JPS63227701A - Production of permanent magnet mode of rare earth metal-containing alloy - Google Patents

Production of permanent magnet mode of rare earth metal-containing alloy

Info

Publication number
JPS63227701A
JPS63227701A JP6120487A JP6120487A JPS63227701A JP S63227701 A JPS63227701 A JP S63227701A JP 6120487 A JP6120487 A JP 6120487A JP 6120487 A JP6120487 A JP 6120487A JP S63227701 A JPS63227701 A JP S63227701A
Authority
JP
Japan
Prior art keywords
powder
alloy
rare earth
magnetic anisotropy
compacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6120487A
Other languages
Japanese (ja)
Inventor
Mitsuru Noguchi
満 野口
Naomasa Kimura
直正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6120487A priority Critical patent/JPS63227701A/en
Publication of JPS63227701A publication Critical patent/JPS63227701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a permanent magnet made of rare earth metal contg. alloy having excellent magnetic characteristic by compacting green powder after imparting to the alloy powder containing rare earth metal having strong magnetic anisotropy, uniaxial magnetic anisotropy and executing heat treatment and magnetization after sintering. CONSTITUTION:The rare earth element contg. alloy of Nb-Fe-B alloy, etc., having strong magnetic anisotropy is melted by vacuum arc melting method. Next, the molten alloy is made to about <=5mum of the powder by atomizing method, etc., under non-oxidizing atmosphere. The above alloy powder 1 obtd. by this method is packed in a compacting vessel 2 made of elastic material of rubber, etc. This is put in the magnetic field generated by a field coil 3 and uniaxial magnetic anisotropy is imparted thereto by the field H. Successively, the above powder 1 together with the compacting vessel 2 is compacted by cold static hydraulic pressing method at 0.8-2.0 ton/cm<2> compacting pressure. The green compact obtd. by this method is sintered at about 1000-1100 deg.C. Successively, after executing the ageing heat treatment to the sintered product at about 400-600 deg.C, it is magnetized by the magnetic field of about >=14 KOe.

Description

【発明の詳細な説明】 LiLユ皿旦±1 本発明は、粉末冶金法による希土類元素含有合金製永久
磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a permanent magnet made of a rare earth element-containing alloy by a powder metallurgy method.

お  び  の 1  ・ 磁気異方性の大きな希土類元素含有合金で形成された永
久磁石、特にNd −Fe −B系合金で形成された永
久磁石はnいエネルギー槓を有することが知られている
。この希土類元素含有合金製永久磁石は、第1図に示す
工程で粉末冶金法によって製造される。留意すべきは、
圧粉体に一軸性の磁気異方性を付与づるために磁場中で
合金粉末の圧粉成形を行なっている点である。この磁場
成形の状態を第2図に示している。
1. It is known that permanent magnets made of alloys containing rare earth elements with large magnetic anisotropy, especially permanent magnets made of Nd-Fe-B alloys, have low energy levels. This rare earth element-containing alloy permanent magnet is manufactured by powder metallurgy in the steps shown in FIG. It should be noted that
The point is that the alloy powder is compacted in a magnetic field in order to impart uniaxial magnetic anisotropy to the powder compact. The state of this magnetic field shaping is shown in FIG.

図中、01は常磁性材料で形成された金型を示し、02
、03はそれぞれ非磁性材料で形成された上バンヂ、下
パンチを示している。金型01のキャビfイ内に装入さ
れた粉体04は、界磁コイル06によって形成される!
i磁場中上、■ζパンチ02.03により圧縮される。
In the figure, 01 indicates a mold made of paramagnetic material, and 02
, 03 indicate an upper bandage and a lower punch, respectively, which are made of non-magnetic material. The powder 04 charged into the cavity f of the mold 01 is formed by the field coil 06!
i Magnetic field middle top, ■ Compressed by ζ punch 02.03.

この間、粉体04の各粒子05は磁界目方向に一軸磁気
異方性が誘導される。
During this time, uniaxial magnetic anisotropy is induced in each particle 05 of the powder 04 in the direction of the magnetic field.

