JP3504735B2 - Method for producing RTMN based anisotropic bonded magnet - Google Patents

Method for producing RTMN based anisotropic bonded magnet

Info

Publication number
JP3504735B2
JP3504735B2 JP19375894A JP19375894A JP3504735B2 JP 3504735 B2 JP3504735 B2 JP 3504735B2 JP 19375894 A JP19375894 A JP 19375894A JP 19375894 A JP19375894 A JP 19375894A JP 3504735 B2 JP3504735 B2 JP 3504735B2
Authority
JP
Japan
Prior art keywords
powder
less
gas
hours
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19375894A
Other languages
Japanese (ja)
Other versions
JPH0837122A (en
Inventor
顕 槇田
哲 広沢
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19375894A priority Critical patent/JP3504735B2/en
Publication of JPH0837122A publication Critical patent/JPH0837122A/en
Application granted granted Critical
Publication of JP3504735B2 publication Critical patent/JP3504735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等の磁気回路を構成する永久磁石に用いる
ことが可能なR-T-N系異方性ボンド磁石の製造方法に係
り、水素化、脱H2処理後の個々の粉末を形成する微細結
晶の方位を一定の方向に揃えさせるのに有効な元素Mを
添加したR-T-M系粗粉砕粉に、H2ガスの単独または不活
性ガス(N2ガスを除く)との混合気中での加熱処理並びに
所定雰囲気で加熱保持する脱H2処理を行い、平均粒径0.
5μm以下の粒径を有する結晶の集合組織粉体となし、さ
らに窒化処理することにより、取扱いが容易な粉末を得
て、これをボンド磁石化し、磁気特性がすぐれ高耐食性
のR-T-M-N系異方性ボンド磁石を得ることができる製造
方法に関する。
BACKGROUND OF THE INVENTION This invention, various motors, relates to a method of manufacturing a RTN based anisotropic bonded magnet which can be used in permanent magnet constituting a magnetic circuit of the actuator such as, hydrogenation, dehydrogenation H 2 treatment After that, the RTM coarsely pulverized powder containing the element M effective for aligning the orientation of the fine crystals forming the individual powders in a certain direction is added to H 2 gas alone or an inert gas (excluding N 2 gas). ) And a de-H 2 treatment of heating and holding in a predetermined atmosphere, and an average particle size of 0.
An easy-to-handle powder is obtained by forming a crystalline textured powder with a grain size of 5 μm or less and further nitriding it into a bond magnet, which has excellent magnetic properties and high corrosion resistance. The present invention relates to a manufacturing method capable of obtaining a bonded bond magnet.

【0002】[0002]

【従来の技術】Th2Zn17構造を持つSm2Fe17化合
物は、窒素を格子間に侵入させることにより、Tcが絶
対温度で2倍近く高くなり、Nd−Fe−B系のTc
りも160℃も高く、Nd2Fe14Bを上回る異方性磁
界が得られることが報告されている(J.M.D. C
oey and H.Sun,J.Magn. Mag
n. Mat 87 (1990) L251)。
The Sm 2 Fe 17 compound having BACKGROUND ART Th 2 Zn 17 structure, by entering the nitrogen between lattices, T c is increased nearly twice in absolute temperature, Nd-Fe-B based T c It is reported that an anisotropic magnetic field higher than that of Nd 2 Fe 14 B by 160 ° C. is obtained (JMDC).
oey and H.A. Sun, J. et al. Magn. Mag
n. Mat 87 (1990) L251).

【0003】 このSm2Fe17Nxを用いた永久磁石の製造
方法としては、Sm2Fe17合金粉末を窒素ガス中で加熱保
持後冷却し、ボールミル、アトライターなどを用いて平
均粒径3μm以下に微粉砕し、エポキシなどの熱硬化性樹
脂を混合した後、磁界中でプレス成形し、さらに樹脂を
加熱硬化させる微粉末型異方性ボンド磁石の製造方法
が、例えば、特開平2-257603号に開示されている。この
従来技術では、Sm2Fe17Nxを単磁区粒子径以下に微粉砕
することが、粉末の保磁力を得る上で必須の条件である
が、このために成形体中の磁石粉末の充填率が低くな
り、高いエネルギー積を得ることができない。
As a method for producing a permanent magnet using this Sm 2 Fe 17 N x , an Sm 2 Fe 17 alloy powder is heated and held in nitrogen gas and then cooled, and an average particle diameter of 3 μm is obtained by using a ball mill, an attritor or the like. The following is a method for producing a fine powder type anisotropic bonded magnet in which finely pulverized below, a thermosetting resin such as epoxy is mixed, press- molded in a magnetic field, and the resin is further heat-cured, for example, JP-A-2- No. 257603. In this conventional technique, pulverizing Sm 2 Fe 17 N x to a particle size of a single magnetic domain or less is an essential condition for obtaining the coercive force of the powder. The rate is low and a high energy product cannot be obtained.

【0004】また、Sm2Fe17合金粉末を窒素ガス中
で加熱保持後冷却し、ボールミル、アトライターなどを
用いて平均粒径10μm以下に微粉砕し、Znなどの低
融点金属の粉末を混合した後、磁界中でプレス成形し、
さらにZnなどの融点付近の温度で加熱硬化させる異方
性メタルボンド磁石の製造方法が、例えば、特開平5−
6814号に開示されている。この従来技術では、Sm
2Fe17x粉末の表面をZnなどとの合金化により非磁
性化することが保磁力を得る上で必須の条件だが、この
ために磁化が低くなり、高いエネルギー積を得ることが
できない。
Further, the Sm 2 Fe 17 alloy powder is heated and held in nitrogen gas, then cooled, finely pulverized to an average particle size of 10 μm or less using a ball mill, an attritor, etc., and a powder of a low melting point metal such as Zn is mixed. After that, press molding in a magnetic field,
Further, a method for producing an anisotropic metal-bonded magnet that is heat-cured at a temperature near the melting point of Zn or the like is disclosed in, for example, Japanese Patent Laid-Open No.
No. 6814. In this conventional technique, Sm
Demagnetization of the surface of the 2 Fe 17 N x powder by alloying with Zn or the like is an essential condition for obtaining coercive force, but this lowers the magnetization, and a high energy product cannot be obtained.

【0005】また、Sm2Fe17組成の非晶質合金をメ
カニカルアロイング法、あるいは超急冷法により作成
後、不活性ガス中または真空中で所定の温度に加熱保持
し、Th2Zn17型結晶構造を持つ1μm以下の粒径に
有する結晶の集合組織粉体となし、さらに窒素ガス中で
加熱保持後冷却する永久磁石粉末の製造方法が、例え
ば、特開平4−254304号に開示されている。
Further, an amorphous alloy of Sm 2 Fe 17 composition is prepared by a mechanical alloying method or a super-quenching method, and then heated and maintained at a predetermined temperature in an inert gas or in a vacuum to form a Th 2 Zn 17 type alloy. A method for producing a permanent magnet powder having a crystalline texture powder having a grain size of 1 μm or less and having a crystal structure and further heating and holding in nitrogen gas and then cooling is disclosed in, for example, JP-A-4-254304. There is.

【0006】また、発明者らは先にSm2Fe17合金粉
末をH2ガス中で600〜900℃に加熱保持した後、
不活性ガス中または真空中で600〜900℃に加熱保
持し、Th2Zn17型結晶構造を持つ1μm以下の粒径
を有する結晶の集合組織粉体となし、さらに窒素中で3
00〜600℃で窒化処理を行う永久磁石粉末の製造方
法を提案した(特開平4−343203号)。
In addition, the inventors of the present invention first heat and hold the Sm 2 Fe 17 alloy powder in H 2 gas at 600 to 900 ° C.,
It is heated and maintained at 600 to 900 ° C. in an inert gas or in vacuum to form a textured powder of crystals having a particle size of 1 μm or less having a Th 2 Zn 17 type crystal structure, and further 3 in nitrogen.
A method for producing a permanent magnet powder, which is subjected to a nitriding treatment at 00 to 600 ° C., has been proposed (JP-A-4-343203).

