment affects the degree of magnetic anisotropy and repeated the experiment under various dehydrogenation treatment conditions. As a result, they have found that the dehydrogenation process has a certain regularity. That is, it comprises a primary dehydrogenation treatment step and a subsequent secondary dehydrogenation treatment step within about 60 to 1000 seconds after the start of dehydrogenation.
In particular, it was found that the primary anisotropic dehydrogenation rate determines the magnetic anisotropy potential that affects the magnetic properties. The secondary dehydrogenation treatment is a dehydrogenation treatment for releasing excess hydrogen remaining in the lattice after the completion of the primary dehydrogenation treatment, and although it is unavoidable, it has a great influence that decisively affects the magnetic properties. Absent. Degree of vacuum in primary dehydrogenation (Torr)
Is y and the dehydrogenation treatment time (seconds) is x, x = 60 to 10
Within the range of 00 seconds, it can be approximated to a straight line on a logarithmic graph.
y = Ax z (where A is an approximation on a logarithmic graph
It is the value of the intercept of the straight line, and z is the slope of the approximate straight line.
Ri is expressed by an exponential function of -0.70 is ≦ z ≦ -0.30), were found to increase rapidly vacuum degree in the secondary dehydrogenation. The reason why the value of x is limited here is that when x is 60 seconds or less, dehydrogenation for degassing the hydrogen atmosphere in the furnace other than the sample is included, so the phase transformation equilibrium for net R 2 T 14 B phase formation is formed. Because it is not in a state. This is because the upper limit of 1000 seconds varies slightly depending on the mass of the sample and the performance of the apparatus, but up to this range is an approximate guideline for the primary dehydrogenation treatment. When the z value was intentionally changed by adjusting the throughput of the sample or the pump capacity during dehydrogenation, the z value was -0.
If it is less than 70, the amount of magnetization and the coercive force are extremely low. This phenomenon will be described in detail. Since the primary dehydrogenation treatment is performed at a high speed, the nucleation directions necessary for recrystallization and growth occur in random directions, and the nucleation direction is magnetically isotropic because it grows in this state. Furthermore, since the equilibrium state of the reaction is disrupted, each phase decomposed during hydrogen absorption is left as it is, or a part thereof remains to reduce the substantial amount of R 2 T 14 B phase produced. Therefore, a large amount of hydrogen remains in the finally obtained magnetic powder, and the magnetic properties such as coercive force and magnetization amount also deteriorate. On the other hand, when the z value exceeds -0.30, the phase transformation proceeds, but it takes a long time to reach the final target vacuum degree (for example, about 0.1 Torr) for releasing excess hydrogen, and the recrystallized grains are coarse. As a result, the coercive force is reduced. Therefore, by setting the dehydrogenation rate to a velocity gradient within the range of −0.70 ≦ z ≦ −0.30, the phase transformation also proceeds at an appropriate rate, so that it is possible to obtain a rare earth magnet powder having high magnetic properties.

【0006】本発明の希土類磁石粉末は磁気的に高い異
方性化度を有しているため、バインダーで結合し、次い
で磁場中成形することによって高性能の異方性ボンド磁
石が得られる。脱水素速度の制御はさほど難しくない。
例えば炉内容積およびロータリーポンプ排気能力が決っ
ている場合試料の処理量を調整してもよいし、この条件
で対応できない場合炉内とロータリーポンプをつなぐ配
管中に圧力コントローラを設置するなどの処置が考えら
れる。またバルブの開閉によって段階的に脱水素し、平
均的な脱水素速度として所定範囲内におさまっていれば
よい。
Since the rare earth magnet powder of the present invention has a magnetically high degree of anisotropy, a high performance anisotropic bonded magnet can be obtained by binding with a binder and then molding in a magnetic field. Controlling the dehydrogenation rate is not very difficult.
For example, if the volume inside the furnace and the exhaust capacity of the rotary pump are fixed, the throughput of the sample may be adjusted.If this condition is not applicable, a procedure such as installing a pressure controller in the pipe connecting the inside of the furnace and the rotary pump is taken. Can be considered. Further, it suffices that dehydrogenation is performed stepwise by opening and closing the valve, and the average dehydrogenation rate falls within a predetermined range.