斯様に、磁界方向に対して1角な方向で粉体04の圧縮
を行なった場合、各粒子05の一軸磁気異方性に“ゆら
ぎ”がなく、磁気特性の良好な磁石を得ることができる
。しかしながら、この方法で環状磁石を製造するには、
中心線方向に一軸磁気異方性を誘導できないという欠点
がある。
In this way, when the powder 04 is compressed in a direction perpendicular to the direction of the magnetic field, there is no "fluctuation" in the uniaxial magnetic anisotropy of each particle 05, and a magnet with good magnetic properties can be obtained. can. However, to manufacture a ring magnet using this method,
The drawback is that uniaxial magnetic anisotropy cannot be induced in the centerline direction.

この欠点を解消するためには、第3図図示の如く、圧縮
方向と磁界方向とを一致さければ良い。
In order to eliminate this drawback, it is sufficient to make the compression direction and the magnetic field direction coincide, as shown in FIG.

ところが、この圧粉成形方法では磁場により各粒子05
に誘導された一軸磁気異方性が圧縮変形によってゆらぎ
、16石の磁気特性が儂われる不具合がある。
However, in this powder compaction method, each particle 05
There is a problem in that the uniaxial magnetic anisotropy induced in the crystal fluctuates due to compressive deformation, and the magnetic properties of the 16 stones change.

ユM盈  °lするための−7および 本発明は斯かる技術的前頭の下で創案されたものであり
、その目的とする処は、−軸磁気異方性が所望の41i
f!方向に付与され、磁気特性の優れた希土類元素含有
合金製永久磁石を得る点にある。
-7 and the present invention have been devised under such technical considerations, and the purpose thereof is to obtain the desired 41i-axis magnetic anisotropy.
f! The object of the present invention is to obtain a permanent magnet made of an alloy containing a rare earth element and having excellent magnetic properties.

この目的は、希土類元素を含Tj する磁気異方性の大
きな合金の粉末を弾性材料製成形容器内に充填し、これ
を磁場中に置いて一軸磁気異方性を付与し、次いで成形
容器ごと該粉末を冷開静水圧プレス法で圧粉成形し、得
られた圧粉体を焼結した後、これに熱処理を施し、さら
に着磁させることによって達成される。
The purpose of this is to fill a molded container made of an elastic material with powder of an alloy containing rare earth elements and having a large magnetic anisotropy, place it in a magnetic field to impart uniaxial magnetic anisotropy, and then place the molded container together. This is achieved by compacting the powder using a cold-open isostatic pressing method, sintering the obtained compact, heat-treating it, and further magnetizing it.

粉末の丹粉成形方法としくは、金型とパンチを用いる油
圧プレス、m械ブレスによる方法、ダイスを通じて押出
ず押出し法、遠心力法、[1−ルF1延による連続圧搾
法1等方的圧縮力を印加プる冷開静水圧プレス法(CI
P法)等が知られている。
The powder compaction method includes a hydraulic press using a mold and a punch, a method using an m machine press, an extrusion method without extrusion through a die, a centrifugal force method, and a continuous compression method using 1-ru F1 rolling. Cold-open isostatic pressing method (CI) that applies compressive force
P method) etc. are known.

これ等の圧粉成形方法のうち4、特に冷開静水圧プレス
法が本発明に適する理由は、ゴム、その他の弾性材料(
弾性に富む材料を意味する)で形成された成形容器内(
袋でも良い)内に該粉末を詰め、これを媒体としての流
体で加圧成形する該方法によれば、粉体に対して方向性
のない均雰な几縮力(等方的圧縮力)を印加できるから
である。
Among these powder compacting methods, four, especially the cold-open isostatic pressing method, are suitable for the present invention.
Inside a molded container (meaning a highly elastic material)
According to this method of packing the powder into a bag (which may also be a bag) and press-molding it with a fluid as a medium, a homogeneous compression force (isotropic compression force) with no directionality is produced on the powder. This is because it is possible to apply

圧縮力に方向性がなければ、第2図、第3図に示づ圧粉
成形方法におけるが如き問題はなく、製品磁石の着磁方
向と一致する方向の一軸磁気異方性を圧粉成形面の粉末
に付与することが可能である。
If the compressive force has no directionality, there will be no problem like the powder compacting method shown in Figures 2 and 3, and the uniaxial magnetic anisotropy in the direction that matches the magnetization direction of the product magnet can be compacted. It is possible to apply it to the surface powder.