【0007】[0007]

【発明が解決しようとする課題】これらの従来技術で
は、得られる磁石粉末の結晶粒径が単磁区粒子径以下で
あるにもかかわらず、その微細結晶の集合体であるとこ
ろの粉末の粒径が大きいために、樹脂と混合後、ボンド
磁石として成形した場合の磁石粉末の充填率を高くする
ことが可能である。しかし、個々の粉末を形成している
微細結晶の結晶方位がバラバラであるため、得られる磁
石粉末は磁気的に等方性となり、高いエネルギー積を得
ることができない。
In these prior arts, even though the crystal grain size of the obtained magnet powder is equal to or less than the single domain grain size, the grain size of the powder which is an aggregate of the fine crystals is obtained. Since it is large, it is possible to increase the filling rate of the magnet powder when it is molded as a bonded magnet after being mixed with a resin. However, since the crystal orientations of the fine crystals forming the individual powders are different, the resulting magnet powder is magnetically isotropic, and a high energy product cannot be obtained.

【0008】この発明は、R−T−N系異方性ボンド磁
石を製造できる方法の提供を目的とし、単磁区粒子径以
下の結晶粒径を有するTh2Zn17型結晶構造のR−T
−M−N系微細結晶の集合体からなる粉末で、個々の粉
末を形成している微細結晶の結晶方位が揃っており、磁
化およびエネルギー積の高い異方性ボンド磁石粉末が得
られ、すぐれた磁気特性の異方性ボンド磁石が得られる
製造方法の提供を目的としている。
An object of the present invention is to provide a method for producing an R-T-N type anisotropic bonded magnet, and an R-T of a Th 2 Zn 17 type crystal structure having a crystal grain size of a single domain grain size or less.
-M-N powder composed of an aggregate of fine crystals, in which the fine crystals forming the individual powders have the same crystallographic orientation, and anisotropic bonded magnet powders having high magnetization and energy products are obtained. It is an object of the present invention to provide a manufacturing method capable of obtaining an anisotropic bonded magnet having excellent magnetic characteristics.

【0009】[0009]

【課題を解決するための手段】発明者らは、従来技術の
うち、磁石粉末の粉末粒径が比較的大きく、ボンド磁石
中の磁石粉末の充填率を高めることが可能な水素化、脱
水素法において、異方性の磁石粉末を得る方法を鋭意検
討した結果、出発原料中に10at%以下の添加元素M(M:Al,
Ti,V,Cr,Ni,Ga,Zr,Nb,Mo,In,Sn,Hf,Ta,Wのうち1種また
は2種以上)を加えると、水素化、脱水素処理後の個々の
粉末を形成する微細結晶の方位が一定の方向に揃うこと
を知見した。また、発明者らは、上記水素化の過程にお
いて、水素ガス中で加熱保持温度まで昇温する際の昇温
速度を速くした場合、あるいは該昇温過程を真空中ある
いは不活性ガス中で行い、その後に炉内に水素ガスを導
入して加熱保持した場合、粉体中の結晶の配向度が向上
し、磁化およびエネルギー積の高い磁石粉末が得られる
ことを知見し、この発明を完成した。
SUMMARY OF THE INVENTION Among the prior arts, the inventors of the present invention have proposed a hydrogenation / dehydrogenation method capable of increasing the packing ratio of the magnet powder in a bonded magnet because the powder size of the magnet powder is relatively large. In the method, as a result of diligent examination of the method for obtaining anisotropic magnet powder, 10 at% or less of the additive element M (M: Al,
Ti, V, Cr, Ni, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, W one or more kinds), the individual powder after hydrogenation and dehydrogenation treatment is added. It was found that the orientation of the fine crystals to be formed is uniform. In addition, the inventors of the present invention, in the above hydrogenation process, when increasing the temperature rising rate when heating to the heating and holding temperature in hydrogen gas, or performing the temperature rising process in vacuum or in an inert gas. After that, when hydrogen gas was introduced into the furnace and heated and held, the orientation degree of crystals in the powder was improved, and it was found that a magnet powder with high magnetization and energy product can be obtained, and the present invention was completed. .

【0010】 すなわち、この発明は、 1) R 10〜12at%、T 80〜90at%、M 10at%以下( 但し 0
at% を除く )からなる鋳塊を900〜1200℃で1時間以上の溶
体化処理し、但し R:Yを含む希土類元素の少なくとも1
種でかつSmを50%以上含有、T:FeあるいはFeの一部を50%
以下のCoで置換、M; Al,Ti,V,Cr,Ni,Ga,Zr,Nb,Mo,In,S
n,Hf,Ta,Wのうち1種または2種以上 2) この鋳塊を、平均粒度が20μm〜10mmの少なくとも9
5vol%以上がTh2Zn17型構造を有する化合物からなる粗粉
砕粉となした後、 3) 前記粗粉砕粉を、0.1〜10atmのH2ガスまたはそれに
等しいH2分圧を有する不活性ガス(N2ガスを除く、但し
全圧力は10atm以下)中で、600〜750℃の温度域を昇温速
度10℃/min〜200℃/minで昇温後、750〜900℃に30分〜8
時間加熱保持し、 4) さらに、H2分圧1×10-2Torr以下にて、750〜900℃
に30分〜8時間加熱保持する脱H2処理を行い、 5) 次いで冷却して、平均結晶粒径が0.05〜0.5μmであ
り、かつ個々の粉末を形成する微細結晶の方位が一定の
方向にそろった集合組織を有する粉体となし、 6) 次に前記粉体を3〜500μmに粉砕、整粒した後、該
粉体をN2圧力0.5〜1000atmのN2ガス中で300〜650℃に30
分〜50時間保持し、R 8〜10at%、T 65〜82at%、M 10
at%以下、N 8〜15at%を含有し、Th2Zn17型構造またはT
bCu7型構造を有する合金粉末を得た後、 7) 該合金粉末を3〜500μmに粉砕、整粒した後、樹脂
を混合して磁界中で成形することを特徴とするR-T-M-N
系異方性ボンド磁石の製造方法である。
That is, the present invention is 1) R 10-12at%, T 80-90at%, M 10at% or less ( however, 0
(excluding at% ) is subjected to solution treatment at 900 to 1200 ° C for 1 hour or longer, provided that at least 1 of rare earth elements including R: Y is used.
Species and contains 50% or more of Sm, T: Fe or 50% of Fe
Substituted with Co, M; Al, Ti, V, Cr, Ni, Ga, Zr, Nb, Mo, In, S
One, two or more of n, Hf, Ta, W 2) This ingot is at least 9 with an average grain size of 20 μm to 10 mm.
After forming a coarsely pulverized powder consisting of a compound having 5% by volume or more of Th 2 Zn 17 type structure, 3) the coarsely pulverized powder is 0.1 to 10 atm of H 2 gas or an inert gas having an H 2 partial pressure equal to it. (Excluding N 2 gas, but the total pressure is 10 atm or less), after raising the temperature range of 600 to 750 ℃ at a heating rate of 10 ℃ / min to 200 ℃ / min, 750 ~ 900 ℃ for 30 minutes ~ 8
And heating time held, 4) further in H 2 partial pressure of 1 × 10 -2 Torr or less, 750 to 900 ° C.
The sample is subjected to a H 2 removal treatment by heating and holding it for 30 minutes to 8 hours, and 5) it is then cooled so that the average crystal grain size is 0.05 to 0.5 μm, and the orientation of the fine crystals forming the individual powder is constant. 6) Next, after pulverizing the powder to 3 to 500 μm and sizing, the powder is 300 to 650 in N 2 gas at N 2 pressure of 0.5 to 1000 atm. 30 to ℃
Hold for min-50h, R8-10at%, T65-82at%, M10
At% or less, containing N 8-15 at%, Th 2 Zn 17 type structure or T
After obtaining an alloy powder having a bCu 7 type structure, 7) the alloy powder is pulverized to 3 to 500 μm, sized, and then mixed with a resin and molded in a magnetic field.
This is a method for producing a system anisotropic bonded magnet.

【0011】 また、この発明は、上記構成からなる製
造方法において、 3) 前記 粗粉砕粉を真空中または不活性ガス中で750℃
以上の温度域に昇温した後、炉内に0.1〜10atmのH2ガス
またはそれに等しいH2分圧を有する不活性ガス(N2ガス
を除く、但し、全圧力は10atm以下)を導入し、さらに75
0〜900℃に30分〜8時間加熱保持する、構成からなるR-T
-M-N系異方性ボンド磁石の製造方法を併せて提案する。
Further, the present invention is manufactured by the above configuration .
In production method, 3) the 750 ° C. The crude pulverized powder with or in an inert gas vacuo
After heating to the above temperature range, 0.1 to 10 atm of H 2 gas or an inert gas having an H 2 partial pressure equal to it (excluding N 2 gas, but the total pressure is 10 atm or less) is introduced. , 75 more
RT consisting of a configuration that heats and holds at 0 to 900 ° C for 30 minutes to 8 hours
-We also propose a method for manufacturing MN-based anisotropic bonded magnets.