【0007】[0007]

【実施例】(実施例1)希土類元素Nd、遷移金属F
e、Co、ホウ素Bを主成分とし、他の元素としてGa
あるいはZrを添加し、所定組成に真空溶解し鋳造合金
を得た。次いで同合金を1100℃で20時間均質化処理して
水素処理用試料とした。熱処理炉は6401/分の排気能力
を有するロータリーポンプを装備した一定容積の炉を使
用し、試料を65g、200g、1kg、2kg、3kgおよび10kg
の6段階の処理量に分け同一条件の下で水素処理を行っ
た。水素処理条件としては、まず水素を室温で十分吸蔵
させた後、1気圧の水素雰囲気を保ちながら10℃/分の
昇温速度で840℃まで加熱した。続いて同温度で3時間
保持した後、45分間脱水素処理した。脱水素終了後炉内
をアルゴン雰囲気に置換し冷却した。Gaを添加した試
料について脱水素開始後1分間経過した時点から45分間
炉内真空度を測定し対数グラフ上にプロットした結果を
図1に示す。同図に示した通り脱水素開始後約1000秒ま
ではいずれも直線に近似され、以後急激に真空度が高く
なることが分かる。この傾向は処理量の低下にともない
顕著になる。更にこの近似直線から計算した勾配(z値)
は処理量が多くなるほど増大しており、脱水素速度が遅
くなることを意味している。得られた水素処理試料を粉
砕し、次いで425μm以下の粒径に分級し、同じ粒度分布
になるよう調整した。分級した粉末とエポキシ樹脂とを
混合し、得られた混合物を磁場中圧縮成形し異方性ボン
ド磁石を得た。表1に脱水素処理45分間経過後の到達真
空度、水素処理後の試料に残存する水素量、図1の直線
部分を指数関数で表現したときのz値、および異方性ボ
ンド磁石の磁気特性を示す。この結果よりz値が−0.70
より小さい(つまり脱水素速度が早い)場合、到達真空
度が高くなるにもかかわらず試料内に多量の水素が残存
し磁気特性も低い。一方、処理量10kgのz値が高い試料
でも残存水素量が多く、異方性ボンド磁石の残留磁束密
度は高いものの保磁力は低い。
Example (Example 1) Rare earth element Nd, transition metal F
e, Co, and boron B as main components, and Ga as another element
Alternatively, Zr was added and vacuum melted to a predetermined composition to obtain a cast alloy. Then, the alloy was homogenized at 1100 ° C. for 20 hours to prepare a sample for hydrotreating. As the heat treatment furnace, a constant volume furnace equipped with a rotary pump having an exhaust capacity of 6401 / min was used, and samples of 65 g, 200 g, 1 kg, 2 kg, 3 kg and 10 kg were used.
The hydrogen treatment was carried out under the same conditions by dividing the treatment amount into 6 stages. As the hydrogen treatment conditions, first, hydrogen was sufficiently absorbed at room temperature and then heated to 840 ° C. at a temperature rising rate of 10 ° C./min while maintaining a hydrogen atmosphere at 1 atm. Then, after holding at the same temperature for 3 hours, dehydrogenation treatment was performed for 45 minutes. After completion of dehydrogenation, the inside of the furnace was replaced with an argon atmosphere and cooled. FIG. 1 shows the results of measuring the degree of vacuum in the furnace for 45 minutes from the time point 1 minute after the start of dehydrogenation of the sample to which Ga was added and plotting it on a logarithmic graph. As shown in the figure, it can be seen that until about 1000 seconds after the start of dehydrogenation, each of them is approximated to a straight line, and thereafter the vacuum degree rapidly increases. This tendency becomes remarkable as the processing amount decreases. Furthermore, the gradient (z value) calculated from this approximate straight line
Means that the higher the throughput, the slower the dehydrogenation rate. The obtained hydrogen-treated sample was pulverized, and then classified to have a particle size of 425 μm or less, and adjusted to have the same particle size distribution. The classified powder and the epoxy resin were mixed, and the obtained mixture was compression-molded in a magnetic field to obtain an anisotropic bonded magnet. Table 1 shows the ultimate vacuum after 45 minutes of dehydrogenation, the amount of hydrogen remaining in the sample after hydrogenation, the z value when the linear part of Fig. 1 was expressed by an exponential function, and the magnetism of the anisotropic bonded magnet. Show the characteristics. From this result, z value is -0.70
When it is smaller (that is, the dehydrogenation rate is faster), a large amount of hydrogen remains in the sample and the magnetic properties are low even though the ultimate vacuum is increased. On the other hand, the amount of residual hydrogen is large even in the sample having a high z value of the treated amount of 10 kg, and the residual magnetic flux density of the anisotropic bonded magnet is high, but the coercive force is low.