すなわら、−軸磁気異方性が付与された成形容器内の粉
末にN方的圧縮力を印加しても一軸磁気異方性の“ゆら
ぎ”がなく、−軸磁気異方性の付与を圧粉成形と切離し
て行うことにより、製品磁石の着磁方向と一致する方向
の一軸磁気異方性付与を高い自由度の下で行うことがで
きる。
In other words, there is no "fluctuation" in the uniaxial magnetic anisotropy even when an N-directional compressive force is applied to the powder in the molded container that has been given -axis magnetic anisotropy, and -axis magnetic anisotropy is not imparted. By performing this separately from compaction, it is possible to impart uniaxial magnetic anisotropy in a direction that coincides with the magnetization direction of the product magnet with a high degree of freedom.

また、冷間静水圧プレス法によれば、■弾性材nyJ成
形容器に充填できる寸法であれば、大きな寸法のもの、
?!2M形状のものを成形することができる、0等法的
圧縮圧で圧粉成形を行うため、均質かつ高密度(高強度
)の汁粉体を得ることができ、焼結による寸法変化が均
一で変形が少なく、歩留り良好である等の利点が得られ
る。
In addition, according to the cold isostatic pressing method, ■ large-sized elastic materials that can be filled into nyJ molded containers;
? ! Because the powder compaction is carried out at zero legal compression pressure, which can form 2M shapes, it is possible to obtain a homogeneous and high density (high strength) powder, and the dimensional change due to sintering is uniform. Advantages such as less deformation and good yield can be obtained.

なお、冷開静水圧プレス法における圧縮圧は、これを0
.8〜2.0トン/ ciにするのが好ましい。
In addition, the compression pressure in the cold open isostatic pressing method is 0.
.. It is preferable to set it to 8-2.0 tons/ci.

その理由は、圧縮圧が0.8トン/d未満では形状を保
持するための密度が得られず、取扱いの際に容易に形崩
れし、また圧縮圧が2.0/CIiを越えると、成形容
器から圧粉体を取出す際に割れが生じ易いからである。
The reason for this is that if the compression pressure is less than 0.8 tons/d, the density to maintain the shape cannot be obtained and the shape will easily collapse when handled, and if the compression pressure exceeds 2.0/CIi, This is because cracks are likely to occur when the green compact is taken out from the molded container.

以)、本発明によるNd15Fへ88  製磁石の製造
方法の手順例を図面を引用しながら説明する(第4図な
いし第6図)。
Hereinafter, an example of the procedure for manufacturing a Nd15F 88 magnet according to the present invention will be explained with reference to the drawings (FIGS. 4 to 6).

■真空アーク溶解法によりNd −Fe −8合金(N
d、Fe、、B、 )の溶解を行う。
■Nd-Fe-8 alloy (N
d, Fe, , B, ) is dissolved.

■アトマイジング法2機械的粉砕法によりNd−1”e
−B合金の粉末を製造する。粉末製造中および製造後の
保存中に粉末が酸化しない様に、非酸化性雰囲気を維持
する。粉末の粒仔は5μm以下で適当である。
■Atomizing method 2 Nd-1”e by mechanical crushing method
-Produce powder of alloy B. A non-oxidizing atmosphere is maintained so that the powder does not oxidize during powder manufacture and during storage after manufacture. The particle size of the powder is suitably 5 μm or less.

■得られた粉末1をゴム製成形容器2内に充填し、界磁
1イル3によって形成される磁場中に該成形容器2を置
く。磁界H(8KO8以上)によって粉末1に磁界)(
と同方向の一軸磁気異方性が誘導される。
(2) The obtained powder 1 is filled into a rubber molded container 2, and the molded container 2 is placed in a magnetic field formed by a magnetic field 1. Magnetic field H (more than 8KO8) causes powder 1 to be exposed to magnetic field) (
Uniaxial magnetic anisotropy in the same direction is induced.