【0012】組成の限定理由 この発明に使用する原料組成において、希土類元素Rは
Y,La,Pr,Nd,Sm,Gd,Tb,Ho,E
r,Tm,Luが包含され、これらのうち少なくとも1
種以上で、SmをRの50at%以上含有する。Rの5
0at%以上をSmとするのは、Smが50at%以下
では十分な保磁力が得られないためである。また、Rと
して全量Smを使用してもよい。Rは、10at%未満
ではα−Feの析出により保磁力が低下し、また12a
t%を超えるとRFe3相などが析出して磁化が低下す
るため、鋳塊のRの範囲は10〜12at%とする。よ
り好ましい鋳塊のRの範囲は10〜11at%である。
Rとして全量Smを使用する場合のSmの組成範囲も、
上記と同じ理由で10〜12at%とする。
Reasons for limiting composition In the raw material composition used in the present invention, the rare earth element R is Y, La, Pr, Nd, Sm, Gd, Tb, Ho, E.
r, Tm, Lu are included, and at least one of them is included.
It is a seed or more and contains Sm in an amount of 50 at% or more of R. R of 5
The reason why Sm is 0 at% or more is that sufficient coercive force cannot be obtained when Sm is 50 at% or less. Alternatively, the total amount Sm may be used as R. When R is less than 10 at%, the coercive force decreases due to the precipitation of α-Fe.
If it exceeds t%, the RFe 3 phase will precipitate and the magnetization will decrease, so the range of R of the ingot is set to 10 to 12 at%. A more preferable range of R of the ingot is 10 to 11 at%.
The composition range of Sm when the total amount of Sm is used as R is
For the same reason as above, it is set to 10 to 12 at%.

【0013】 鋳塊の溶体化処理、粗粉砕および水素
化、脱H2処理の後、窒化処理した後のR組成は、高温で
の処理中のR成分の蒸発により、鋳塊に比べて減少する
傾向にある。Rが、8at%未満ではα-Feの析出により保磁
力が低下し、また、10at%を超えるとRFe3相などが析出
して磁化が低下するため、窒化処理後のRの範囲は8〜10
at%とする。より好ましい窒化処理後のRの範囲は8.5〜
9.5at%である。
The R composition after solution treatment, coarse crushing and hydrogenation of the ingot, dehydrogenation H 2 treatment, and nitriding treatment is reduced as compared with the ingot due to evaporation of the R component during the treatment at high temperature. Tend to do. When R is less than 8 at%, the coercive force decreases due to α-Fe precipitation, and when it exceeds 10 at%, the RFe 3 phase and the like precipitate and the magnetization decreases, so the range of R after nitriding treatment is 8 ~Ten
At% More preferable range of R after nitriding treatment is 8.5 to
It is 9.5 at%.

【0014】Tは鉄属元素でFe、Coを含有する。F
eをTの50at%以上含有することが重要である。す
なわち、T中のFeが50%未満では十分な磁化が得ら
れず好ましくない。なお、CoをTの50%未満添加す
ることは、キュリー温度が上昇し、磁化と異方性磁界が
若干向上するので好ましい。CoをTの50%以上添加
することは、後工程の窒化処理における窒素原子の拡散
速度の低下をまねくので好ましくない。したがって、T
中のCoの置換率は50%以下とする。Tは、80at
%未満ではRFe3相などが析出して磁化が低下し、9
0at%を超えるとα−Feの析出により保磁力が低下
するため、80〜90at%とする。より好ましいTの
範囲は85〜90at%である。
T is an iron group element containing Fe and Co. F
It is important that e is contained at 50 at% or more of T. That is, when Fe in T is less than 50%, sufficient magnetization cannot be obtained, which is not preferable. It is preferable to add Co to less than 50% of T because the Curie temperature rises and the magnetization and the anisotropic magnetic field are slightly improved. It is not preferable to add Co in an amount of 50% or more of T, because it causes a decrease in the diffusion rate of nitrogen atoms in the nitriding treatment in the subsequent step. Therefore, T
The substitution rate of Co therein is 50% or less. T is 80 at
If it is less than 10%, the RFe 3 phase is precipitated and the magnetization is reduced.
If it exceeds 0 at%, the coercive force will decrease due to the precipitation of α-Fe, so it is set to 80 to 90 at%. A more preferable range of T is 85 to 90 at%.

【0015】 添加元素Mの効果は、水素化時に母相の
分解反応を完全に終了させずに、母相すなわちR2Fe17
を安定化して故意に残存させるのに有効な元素が望ま
れ、特に顕著な効果を持つものとして、Ni,Ga,Zr,Hfが
ある。また、Mのうち、Al,Ni,Ga,Zr,In,Sn,Hfは、脱H2
処理時の再結晶粒を0.1〜1μmのサイズにまで成長さ
せ、粉末に磁気異方性を付与するのに有用な元素であ
る。Ti,V,Cr,Nb,Mo,Ta,Wは、脱H2処理時の再結晶粒が1
μm以上に粗大化するのを防止し、結果として保磁力が
低下するのを抑制する効果を有する。従って、Mとして
は、上記の元素を目的に応じて組み合せて用いることが
得策である。添加量は、10at%を超えると強磁性でない
第2相が析出して磁化を低下することから、Mは10at%以
( 但し 0at% を除く )とする。より好ましいMの範囲は3at
%以下である。
As for the effect of the additional element M, an element effective for stabilizing the mother phase, that is, the R 2 Fe 17 phase and intentionally remaining, is desired, without completely completing the decomposition reaction of the mother phase during hydrogenation. , Ni, Ga, Zr, and Hf have particularly remarkable effects. Further, among M, Al, Ni, Ga, Zr, In, Sn, and Hf are de-H 2
It is an element useful for growing recrystallized grains at the time of processing to a size of 0.1 to 1 µm and imparting magnetic anisotropy to the powder. Ti, V, Cr, Nb, Mo, Ta, W have 1 recrystallized grains during H 2 removal treatment.
It has an effect of preventing coarsening to more than μm, and consequently suppressing a decrease in coercive force. Therefore, as M, it is advisable to use a combination of the above elements according to the purpose. The addition amount, since the second phase is not a ferromagnetic exceeds 10at% lowers the magnetization precipitated, M is set to 10at% or less <br/> under (excluding 0 atomic%). More preferable range of M is 3 at
% Or less.

【0016】 また、Nは、8at%未満では結晶磁気異方
性が弱いために高保磁力が得られず、また15at%を超え
るとTh2Zn17型構造またはTbCu7型構造が不安定となり、
母相がRNやα-Feに分解して好ましくないため、815at
%とする。より好ましいNの範囲は13〜15at%である。
Further, when N is less than 8 at%, high coercive force cannot be obtained due to weak crystal magnetic anisotropy, and when it exceeds 15 at%, the Th 2 Zn 17 type structure or the TbCu 7 type structure becomes unstable. ,
Since the matrix phase is not preferable to decompose the RN and α-Fe, 8 ~ 15 at
%. The more preferable range of N is 13 to 15 at%.

【0017】製造条件の限定理由 この発明において、平均粒度が20μm〜10mmの少なくと
95vol%以上がTh2Zn17型構造を有する化合物からなる
粗粉砕粉に限定した理由は、該化合物が95vol%未満であ
ると、磁気特性が低下する。より具体的には、混在する
第2相がα-Fe相の場合は保磁力が低下し、Rリッチ相の
場合は磁化が低下するためTh2Zn17型化合物の存在比を9
5vol%以上とした。体積比で95%以上のTh2Zn17型化合物
を有する粗粉砕粉を得るためには、鋳造のまま鋳塊を90
0〜1200℃の温度で1時間以上焼鈍するか、造塊工程で鋳
型の冷却速度を制御するなど、適宜選択できる。
[0017] In reasons for limiting the present invention in the manufacturing conditions, the reason for the average particle size is limited to coarsely pulverized powder in which at least 95 or more vol% consists of compounds having the Th 2 Zn 17 -type structure of 20μm~10mm, said compound is 95 vol If it is less than%, the magnetic properties deteriorate. More specifically, when the second phase are mixed it is alpha-Fe phase decreases the coercive force, in the case of R-rich phase abundance ratio of Th 2 Zn 17 type compounds because the magnetization is reduced 9
5 vol% or more. In order to obtain a coarsely pulverized powder having a volume ratio of Th 2 Zn 17 type compound of 95 % or more, the as-cast 90% ingot is used.
It can be appropriately selected by annealing at a temperature of 0 to 1200 ° C. for 1 hour or more, or controlling the cooling rate of the mold in the ingot making process.