【0008】[0008]

【表1】 [Table 1]

【0009】(実施例2)Ga添加材について処理量を
1kgとし脱水素時間を0秒、1000秒、2000秒、2700秒、
3500秒および4000秒の6段階とした以外は他の条件を実
施例1と全く同様にして水素処理した。脱水素時間と炉
内真空度の関係を図2に示す。次いで実施例1と同様に
粉砕し、分級して粒度分布を調整し得られた粉末を用い
て異方性ボンド磁石を作製した。到達真空度、残存水素
量およびボンド磁石の磁気特性を表2に示す。この結果
よりボンド磁石の磁気特性は脱水素時間が約1000秒まで
でほぼ決定されることが分かる。また長時間の脱水素は
残存水素量を減少させ残留磁束密度を改善する効果は有
るものの保磁力の著しい低下を招く。なお、図2のプロ
ットはいずれもy=53x−0.50で表現できること
や、再現性を確認した。
(Example 2) With respect to the Ga-added material, the treatment amount was set to 1 kg, and the dehydrogenation time was 0 seconds, 1000 seconds, 2000 seconds, 2700 seconds,
Hydrogen treatment was carried out in exactly the same manner as in Example 1 except that 6 steps of 3500 seconds and 4000 seconds were used. The relationship between the dehydrogenation time and the degree of vacuum in the furnace is shown in FIG. Then, the powder was pulverized and classified in the same manner as in Example 1 to adjust the particle size distribution, and the obtained powder was used to produce an anisotropic bonded magnet. Table 2 shows the ultimate vacuum, the amount of residual hydrogen, and the magnetic properties of the bonded magnet. From this result, it is found that the magnetic characteristics of the bonded magnet are almost determined by the dehydrogenation time up to about 1000 seconds. Further, dehydrogenation for a long time has the effect of reducing the amount of residual hydrogen and improving the residual magnetic flux density, but causes a significant decrease in coercive force. In addition, it was confirmed that all plots in FIG. 2 can be expressed by y = 53 × −0.50 , and reproducibility was confirmed.

【0010】[0010]

【表2】 [Table 2]

【0011】(実施例3)実施例1の表1に記載した如
く、処理量10kgの場合高い残留磁束密度を有するものの
試料内に多量の水素が残存していた。そこで排気能力の
異なるロータリーポンプを使用し、脱水素効率を上げる
ことによって残存水素量を低下させる実験を試みた。使
用したロータリーポンプは排気量640l/分、900l/分、15
00l/分、および2000l/分の4種類である。実験条件はロ
ータリーポンプを変更した以外は実施例1と全く同様に
行った。脱水素時間と炉内真空度の関係を図3に示す。
同図より排気能力を高めることによって真空度は徐々に
向上し、45分後の到達真空度も改善できることを確認し
た。更に、脱水素開始後1000秒までのz値も徐々に低下
し、脱水素速度がやや早くなることが分かる。得られた
水素処理試料に対し実施例1と同様の評価を行った結果
を表3に示す。表3に示す通り、ロータリーポンプの排
気能力を高めることによってz値は適正な範囲内に収ま
り残存水素量も低下し、最終的に高性能の異方性ボンド
磁石が得られた。
(Example 3) As shown in Table 1 of Example 1, when the treatment amount was 10 kg, a large amount of hydrogen remained in the sample although the sample had a high residual magnetic flux density. Therefore, an experiment was conducted to reduce the amount of residual hydrogen by increasing the dehydrogenation efficiency using rotary pumps with different exhaust capacities. The rotary pump used is 640 l / min, 900 l / min, 15 displacement
There are four types, 00l / min and 2000l / min. The experimental conditions were exactly the same as in Example 1 except that the rotary pump was changed. The relationship between the dehydrogenation time and the degree of vacuum in the furnace is shown in FIG.
From the figure, it was confirmed that the vacuum degree was gradually improved and the ultimate vacuum degree after 45 minutes could be improved by increasing the exhaust capacity. Furthermore, it can be seen that the z value up to 1000 seconds after the start of dehydrogenation gradually decreases, and the dehydrogenation rate increases slightly. Table 3 shows the results obtained by conducting the same evaluations as in Example 1 on the obtained hydrogen-treated sample. As shown in Table 3, by increasing the evacuation capacity of the rotary pump, the z value was kept within an appropriate range and the amount of residual hydrogen was reduced, and finally a high-performance anisotropic bonded magnet was obtained.