■内部の粉体に一軸磁気異方性が与えられた成形容器2
を冷間静水圧プレス機に装填し、加圧流体4をもって成
形容器2内の粉末に等方的圧縮圧(0,8〜2.0トン
/ ci )を作用さける(第6図)。
■Molded container 2 with uniaxial magnetic anisotropy imparted to the powder inside
is loaded into a cold isostatic press machine, and isotropic compression pressure (0.8 to 2.0 tons/ci) is applied to the powder in the molding container 2 using the pressurized fluid 4 (FIG. 6).

■得られた圧粉体を焼結炉内に装入し、真空中(IXl
o−3丁orr) 、 G度1000℃〜1100℃1
時間1〜2時間なる条件で焼結を行う。この焼結によっ
て密度7.2〜7.397α3の焼結晶が得られる。
■The obtained green compact is charged into a sintering furnace and placed in a vacuum (IXl
o-3 tons orr), G degree 1000℃~1100℃1
Sintering is performed under conditions of 1 to 2 hours. By this sintering, a sintered crystal having a density of 7.2 to 7.397α3 is obtained.

■焼結晶を加熱炉に装入し、時効熱処理を施す。■Place the fired crystals in a heating furnace and perform aging heat treatment.

熱処理条イ1は、真空またはアルゴンガス雰囲気。The heat treatment strip 1 is in a vacuum or argon gas atmosphere.

温度400〜600℃1時間1〜4時間である。この時
効熱処理によって焼結晶の保持力(+」c)が大幅に増
大する。
The temperature is 400 to 600°C for 1 hour to 4 hours. This aging heat treatment significantly increases the holding power (+'c) of the fired crystal.

■時効熱処理後の焼結晶に機械加工を施して製品形状を
付与した後、強さ)(>14KOeの磁界により着磁を
行う。磁界の方向は前記項目■において粉体に与えられ
たーlN1ta気異方性の方向と同方向である。
■ After applying mechanical processing to the baked crystal after aging heat treatment to give it a product shape, it is magnetized using a magnetic field of strength (>14 KOe).The direction of the magnetic field is -1N1ta given to the powder in the above item This is the same direction as the gas anisotropy.

左狡■ユ 冷間静水rl−プレス法、おJ:び比較例としての第2
図、第3図に示すが如き金型、パンチを用いた圧粉法(
−軸プレス法)により、Nd −Fe −8合金粉末を
圧粉成形し、圧縮圧と圧粉体の密度との関係を調べた。
Cold isostatic water press method, J: and the second as a comparative example.
Powder compaction method using a mold and punch as shown in Fig. 3 (
- Axial pressing method), Nd-Fe-8 alloy powder was compacted, and the relationship between the compression pressure and the density of the compact was investigated.

その結果を第7図に示す。The results are shown in FIG.

く試験結果の評価〉 同一圧縮圧の下では、−軸プレス払に比して冷間静水圧
プレス法の方が高い圧粉体密度を得ることができる。
Evaluation of test results> Under the same compression pressure, the cold isostatic pressing method can obtain a higher green density than the -axial pressing method.

筬旌■ユ N d、s F f−r= Bs  につき、本発明方
法によって1qられた磁石(A)、第2図図示の一輪ブ
レス法(横磁場成形法)によって得られた磁石(B)、
および第3図図示の一輪ブレス法(縦磁場成形法)によ
って(7られた磁石(C)の磁気特性(最大エネルギー
fta (B!i) max )を調べたところ表1の
結果が得られた。
A magnet obtained by the method of the present invention (A) and a magnet (B) obtained by the single ring press method (transverse magnetic field forming method) shown in FIG. ,
When we investigated the magnetic properties (maximum energy fta (B!i) max) of the magnet (C) which was formed by the single-ring press method (longitudinal magnetic field forming method) shown in Figure 3, the results shown in Table 1 were obtained. .

表  1 〈試験結果の評価〉 ■第2図図示の横磁場成形法による磁石(B)の最大エ
ネルギー積は、第3図図示の縦磁場成形法による磁1石
(C)のそれに比して相当大きく、圧縮方向に対して直
角方向からの磁場を形成するのが有効であることが判る
Table 1 <Evaluation of test results> ■ The maximum energy product of the magnet (B) produced by the transverse magnetic field shaping method shown in Figure 2 is higher than that of the single magnet (C) produced by the longitudinal magnetic field shaping method shown in Figure 3. It turns out that it is effective to form a considerably large magnetic field from a direction perpendicular to the compression direction.