【0018】この発明は、所要粒度の粗粉砕粉が、外観
上その大きさを変化させることなく微細結晶組織の集合
体が得られることを特徴とし、この点が従来のH2吸蔵
粉砕法と本質的に異なるところである。すなわち、Th
2Zn17型構造のR−T−M化合物を高温でH2ガスと反
応させると、RH23、α−Fe、T−M合金相などに
相分離し、さらにH2ガスを脱気により除去すると、再
度Th2Zn17型構造あるいは多くの積層欠陥を含んだ
構造であるTbCu7型構造のR−T−M化合物の再結
晶組織が得られる。
The present invention is characterized in that a coarsely pulverized powder having a required particle size can obtain an aggregate of a fine crystal structure without changing its size in appearance, and this point is different from the conventional H 2 storage pulverization method. It's essentially different. That is, Th
Degassed is reacted with H 2 gas to R-T-M compounds of 2 Zn 17 -type structure at high temperature, RH 2 ~ 3, α- Fe, phase separation, etc. T-M alloy phase, a further H 2 gas When removed by, the recrystallized structure of the R-T-M compound having a Th 2 Zn 17 type structure or a TbCu 7 type structure which is a structure containing many stacking faults is obtained again.

【0019】出発原料の粗粉砕方法は、従来の機械的な
粉砕方法やガスアトマイズ法のほか、H2吸蔵粉砕法で
粗粉砕してもよく、工程の簡略化のためにこのH2吸蔵
による粗粉砕法と、この発明による超微細結晶化のため
のH2ガス中加熱処理を組み合せて、同一装置内で連続
的に処理する方法も好ましい。この発明において、粗粉
砕粉の平均粒度を20μm〜10mmに限定した理由
は、20μm未満では粉末の酸化による磁性劣化のおそ
れがあり、10mmを超えると水素化処理および脱水素
処理において水素の拡散経路が長いため、短時間で原料
の中心部分まで均一に処理することが困難となるからで
ある。より好ましい平均粒度は50〜500μmであ
る。
The method of the coarsely pulverized starting material, in addition to the conventional mechanical grinding method or a gas atomization method may be coarsely pulverized with H 2 occlusion pulverization method, the crude by the H 2 storage in order to simplify the process A method in which the pulverization method and the heat treatment in H 2 gas for ultrafine crystallization according to the present invention are combined and continuously treated in the same apparatus is also preferable. In the present invention, the reason why the average particle size of the coarsely pulverized powder is limited to 20 μm to 10 mm is that if it is less than 20 μm, there is a risk of magnetic deterioration due to oxidation of the powder, and if it exceeds 10 mm, a hydrogen diffusion path in hydrogenation and dehydrogenation treatments. This is because it is difficult to uniformly process the central portion of the raw material in a short time because of the long time. A more preferable average particle size is 50 to 500 μm.

【0020】この発明において、H2ガスの単独または
不活性ガス(N2ガスを除く)との混合気中での加熱に
際し、H2分圧が0.1atm未満では前述の分解生成
の十分な効果が得られず、10atmを超えると処理設
備が大きくなりすぎ、工業生産コスト的に好ましくない
ため、H2分圧を0.1〜10atmとする。さらに好
ましい範囲は0.5〜1.5atmである。また、N2
ガスを除く不活性ガスとH2ガスとの混合気を前記H2
圧で用いる場合も、同様の理由により最大圧力は10a
tm以下とする。
In the present invention, when H 2 gas is heated alone or in a mixed gas with an inert gas (excluding N 2 gas), if the H 2 partial pressure is less than 0.1 atm, the above-mentioned decomposition and formation are sufficient. The effect cannot be obtained, and if it exceeds 10 atm, the processing equipment becomes too large, which is not preferable in terms of industrial production cost. Therefore, the H 2 partial pressure is set to 0.1 to 10 atm. A more preferable range is 0.5 to 1.5 atm. Also, N 2
Even when a mixture of an inert gas excluding gas and H 2 gas is used at the H 2 partial pressure, the maximum pressure is 10a for the same reason.
tm or less.

【0021】H2ガスの単独または不活性ガス(N2ガス
を除く)との混合気中での加熱処理温度は、750℃未
満ではR−T−M化合物がH2吸蔵するのみで、RH
23、α−Fe、T−M合金相などへの相分離が起こら
ず、また900℃を超えるとRH23が不安定となりか
つ生成物が粒成長して、脱H2後、超微細組織を有する
R−T−M化合物にすることが困難となるため、750
〜900℃の範囲とする。より好ましい温度範囲は77
5〜875℃である。また、加熱保持時間は、上記の分
解反応を充分に行わせるためには、30分〜8時間の加
熱保持が必要である。より好ましい加熱保持時間は1〜
4時間である。
If the heat treatment temperature of H 2 gas alone or in a mixture with an inert gas (excluding N 2 gas) is less than 750 ° C., the R-T-M compound only occludes H 2 and RH
2 to 3 , α-Fe, T-M alloy phase, etc. do not undergo phase separation, and if the temperature exceeds 900 ° C, RH 2 to 3 become unstable and the product undergoes grain growth, and after removing H 2 , Since it becomes difficult to form an R-T-M compound having an ultrafine structure, 750
It shall be in the range of up to 900 ° C. A more preferable temperature range is 77
5 to 875 ° C. Further, the heating and holding time is required to be 30 minutes to 8 hours in order to sufficiently carry out the above decomposition reaction. More preferable heating holding time is 1 to
4 hours.

【0022】この発明の粗粉砕粉をH2ガス中で加熱保
持する工程において、600〜750℃の温度域の昇温
速度を10℃/min〜200℃/minに限定した理
由は以下のとおりである。まず、昇温速度が10℃/m
in未満では600〜750℃の温度域でH2化される
時間が長くなるため、Th2Zn17型R−T−M化合物
がすべてRH23、α−Fe、T−M合金相などに相分
離し、母相すなわちR2Fe17-xx相が残存せず、脱H
2処理後の磁気的および結晶方位的異方性が失われてし
まう。また、一度に1kgを超える量の処理を行うとき
は、大きな反応熱のために、処理温度が局部的に最適処
理温度範囲を超えるために実用的な保磁力が得られない
場合がある。昇温速度を10℃/min以上にすれば、
600〜750℃の温度域で反応が充分に進行せず、母
相を残したまま750〜900℃のH2化温度域に達す
るため、脱H2処理後に磁気的および結晶方位的に大き
な異方性を持った粉末を得ることができる。また、75
0〜900℃の温度域における分解反応の反応熱による
温度上昇は小さく、多量処理時でも実用的な保磁力が得
やすい。従って、昇温速度は600〜750℃の温度域
で10℃/min以上とする必要がある。また、200
℃/minを超える速度は、赤外線炉などを用いても実
用的に実現困難であり、また可能であっても設備費が過
大となり好ましくない。よって、昇温速度を10℃/m
in〜200℃/minとする。より好ましい昇温速度
は20℃/min〜100℃/minである。
The reason why the temperature rising rate in the temperature range of 600 to 750 ° C. is limited to 10 ° C./min to 200 ° C./min in the step of heating and holding the coarsely pulverized powder of the present invention in H 2 gas is as follows. Is. First, the heating rate is 10 ° C / m
If it is less than in, the time to be converted to H 2 in the temperature range of 600 to 750 ° C. becomes long, so that all of the Th 2 Zn 17 type R-T-M compounds are RH 2 to 3 , α-Fe, T-M alloy phase, etc. Phase separation into the mother phase, that is, the R 2 Fe 17-x M x phase does not remain,
2 The magnetic and crystal orientation anisotropy after the treatment is lost. Further, when a treatment amount of more than 1 kg is performed at a time, a practical coercive force may not be obtained because the treatment temperature locally exceeds the optimum treatment temperature range due to a large reaction heat. If the temperature rising rate is 10 ° C / min or more,
Since the reaction does not proceed sufficiently in the temperature range of 600 to 750 ° C and reaches the H 2 conversion temperature range of 750 to 900 ° C with the mother phase remaining, there is a large difference in magnetic and crystal orientation after the H 2 removal treatment. It is possible to obtain a powder having a directionality. Also, 75
The temperature rise due to the reaction heat of the decomposition reaction in the temperature range of 0 to 900 ° C is small, and it is easy to obtain a practical coercive force even in a large amount of treatment. Therefore, the rate of temperature rise needs to be 10 ° C./min or more in the temperature range of 600 to 750 ° C. Also, 200
A rate of more than ° C / min is not preferable because it is practically difficult to achieve even if an infrared furnace or the like is used, and even if it is possible, the equipment cost becomes excessive. Therefore, the temperature rise rate is 10 ° C / m
in to 200 ° C./min. A more preferable temperature rising rate is 20 ° C / min to 100 ° C / min.