【0012】[0012]

【表3】 [Table 3]

【0013】上記実施例の希土類磁石粉末のNd
14B相の平均結晶粒径はいずれも0.02〜5μmの範
囲内に入っていた。
Nd 2 T of the rare earth magnet powder of the above embodiment
The average recrystallized grain size of 14 B phase was not within 0.02~5μm both.

【0014】[0014]

【発明の効果】本発明によれば、脱水素処理速度を特定
範囲内に制御することによって、従来に比べて磁気特性
を向上したNd−Fe−B系異方性磁石粉末およびそれ
を用いた高性能の異方性ボンド磁石を提供することがで
きる。
According to the present invention, by controlling the dehydrogenation treatment rate within a specific range, an Nd-Fe-B type anisotropic magnet powder having improved magnetic characteristics as compared with the conventional one and the same are used. A high performance anisotropic bonded magnet can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱水素処理時間と炉内真空度の関係の一例を示
すグラフである。
FIG. 1 is a graph showing an example of the relationship between dehydrogenation treatment time and furnace vacuum degree.

【図2】脱水素処理時間と炉内真空度の関係の他の例を
示すグラフである。
FIG. 2 is a graph showing another example of the relationship between the dehydrogenation processing time and the degree of vacuum in the furnace.

【図3】脱水素処理時間と炉内真空度の関係の更に他の
例を示すグラフである。
FIG. 3 is a graph showing still another example of the relationship between the dehydrogenation treatment time and the degree of vacuum in the furnace.