■本発明方法による磁石(A)の最大エネルギー積は、
第2図図示の横磁場成形法による磁石(B)のそれに近
い値である。それ故、表2に示す各成形方法の得失を勘
案するならば、−軸磁気異方性付与の自由度が高く、焼
結性良好なる本発明方法が他の方法に比して優れること
が明らかである(注二木発明方法による磁石は小型モー
ター等に応用可能である)。
■The maximum energy product of the magnet (A) according to the method of the present invention is:
This value is close to that of the magnet (B) produced by the transverse magnetic field forming method shown in FIG. Therefore, when considering the advantages and disadvantages of each forming method shown in Table 2, the method of the present invention, which has a high degree of freedom in imparting -axial magnetic anisotropy and has good sinterability, is superior to other methods. This is obvious (note: the magnet produced by Niki's method can be applied to small motors, etc.).

表  2 *ただし、○は“良好”または“大”であることを意味
し、△は゛普通”、Xは“悪い”ことまたは“小”であ
ることをそれぞれ意味する。
Table 2 *However, ○ means "good" or "large", Δ means "fair", and X means "bad" or "small".

l1夏1皿 以上の説明から明らかな様に、希土類元素を含有する磁
気異方性の大きな合金の粉末を弾性材料製成形容器内に
充填し、これをla磁場中置いて一輪磁気異方性を付与
し、次いで成形容Rごと該粉末を冷間静水圧プレス払で
圧粉成形し、1りられた圧粉体を焼結した後、これに熱
処理を施し、さらに着磁さUることを特徴とする希土類
元素含有合金製永久磁石の製造方法が提案された。
As is clear from the above explanation, powder of an alloy with large magnetic anisotropy containing rare earth elements is filled into a molded container made of an elastic material, and this is placed in a la magnetic field to obtain a single ring of magnetic anisotropy. The powder is then compacted with a cold isostatic press, and the compacted powder is sintered, heat treated, and further magnetized. A method for manufacturing permanent magnets made of rare earth element-containing alloys has been proposed.