【0023】この発明において、粗粉砕粉を単独のH2
ガスまたは不活性ガス(N2ガスを除く)との混合気中
で加熱するのに際し、該ガス中で昇温するのではなく、
真空中または不活性ガス中で750℃以上の温度域に昇
温した後、炉内に単独のH2ガスまたは不活性ガス(N2
ガスを除く)との混合気を導入する理由は、上述の粗粉
砕粉をH2ガス中で加熱保持する工程の場合と同様に、
昇温中の母相の完全な分解反応を抑制し、また、反応熱
による過熱を防ぐことにより、大きな異方性と高保磁力
を備えた磁石粉末を得るためである。
In the present invention, the coarsely pulverized powder is treated with H 2 alone.
When heating in a gas mixture with a gas or an inert gas (excluding N 2 gas), instead of raising the temperature in the gas,
After heating to a temperature range of 750 ° C. or higher in a vacuum or an inert gas, a single H 2 gas or an inert gas (N 2
The reason for introducing the air-fuel mixture with (excluding gas) is the same as in the case of heating and holding the above-mentioned coarsely pulverized powder in H 2 gas.
This is to suppress the complete decomposition reaction of the mother phase during temperature rise and prevent overheating due to the heat of reaction to obtain a magnet powder having large anisotropy and high coercive force.

【0024】この発明において、脱H2処理時のH2分圧
は、1×10-2Torrを超えると処理に長時間を要し
好ましくないため、1×10-2Torr以下とする。H
2分圧がこの範囲であれば、N2ガスを除く不活性ガス中
でこの処理を行ってもよく、これにより高気圧に耐える
真空容器設備が不要となり、設備が簡略化でき経済的で
ある。H2ガスの脱H2処理の温度が750℃未満では、
RH23の分解が進行せず、目的とするTh2Zn17
またはTbCu7型化合物が得られず、また900℃を
超えるとTh2Zn17型またはTbCu7型化合物の再結
晶組織が得られるが、粒成長のため粗大な組織となり、
高保磁力が得られないため、750〜900℃の範囲と
する。より好ましい温度範囲は775〜875℃であ
る。また、加熱保持時間は、RH23の分解反応および
Th2Zn17型またはTbCu7型化合物の再結晶反応充
分に行わせるためには、30分〜8時間の加熱保持が必
要である。より好ましい加熱保持時間は30分〜2時間
である。
[0024] In the present invention, H 2 partial pressure at the time of de-H 2 treatment, 1 × 10 -2 for undesirable takes a long time Torr to exceed the handle, and less 1 × 10 -2 Torr. H
If the partial pressure of 2 is within this range, this treatment may be carried out in an inert gas other than N 2 gas, which eliminates the need for a vacuum vessel equipment that withstands high atmospheric pressure, and simplifies the equipment and is economical. When the temperature of the H 2 gas removal H 2 treatment is less than 750 ° C.,
The decomposition of RH 2 to 3 does not proceed, the target Th 2 Zn 17 type or TbCu 7 type compound cannot be obtained, and when the temperature exceeds 900 ° C., the recrystallized structure of the Th 2 Zn 17 type or TbCu 7 type compound is generated. Although it can be obtained, it becomes a coarse structure due to grain growth,
Since a high coercive force cannot be obtained, the temperature range is set to 750 to 900 ° C. A more preferable temperature range is 775 to 875 ° C. Further, the heating and holding time is required to be 30 minutes to 8 hours in order to sufficiently carry out the decomposition reaction of RH 2 to 3 and the recrystallization reaction of the Th 2 Zn 17 type or TbCu 7 type compound. A more preferable heating and holding time is 30 minutes to 2 hours.

【0025】 脱H2処理後の粉末の平均結晶粒径を0.05
0.5μmに限定した理由は、0.05μm未満では事実上生
成が困難であり、0.05μm未満の結晶が得られたとして
も特性上の利点がなく、また0.5μmを超えると単磁区粒
子臨界径より大きくなり、粉末の保磁力が減少して永久
磁石用粉末として好ましくないためである。より好まし
い平均結晶粒径は0.1〜0.5μmである。
The average crystal grain size of the powder after the H 2 removal treatment is 0.05
Reason for limiting the ~ 0.5 [mu] m are difficult to effectively generate less than 0.05 .mu.m, single domain particles the critical size and without any advantage of the characteristics, also more than 0.5 [mu] m as crystals of less than 0.05 .mu.m was obtained This is because it becomes larger and the coercive force of the powder decreases, which is not preferable as a powder for permanent magnets. A more preferable average crystal grain size is 0.1 to 0.5 μm.

【0026】この発明において、水素化、脱H2処理と
窒化処理は、同一の処理炉内で連続的に行ってもよく、
また、脱H2処理後に一旦炉外に取り出し、別の処理炉
を用いて窒化処理を行ってもよい。後者の場合、窒化処
理を行う前に、必要に応じて粉砕、整粒を行い、粉末の
粒径を調整することは均一な窒化処理を行う上で好まし
い。窒化処理時のN2圧力を0.5〜1000atmに
限定した理由は、0.5atm未満では窒化反応が遅
く、圧力を上げると反応は速やかに進行するが、100
0atmを超えると処理設備が大きくなりすぎ、工業生
産コスト的に好ましくないためである。より好ましい圧
力範囲は1〜50atmである。窒化処理時の温度を3
00〜650℃に限定した理由は、300℃未満では窒
化が進行せず、650℃を超えるとR2Fe17-xx化合
物がRNとFe−Mに分解し、磁気特性の劣化を招来す
るためである。より好ましい温度範囲は、400〜50
0℃である。また、窒化処理時の保持時間は、30分未
満では充分な窒化が進行せず、また50時間を超えると
分解が起こり、磁気特性の劣化を招来するため30分〜
50時間とする。より好ましい保持時間は2〜8時間で
ある。
In the present invention, the hydrogenation, H 2 removal treatment and nitriding treatment may be carried out continuously in the same treatment furnace.
In addition, after the H 2 removal treatment, it may be once taken out of the furnace and subjected to nitriding treatment using another treatment furnace. In the latter case, it is preferable to perform pulverization and sizing to adjust the particle size of the powder as needed before performing the nitriding treatment in order to perform a uniform nitriding treatment. The reason for limiting the N 2 pressure during the nitriding treatment to 0.5 to 1000 atm is that the nitriding reaction is slow when the pressure is less than 0.5 atm, and the reaction progresses rapidly when the pressure is increased.
This is because if it exceeds 0 atm, the processing equipment becomes too large, which is not preferable in terms of industrial production cost. A more preferable pressure range is 1 to 50 atm. Nitriding temperature is 3
The reason for limiting the temperature to 00 to 650 ° C. is that nitriding does not proceed below 300 ° C., and if it exceeds 650 ° C., the R 2 Fe 17-x M x compound decomposes into RN and Fe-M, resulting in deterioration of magnetic properties. This is because A more preferable temperature range is 400 to 50.
It is 0 ° C. If the holding time during the nitriding treatment is less than 30 minutes, sufficient nitriding will not proceed, and if it exceeds 50 hours, decomposition will occur, resulting in deterioration of magnetic properties.
50 hours. A more preferable holding time is 2 to 8 hours.

【0027】この発明において、ボンド磁石として複雑
形状や薄肉形状の磁石の成形を高精度に行うためには、
磁石粉末の粒径を充分小さくする必要があり、一方、粉
末粒径を小さくしすぎると、比表面積増大にともなって
多量の樹脂をバインダーとして使用する必要が生じるた
め、充填密度が低下し好ましくなく、従って樹脂と混錬
する粉末の粒径を3〜500μmに限定する。
In the present invention, in order to accurately form a magnet having a complicated shape or a thin wall shape as a bond magnet,
It is necessary to make the particle size of the magnet powder sufficiently small. On the other hand, if the particle size of the powder is too small, it is necessary to use a large amount of resin as a binder as the specific surface area increases. Therefore, the particle size of the powder to be kneaded with the resin is limited to 3 to 500 μm.