フロントページの続き (56)参考文献 特開 平3−14203(JP,A) 特開 平4−198410(JP,A) 特開 平5−156320(JP,A) 特開 平1−99201(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F 1/00 - 9/00 Continuation of the front page (56) Reference JP-A-3-14203 (JP, A) JP-A-4-198410 (JP, A) JP-A-5-156320 (JP, A) JP-A-1-99201 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1/117 B22F 1/00-9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 母合金に水素吸蔵処理および脱水素処理
を施して相変態をともなう再結晶反応を起こすことによ
り得られた異方性ボンド磁石用希土類磁石粉末であっ
て、平均結晶粒径が0.02〜5μmであり、R2T14B相(R
はYを含む希土類元素の少なくとも1種であり、TはFe
またはFeとCoである)を主相とする微細再結晶粒の集合
体から実質的になり、前記脱水素処理における真空度 (T
orr) をyとし、脱水素処理時間 ( ) をxとしたとき、脱
水素処理条件がx= 60 1000 秒の範囲内においてy=A
z (ただし、− 0.70 ≦z≦− 0.30 )で表され、もって
残留水素量が28〜240 ppmであることを特徴とする異方
性ボンド磁石用希土類磁石粉末。
1. A rare earth magnet powder for anisotropic bonded magnets, which is obtained by subjecting a mother alloy to a hydrogen storage treatment and a dehydrogenation treatment to cause a recrystallization reaction accompanied by a phase transformation, and having an average crystal grain size. 0.02-5 μm, R 2 T 14 B phase (R
Is at least one rare earth element including Y, and T is Fe
Or Fe and Co) as the main phase and consists essentially of aggregates of fine recrystallized grains, and the degree of vacuum (T
orr) is y and dehydrogenation treatment time ( seconds ) is x
When the hydrogen treatment condition is within the range of x = 60 to 1000 seconds, y = A
x z (however, - 0.70 ≦ z ≦ - 0.30 ) represented by, has been rare earth magnet powder for an anisotropic bonded magnet, wherein the residual hydrogen amount is twenty-eight to two hundred and forty ppm.
【請求項2】 母合金に水素吸蔵処理および脱水素処理
を施して相変態をともなう再結晶反応を起こすことによ
り得られた希土類磁石粉末をバインダーで結合した異方
性ボンド磁石であって、前記希土類磁石粉末は0.02〜5
μmの平均結晶粒径を有し、R2T14B相(RはYを含む希
土類元素の少なくとも1種であり、TはFeまたはFeとCo
である)を主相とする微細再結晶粒の集合体から実質的
になり、前記脱水素処理における真空度 (Torr) をyと
し、脱水素処理時間 ( ) をxとしたとき、脱水素処理条
件がx= 60 1000 秒の範囲内においてy=Ax z (ただ
し、− 0.70 ≦z≦− 0.30 )で表され、もって残留水素量
が28〜240 ppmであることを特徴とする異方性ボンド磁
石。
2. An anisotropic bonded magnet in which a rare earth magnet powder obtained by subjecting a mother alloy to a hydrogen storage treatment and a dehydrogenation treatment to cause a recrystallization reaction accompanied by a phase transformation is bound with a binder, Rare earth magnet powder is 0.02-5
R 2 T 14 B phase (R is at least one rare earth element including Y, T is Fe or Fe and Co)
Is a main phase, and the degree of vacuum (Torr) in the dehydrogenation treatment is y.
And the dehydrogenation treatment time ( sec ) is x, dehydrogenation treatment conditions
Within the range of x = 60 to 1000 seconds, y = Ax z (only
And, - 0.70 ≦ z ≦ - 0.30 ) represented by the anisotropic bonded magnet with the residual hydrogen quantity is characterized in that it is a twenty-eight to two hundred and forty ppm.
JP2000295062A 2000-09-27 2000-09-27 Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet Expired - Lifetime JP3522207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295062A JP3522207B2 (en) 2000-09-27 2000-09-27 Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295062A JP3522207B2 (en) 2000-09-27 2000-09-27 Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24125193A Division JP3410171B2 (en) 1993-09-28 1993-09-28 Method for producing rare earth magnet powder and anisotropic bonded magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003171269A Division JP3854948B2 (en) 2003-06-16 2003-06-16 R-T-B type alloy dehydrogenation furnace for anisotropic bonded magnets

Publications (2)

Publication Number Publication Date
JP2001135510A JP2001135510A (en) 2001-05-18
JP3522207B2 true JP3522207B2 (en) 2004-04-26

Family

ID=18777554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295062A Expired - Lifetime JP3522207B2 (en) 2000-09-27 2000-09-27 Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3522207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron
US8329056B2 (en) 2009-09-29 2012-12-11 Minebea Co., Ltd. Anisotropic rare earth-iron based resin bonded magnet

Also Published As

Publication number Publication date
JP2001135510A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP3317646B2 (en) Manufacturing method of magnet
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3522207B2 (en) Rare earth magnet powder and anisotropic bonded magnet for anisotropic bonded magnet
JP3410171B2 (en) Method for producing rare earth magnet powder and anisotropic bonded magnet
JPH045740B2 (en)
US5849109A (en) Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
JP3469496B2 (en) Manufacturing method of magnet material
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH06231926A (en) Rare earth permanent magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
EP0597582B1 (en) Rare-earth magnet powder material
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP3854948B2 (en) R-T-B type alloy dehydrogenation furnace for anisotropic bonded magnets
JPH045739B2 (en)
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH01274401A (en) Permanent magnet
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

EXPY Cancellation because of completion of term