該製造方法によれば、−軸磁気賃方性付与の自由度およ
び磁石形状選択の自由度が高く、焼結性良好であり、し
かもt7られた!1わの磁気特性は、圧粉成形の際に圧
縮方向に対して直角方向の磁場を形成する方法で得た磁
石のそれに十分近い。
According to this manufacturing method, there is a high degree of freedom in imparting -axis magnetic properties and a high degree of freedom in selecting the magnet shape, and the sinterability is good, and moreover, it is possible to achieve t7! The magnetic properties of 1W are sufficiently close to those of a magnet obtained by a method of forming a magnetic field perpendicular to the compression direction during powder compaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は希土類元素含有合金製永久磁石の公知の製造方
法を示す工程図、第2図、第3図はそれぞれ公知に係る
希土類元素含有合金製永久磁石の製造方法における磁場
中圧粉成形方法を示す図、第4図は本発明方法に係る工
程図、第5図は本発明方法による粉末に対するー@磁気
異方性付与態様を示す図、第6図は該粉末を冷間静水圧
プレス法で圧粉成形する態様を示す図、第7図は冷間静
水圧プレス法および一輪プレス法による圧縮圧と圧粉体
5M度の関係を示すグラフである。 1・・・粉末、2・・・成形容器、3・・・界磁コイル
、4・・・加圧流体。
Fig. 1 is a process diagram showing a known method for manufacturing a permanent magnet made of a rare earth element-containing alloy, and Figs. 2 and 3 are respectively a method for compacting powder in a magnetic field in a known method for producing a permanent magnet made of a rare earth element-containing alloy. FIG. 4 is a process diagram related to the method of the present invention, FIG. 5 is a diagram showing the manner in which magnetic anisotropy is imparted to powder by the method of the present invention, and FIG. 6 is a diagram showing how the powder is subjected to cold isostatic pressing. FIG. 7 is a graph showing the relationship between the compression pressure and the green compact 5M degree by the cold isostatic pressing method and the one-wheel pressing method. DESCRIPTION OF SYMBOLS 1... Powder, 2... Molded container, 3... Field coil, 4... Pressurized fluid.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類元素を含有する磁気異方性の大きな合金の
粉末を弾性材料製成形容器内に充填し、これを磁場中に
置いて一軸磁気異方性を付与し、次いで成形容器ごと該
粉末を冷間静水圧プレス法で圧粉成形し、得られた圧粉
体を焼結した後、これに熱処理を施し、さらに着磁させ
ることを特徴とする希土類元素含有合金製永久磁石の製
造方法。
(1) Powder of an alloy containing rare earth elements with large magnetic anisotropy is filled into a molded container made of an elastic material, placed in a magnetic field to impart uniaxial magnetic anisotropy, and then the powder together with the molded container is A method for producing a permanent magnet made of a rare-earth element-containing alloy, which comprises compacting the powder using a cold isostatic pressing method, sintering the obtained compact, heat-treating it, and further magnetizing it. .
(2)前記冷間静水圧プレス法における圧縮圧が0.8
〜2.0トン/cm^2であることを特徴とする特許請
求の範囲第1項に記載された希土類元素含有合金製永久
磁石の製造方法。
(2) The compression pressure in the cold isostatic pressing method is 0.8
A method for producing a permanent magnet made of a rare earth element-containing alloy according to claim 1, characterized in that the magnetic flux is 2.0 tons/cm^2.
JP6120487A 1987-03-18 1987-03-18 Production of permanent magnet mode of rare earth metal-containing alloy Pending JPS63227701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6120487A JPS63227701A (en) 1987-03-18 1987-03-18 Production of permanent magnet mode of rare earth metal-containing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6120487A JPS63227701A (en) 1987-03-18 1987-03-18 Production of permanent magnet mode of rare earth metal-containing alloy

Publications (1)

Publication Number Publication Date
JPS63227701A true JPS63227701A (en) 1988-09-22

Family

ID=13164421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6120487A Pending JPS63227701A (en) 1987-03-18 1987-03-18 Production of permanent magnet mode of rare earth metal-containing alloy

Country Status (1)

Country Link
JP (1) JPS63227701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686730A1 (en) * 1992-01-23 1993-07-30 Aimants Ugimag Sa METHOD OF ADJUSTING THE REMANENT INDUCTION OF A FRITTE MAGNET AND PRODUCT THUS OBTAINED
US5250255A (en) * 1990-11-30 1993-10-05 Intermetallics Co., Ltd. Method for producing permanent magnet and sintered compact and production apparatus for making green compacts
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250255A (en) * 1990-11-30 1993-10-05 Intermetallics Co., Ltd. Method for producing permanent magnet and sintered compact and production apparatus for making green compacts
FR2686730A1 (en) * 1992-01-23 1993-07-30 Aimants Ugimag Sa METHOD OF ADJUSTING THE REMANENT INDUCTION OF A FRITTE MAGNET AND PRODUCT THUS OBTAINED
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy
JPS6136047B2 (en)
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
JPH0411703A (en) Manufacture of rare earth magnet
JPH02156038A (en) Making of permanent magnet
JPS63111155A (en) Production of permanent magnet material
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
JPH0997730A (en) Manufacture of sintered permanent magnet
CN1006744B (en) Method for producing superhuge anisotropy rare earth permanent magnet
JP4774652B2 (en) Manufacturing method of rare earth sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JPS61238938A (en) Sintering method for permanent magnet alloy
JP2763259B2 (en) Manufacturing method of radial anisotropic rare earth magnet
JP3614545B2 (en) Method for manufacturing anisotropic sintered magnet
JPS61214402A (en) Manufacture of sintered magnet
JPS58210101A (en) Radiate arrangement rare earth element-cobalt magnet ring
JPS6245685B2 (en)
JPH0935978A (en) Manufacture of anisotropic sintered permanent magnet
JPS63260004A (en) Manufacture of permanent magnet
JPH03247703A (en) Manufacture of permanent magnet
JPH0689432B2 (en) Method of manufacturing permanent magnet material