【0028】この発明におけるR−Fe−M−N系ボン
ド磁石は、以下に示す圧縮成形、射出成形押し出し成
形、圧延成形、樹脂含浸法など、公知のいずれの製造方
法であってもよい。圧縮成形の場合は、磁石粉末に熱硬
化性樹脂、カップリング剤、滑剤などを添加混錬した
後、磁界中で圧縮成形後加熱し、樹脂を硬化して得られ
る。射出成形、押し出し成形、圧延成形の場合は、磁石
粉末に熱可塑性樹脂、カップリング剤、滑剤などを添加
混錬した後、磁界中で射出成形、押し出し成形、圧延成
形のいずれかの方法で成形して得られる。樹脂含侵法に
おいては、磁石粉末を磁界中で圧縮成形後、必要に応じ
て熱処理した後、熱硬化性樹脂を含侵し、加熱して樹脂
を硬化させ得る。あるいは、磁石粉末を圧縮成形後、必
要に応じて熱処理した後、熱可塑性樹脂を含侵して得
る。
The R—Fe—M—N bond magnet according to the present invention may be manufactured by any known manufacturing method such as compression molding, injection molding extrusion molding, roll molding, and resin impregnation method shown below. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to magnet powder, and then compression molding and heating in a magnetic field to cure the resin. In the case of injection molding, extrusion molding, or roll molding, after adding thermoplastic resin, coupling agent, lubricant, etc. to the magnet powder and kneading, molding by injection molding, extrusion molding, or roll molding in a magnetic field. Obtained. In the resin impregnation method, the magnet powder may be compression-molded in a magnetic field, and optionally heat-treated, then impregnated with a thermosetting resin and heated to cure the resin. Alternatively, it may be obtained by compression-molding the magnet powder, optionally heat-treating it, and then impregnating it with a thermoplastic resin.

【0029】この発明において、ボンド磁石中の磁石粉
末の充填率は、前記製造方法により異なるが、70〜9
9.5wt%であり、残部0.5〜30wt%が樹脂そ
の他である。圧縮成形法の場合、磁石粉末の充填率は9
5〜99.5wt%、射出成形法の場合、90〜95w
t%、樹脂含侵法の場合、96〜99.5wt%が好ま
しい。この発明において、バインダーとして用いる合成
樹脂は熱硬化性、熱可塑性のいずれでも使用できるが、
熱的に安定な樹脂が好ましく、例えばポリアミド、ポリ
イミド、ポリエステル、フェノール樹脂、フッソ樹脂、
ケイ素樹脂、エポキシ樹脂などが適宜選択される。
In the present invention, the filling rate of the magnet powder in the bonded magnet depends on the manufacturing method, but is 70-9.
It is 9.5 wt% and the balance 0.5 to 30 wt% is resin or the like. In the case of compression molding, the filling rate of magnet powder is 9
5-99.5 wt%, 90-95w in the case of injection molding method
t%, in the case of the resin impregnation method, 96 to 99.5 wt% is preferable. In the present invention, the synthetic resin used as the binder may be either thermosetting or thermoplastic,
A thermally stable resin is preferable, for example, polyamide, polyimide, polyester, phenol resin, fluorine resin,
Silicon resin, epoxy resin, etc. are appropriately selected.

【0030】[0030]

【作用】この発明は、水素処理法によりR−T−N系ボ
ンド磁石を製造する方法において、水素化処理時の母相
の分解を抑制する効果を持つ元素Mを添加することによ
り、母相の一部を微細に分散した状態で残存させ、つい
で脱H2処理時の母相の再結合を、残存した母相を核と
して起こらせ、さらに窒化処理を行うことにより、結晶
方位の揃った異方性ボンド磁石用粉末を製造することが
できる。また、この発明は、水素処理法により、R−T
−M−N系異方性ボンド磁石を製造する方法において、
水素化時に特定の温度域を充分、速やかに通過させて、
あるいは真空中または不活性ガス中で特定の温度域を昇
温させて、上記の母相の残存を確実にし、磁気特性のす
ぐれたR−T−M−N系異方性ボンド磁石用粉末を処理
量にかかわらず再現性よく製造でき、これを樹脂で結合
することにより、容易にR−Fe−M−N系異方性ボン
ド磁石を製造できる。
According to the present invention, in the method for producing an RTN-based bonded magnet by the hydrogen treatment method, by adding the element M having the effect of suppressing the decomposition of the mother phase during the hydrogenation treatment, A part thereof was finely dispersed, and then the recombination of the mother phase at the time of the H 2 removal treatment was caused by the remaining mother phase as a nucleus, and the nitriding treatment was performed to make the crystal orientation uniform. A powder for anisotropic bonded magnets can be manufactured. In addition, the present invention provides an RT method by a hydrogen treatment method.
In the method for producing an MN-based anisotropic bonded magnet,
When hydrogenating, it passes through a specific temperature range sufficiently quickly.
Alternatively, by raising the temperature in a specific temperature range in a vacuum or in an inert gas, it is possible to ensure that the above mother phase remains, and to obtain an R-T-M-N anisotropic bonded magnet powder having excellent magnetic properties. It can be manufactured with good reproducibility regardless of the amount of treatment, and by bonding this with a resin, an R—Fe—M—N anisotropic bonded magnet can be easily manufactured.

【0031】実施例1 高周波溶解法によって得られた表1に示すNo.1〜1
0の組成の鋳塊を、1100℃、24時間溶体化処理し
て、鋳塊中のTh2Zn17型化合物を95vol%以上
となした後、Arガス雰囲気中でスタンプミルにて平均
粒度100μmに粗粉砕し、この粗粉砕粉を真空中で表
2に示す水素化処理温度に昇温し、温度を保持した後、
2分圧が1.0atmのH2ガスを炉内に導入し、表2
に示す水素化条件で水素化した後、さらにH2分圧が1
×10-4Torrの雰囲気で表2に示す脱H2条件で脱
2処理を行い、平均結晶粒径が0.3μmの集合組織
を有する粉体を得た。その後、この粉体をディスクミル
で45μm以下に粉砕し、さらに圧力3atmのN2
ス中で475℃、4時間の窒化処理を行なった後冷却し
た。得られた合金粉末の組成を表1に示す。該粉末に
2.0wt%のエポキシ樹脂を混合し、10kOeの磁
界中で3.0ton/cm2の圧力で圧縮成形し、さら
に温度150℃、1時間の条件で樹脂を硬化させてボン
ド磁石を作成した。得られたボンド磁石の磁気特性を表
2に示す。
Example 1 No. 1 shown in Table 1 obtained by the high frequency melting method. 1-1
The ingot of composition 0 was subjected to solution treatment at 1100 ° C. for 24 hours to make the Th 2 Zn 17 type compound in the ingot 95 vol% or more, and then the average particle size was 100 μm in a stamp mill in an Ar gas atmosphere. After coarsely pulverizing into powder, the coarsely pulverized powder was heated in vacuum to the hydrotreating temperature shown in Table 2 and maintained at that temperature.
H 2 gas with H 2 partial pressure of 1.0 atm was introduced into the furnace, and
After hydrogenation under the hydrogenation conditions shown in, the H 2 partial pressure is 1
A H 2 removal treatment was performed under an H 2 removal condition shown in Table 2 in an atmosphere of × 10 -4 Torr to obtain a powder having a texture with an average crystal grain size of 0.3 μm. Then, the powder was pulverized to a size of 45 μm or less by a disc mill, further subjected to nitriding treatment at 475 ° C. for 4 hours in N 2 gas at a pressure of 3 atm, and then cooled. The composition of the obtained alloy powder is shown in Table 1. 2.0 wt% of an epoxy resin was mixed with the powder, the mixture was compression-molded in a magnetic field of 10 kOe at a pressure of 3.0 ton / cm 2 , and the resin was cured at a temperature of 150 ° C. for 1 hour to form a bond magnet. Created. Table 2 shows the magnetic properties of the obtained bonded magnet.

【0032】高周波溶解法によって得られた表1に示す
No.11〜12の組成の鋳塊を、1100℃、24時
間溶体化処理して、鋳塊中のTh2Zn17型化合物を9
5vol%以上となした後、Arガス雰囲気中でスタン
プミルにて平均粒度100μmに粗粉砕し、H2分圧が
1.0atmのH2ガス中で室温から保持温度まで昇温
速度5℃/minで昇温し、さらに表2に示す脱H2
件で脱H2処理を行い、平均結晶粒径が0.3μmの集
合組織を有する粉体を得た。その後、この粉体をディス
クミルで45μm以下に粉砕し、さらに圧力3atmの
2ガス中で475℃、4時間の窒化処理を行なった後
冷却した。得られた合金粉末の組成を表1に示す。該粉
末に2.0wt%のエポキシ樹脂を混合し、10kOe
の磁界中で3.0ton/cm2の圧力で圧縮成形し、
さらに温度150℃、1時間の条件で樹脂を硬化させて
ボンド磁石を作成した。得られたボンド磁石の磁気特性
を表2に示す。
No. 1 shown in Table 1 obtained by the high frequency melting method. The ingots having the compositions of 11 to 12 were subjected to solution treatment at 1100 ° C. for 24 hours to remove the Th 2 Zn 17 type compound in the ingot by 9
After adjusting the content to 5 vol% or more, coarse pulverization was performed in an Ar gas atmosphere with a stamp mill to an average particle size of 100 μm, and the temperature rising rate from room temperature to the holding temperature was 5 ° C./in H 2 gas with an H 2 partial pressure of 1.0 atm. The temperature was raised at min, and the H 2 removal treatment was performed under the H 2 removal conditions shown in Table 2 to obtain a powder having a texture with an average crystal grain size of 0.3 μm. Then, this powder was pulverized to a size of 45 μm or less by a disk mill, further subjected to nitriding treatment at 475 ° C. for 4 hours in N 2 gas at a pressure of 3 atm and then cooled. The composition of the obtained alloy powder is shown in Table 1. 2.0 wt% of epoxy resin was mixed with the powder to obtain 10 kOe.
Compression molding at a pressure of 3.0 ton / cm 2 in a magnetic field of
Further, the resin was cured at a temperature of 150 ° C. for 1 hour to prepare a bonded magnet. Table 2 shows the magnetic properties of the obtained bonded magnet.

【0033】比較例1 高周波溶解法によって得られた表1に示すNo.13〜
14の組成の鋳塊を、1100℃、24時間溶体化処理
して、鋳塊中のTh2Zn17型化合物を95vol%以
上となした後、実施例と同様の粗粉砕、水素処理、脱H
2処理を行い、平均結晶粒径が0.3μmの集合組織を
有する粉体を得た。その後、この粉体をディスクミルで
45μm以下に粉砕し、実施例と同様の窒化処理を行
い、ボンド磁石を作成した。得られたボンド磁石は磁気
的に等方性であった。
Comparative Example 1 No. 1 shown in Table 1 obtained by the high frequency melting method. 13-
The ingot having the composition of 14 was subjected to solution treatment at 1100 ° C. for 24 hours to make the Th 2 Zn 17 type compound in the ingot 95 vol% or more, and then coarse pulverization, hydrogen treatment and de-soldering similar to those in the example. H
Two treatments were performed to obtain a powder having a texture with an average crystal grain size of 0.3 μm. Then, this powder was pulverized to a size of 45 μm or less by a disk mill, and the same nitriding treatment as in the example was carried out to prepare a bonded magnet. The obtained bonded magnet was magnetically isotropic.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】この発明によれば、水素処理法によりR-
T-N系ボンド磁石を製造する方法において、水素化処理
時の母相の分解を抑制する効果を持つ元素Mを添加する
ことにより、母相の一部を微細に分散した状態で残存さ
せ、ついで脱H2処理時の母相の再結合を、残存した母相
を核として起こさせて、さらに窒化処理を施し、結晶方
位のそろった異方性ボンド磁石用粉末を製造することが
できる。また、この発明によれば、水素処理法によりR-
T-M-N系異方性ボンド磁石を製造する方法において、水
素化時に特定の温度域を充分、速やかに通過させて、あ
るいは、真空中または不活性ガス中で特定の温度域を昇
温させて、上記の母相の残存を確実ならしめ、磁気特性
のすぐれたR-T-M-N系異方性ボンド磁石用粉末を処理量
にかかわらず再現性よく製造でき、これを樹脂で結合す
ることにより、容易にR-T-M-N系異方性ボンド磁石を製
造できる。
According to the present invention, R-
In the method for producing a TN-based bonded magnet, by adding an element M that has an effect of suppressing the decomposition of the mother phase during the hydrogenation treatment, a part of the mother phase remains in a finely dispersed state, and then the demagnetization is performed. It is possible to produce a powder for anisotropic bonded magnets in which crystal orientations are uniform, by causing recombination of the mother phase at the time of H 2 treatment to occur with the remaining mother phase as a nucleus and further performing a nitriding treatment. Further, according to the present invention, R-
In the method for producing a TMN-based anisotropic bonded magnet, a specific temperature range is sufficiently and quickly passed during hydrogenation, or a specific temperature range is raised in a vacuum or an inert gas. certainty if tighten the remaining matrix can be reproducibly manufactured irrespective of excellent RTMN based anisotropic bonded powder throughput magnet magnetic properties, by this binding with a resin, easily R- T -Manufacture MN-based anisotropic bonded magnets.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−20817(JP,A) 特開 平8−316018(JP,A) 特開 平6−172936(JP,A) 特開 平6−279915(JP,A) 特開 平5−166615(JP,A) 山元 洋 他,Sm−Fe−Co−V 系窒化化合物とそのボンド磁石の磁気特 性,電気学会研究会資料 マグネティッ クス研究会,日本,社団法人 電気学 会,1993年12月 2日,MAG−93− 244〜253,11−19 (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 B22F 1/00 H01F 1/04 H01F 1/08 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-6-20817 (JP, A) JP-A-8-316018 (JP, A) JP-A-6-172936 (JP, A) JP-A-6- 279915 (JP, A) JP-A-5-166615 (JP, A) Hiroshi Yamamoto et al., Magnetic properties of Sm-Fe-Co-V based nitride compounds and their bonded magnets, Institute of Electrical Engineers of Japan Material Magnetics Research Group, Japan Electrotechnical Society, December 2, 1993, MAG-93-244 to 253, 11-19 (58) Fields investigated (Int.Cl. 7 , DB name) H01F 41/02 B22F 1/00 H01F 1/04 H01F 1/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(R:Yを含む希土類元素の少なくとも1種
でかつSmを50%以上含有)10〜12at%、T(T:FeあるいはFe
の一部を50%以下のCoで置換)80〜90at%、M(M;Al,Ti,V,C
r,Ni,Ga,Zr,Nb,Mo,In,Sn,Hf,Ta,Wのうち1種または2種以
上)10at%以下( 但し 0at% を除く )からなる鋳塊を、900〜1
200℃で1時間以上の溶体化処理後、平均粒度が20μm〜1
0mmの少なくとも95vol%以上がTh2Zn17型構造を有する化
合物からなる粗粉砕粉となした後、前記粗粉砕粉を0.1
〜10atmのH2ガスまたはそれに等しいH2分圧を有する不
活性ガス(N2ガスを除く、但し全圧力は10atm以下)中
で、600〜750℃の温度域を昇温速度10℃/min〜200℃/mi
nで昇温後、750〜900℃に30分〜8時間加熱保持し、さら
にH2分圧1×10-2Torr以下にて750〜900℃に30分〜8時間
加熱保持する脱H2処理を行い、次いで冷却して平均結晶
粒径が0.05〜0.5μmであり、かつ個々の粉末を形成する
微細結晶の方位が一定の方向にそろった集合組織を有す
る粉体となし、次に前記粉体を3〜500μmに粉砕、整粒
した後、該粉体をN2圧力0.5〜1000atmのN2ガス中で300
〜650℃に30分〜50時間保持し、R 8〜10at%、T 65〜8
2at%、M 10at%以下、N 8〜15at%を含有し、Th2Zn17
構造またはTbCu7型構造を有する合金粉末を得た後、該
合金粉末を3〜500μmに粉砕、整粒した後、樹脂を混合
して磁界中で成形することを特徴とするR-T-M-N系異方
性ボンド磁石の製造方法。
1. R (at least one of rare earth elements including R: Y and containing 50% or more of Sm) 10 to 12 at%, T (T: Fe or Fe)
(A part of Co is replaced by 50% or less of Co) 80 to 90 at%, M (M; Al, Ti, V, C
r, Ni, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and one or more) ingot made of 10at% or less (excluding 0 atomic%) of W, from 900 to 1
After solution heat treatment at 200 ℃ for 1 hour or more, the average particle size is 20μm-1
At least 95 vol% of 0 mm was made into a coarsely pulverized powder consisting of a compound having a Th 2 Zn 17 type structure, and then the coarsely pulverized powder was mixed with 0.1
~ 10 atm H 2 gas or an inert gas with H 2 partial pressure equal to it (excluding N 2 gas, but the total pressure is 10 atm or less) in the temperature range of 600 ~ 750 ℃ heating rate 10 ℃ / min ~ 200 ℃ / mi
After heating at n, then held heated for 30 minutes to 8 hours 750 to 900 ° C., further H 2 partial pressure of 1 × 10 -2 Torr de H 2 for 30 minutes to 8 hours heating held at 750 to 900 ° C. Below The powder is treated and then cooled to have an average crystal grain size of 0.05 to 0.5 μm, and fine powder forming individual powder has a texture having a uniform orientation in a certain direction to obtain a powder having the following texture. After pulverizing the powder to 3 to 500 μm and sizing, the powder is squeezed to 300 in N 2 gas at N 2 pressure of 0.5 to 1000 atm.
Hold at ~ 650 ° C for 30 minutes ~ 50 hours, R8 ~ 10at%, T65 ~ 8
2at%, M 10at% or less, containing N 8-15at%, after obtaining an alloy powder having a Th 2 Zn 17 type structure or a TbCu 7 type structure, the alloy powder was pulverized to 3 to 500 μm and sized. Then, a method for producing an RTMN-based anisotropic bonded magnet, which comprises mixing a resin and molding in a magnetic field.
【請求項2】 R(R:Yを含む希土類元素の少なくとも1種
でかつSmを50%以上含有)10〜12at%、T(T:FeあるいはFe
の一部を50%以下のCoで置換)80〜90at%、M(M;Al,Ti,V,C
r,Ni,Ga,Zr,Nb,Mo,In,Sn,Hf,Ta,Wのうち1種または2種以
上)10at%以下( 但し 0at% を除く )からなる鋳塊を、900〜1
200℃で1時間以上の溶体化処理後、平均粒度が20μm〜1
0mmの少なくとも95vol%以上がTh2Zn17型構造を有する化
合物からなる粗粉砕粉となした後、前記粗粉砕粉を真空
中または不活性ガス中で750℃以上の温度域に昇温した
後、炉内に0.1〜10atmのH2ガスまたはそれに等しいH2
圧を有する不活性ガス(N2ガスを除く、但し、全圧力は1
0atm以下)を導入し、さらに750〜900℃に30分〜8時間加
熱保持し、さらにH2分圧1×10-2Torr以下にて750〜900
℃に30分〜8時間加熱保持する脱H2処理を行い、次いで
冷却して平均結晶粒径が0.05〜0.5μmであり、かつ個々
の粉末を形成する微細結晶の方位が一定の方向にそろっ
た集合組織を有する粉体となし、次に該粉体を3〜500μ
mに粉砕、整粒した後、前記粉体をN2圧力0.5〜1000atm
のN2ガス中で300〜650℃に30分〜50時間保持し、R 8
10at%、T65〜82at%、M 10at%以下、N 8〜15at%を含有
し、Th2Zn17型構造またはTbCu7型構造を有する合金粉末
を得た後、該合金粉末を3〜500μmに粉砕、整粒した
後、樹脂を混合して磁界中で成形することを特徴とする
R-T-M-N系異方性ボンド磁石の製造方法。
2. R (at least one of rare earth elements including R: Y and containing 50% or more of Sm) 10 to 12 at%, T (T: Fe or Fe)
(A part of Co is replaced by 50% or less of Co) 80 to 90 at%, M (M; Al, Ti, V, C
r, Ni, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and one or more) ingot made of 10at% or less (excluding 0 atomic%) of W, from 900 to 1
After solution heat treatment at 200 ℃ for 1 hour or more, the average particle size is 20μm-1
After forming a coarsely pulverized powder of 0 mm at least 95 vol% or more of a compound having a Th 2 Zn 17 type structure, after heating the coarsely pulverized powder to a temperature range of 750 ° C. or higher in a vacuum or an inert gas, , 0.1 to 10 atm of H 2 gas or an inert gas having H 2 partial pressure equal to it (excluding N 2 gas, but the total pressure is 1
(0 atm or less), and further heat and hold at 750 to 900 ° C for 30 minutes to 8 hours, and 750 to 900 at H 2 partial pressure of 1 × 10 -2 Torr or less.
℃ to perform de H 2 process of heating for 30 minutes to 8 hours, then the average grain size and cooling is 0.05 to 0.5 [mu] m, and the orientation of microcrystals to form individual powder aligned in a predetermined direction Powder with a texture
After pulverizing and sizing to m, the powder is N 2 pressure 0.5 ~ 1000atm
In N 2 gas for 30 minutes to 50 hours at 300 to 650 ℃, R 8 to
10at%, T65~82at%, M 10at % or less, containing N 8~15at%, after obtaining an alloy powder having a Th 2 Zn 17 type structure or the TbCu 7 structure, the alloy powder 3~500μm Characterized by crushing and sizing, then mixing the resin and molding in a magnetic field
Manufacturing method of RTMN type anisotropic bonded magnet.
JP19375894A 1994-07-25 1994-07-25 Method for producing RTMN based anisotropic bonded magnet Expired - Lifetime JP3504735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19375894A JP3504735B2 (en) 1994-07-25 1994-07-25 Method for producing RTMN based anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375894A JP3504735B2 (en) 1994-07-25 1994-07-25 Method for producing RTMN based anisotropic bonded magnet

Publications (2)

Publication Number Publication Date
JPH0837122A JPH0837122A (en) 1996-02-06
JP3504735B2 true JP3504735B2 (en) 2004-03-08

Family

ID=16313327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375894A Expired - Lifetime JP3504735B2 (en) 1994-07-25 1994-07-25 Method for producing RTMN based anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP3504735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777501B1 (en) 1998-03-09 2004-08-17 Daikin Industries Ltd. Stabilized fluorine-containing polymer and method for stabilizing fluorine containing polymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317646B2 (en) * 1996-12-04 2002-08-26 ティーディーケイ株式会社 Manufacturing method of magnet
CN1144240C (en) 1998-03-27 2004-03-31 东芝株式会社 Magnet material and its making method, sintered magnet using the same thereof
KR20010022276A (en) 1998-05-26 2001-03-15 마쯔노고오지 Nitride type rare-earth permanent magnet material and bonded magnet using the same
JP4737161B2 (en) * 2006-09-08 2011-07-27 日亜化学工業株式会社 Rare earth-iron-nitrogen based magnetic powder and method for producing the same
JP6598700B2 (en) * 2015-11-19 2019-10-30 住友電気工業株式会社 Rare earth magnet manufacturing method and rare earth magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山元 洋 他,Sm−Fe−Co−V系窒化化合物とそのボンド磁石の磁気特性,電気学会研究会資料 マグネティックス研究会,日本,社団法人 電気学会,1993年12月 2日,MAG−93−244〜253,11−19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777501B1 (en) 1998-03-09 2004-08-17 Daikin Industries Ltd. Stabilized fluorine-containing polymer and method for stabilizing fluorine containing polymer
US7151141B2 (en) 1998-03-09 2006-12-19 Daikin Industries Ltd. Stabilized fluorine-containing polymer and method for stabilizing fluorine-containing polymer

Also Published As

Publication number Publication date
JPH0837122A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JPH01704A (en) Rare earth-iron permanent magnet
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
WO1999062081A1 (en) Nitride type rare-earth permanent magnet material and bonded magnet using the same
JP3317646B2 (en) Manufacturing method of magnet
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3504735B2 (en) Method for producing RTMN based anisotropic bonded magnet
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH0320046B2 (en)
JPH045740B2 (en)
JPH1092617A (en) Permanent magnet and its manufacture
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3469496B2 (en) Manufacturing method of magnet material
JPH045739B2 (en)
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP3623564B2 (en) Anisotropic bonded magnet
JPH0845718A (en) Magnetic material and its manufacture
JP3148514B2 (en) Method for producing R-Fe-M-N bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH11297518A (en) Pare-earth magnet material
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

EXPY Cancellation because of completion of term