JPH0411703A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH0411703A
JPH0411703A JP2112851A JP11285190A JPH0411703A JP H0411703 A JPH0411703 A JP H0411703A JP 2112851 A JP2112851 A JP 2112851A JP 11285190 A JP11285190 A JP 11285190A JP H0411703 A JPH0411703 A JP H0411703A
Authority
JP
Japan
Prior art keywords
powder
rare earth
anisotropic
hot
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112851A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊夫 向井
Masahiro Fujikura
昌浩 藤倉
Hiroaki Sakamoto
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2112851A priority Critical patent/JPH0411703A/en
Publication of JPH0411703A publication Critical patent/JPH0411703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To eliminate need of magnetic field orientation to easily obtain a highly characteristic magnet by hot-rolling ultra-rapidly cooled Nd-Fe-B powder to be anisotropic and also orientating the anisotropic powder to be hot- compression-molded. CONSTITUTION:When an R2TM14B1 tetragonal compound {where R is a rare earth element containing at least one of Nd and Pr, and TM=Fe1-xCOx (0<=x<=0.4)} is used as a main phase to manufacture a rare earth magnet by molding anisotropic rare earth magnetic powder wherein a diameter of a crystal particle of the tetragonal compound is 1mum or below, the following steps are taken. That is, when a shape of the powder is flat while the thickness is (t) and the maximum length is (d), such powder wherein 0.1mm<=(t)<=2mm and 2<=(d)/(t)<=40 is laminate-orientated and hot-compression-molded. In addition 5 atomic percentage or below of Co is contained in this powder. The hot- compression-molding is performed with a pressure applied and heated with power supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、RJe+aB+化合物(ただしRはNd又は
Prの少なくとも一種を含む希土類元素)を主相とする
異方性希土類磁石の製造方法に関するものである。本発
明の製造方法によって作られる磁石は、高性能で低価格
になり得るという可能性から、小型モータ等各種アクチ
ュエーターの磁石部品及び磁気共鳴画像診断装置(nR
I)などの巨大磁石部品として広範に使用されることが
期待される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an anisotropic rare earth magnet whose main phase is an RJe+aB+ compound (where R is a rare earth element containing at least one of Nd or Pr). It is. The magnets produced by the manufacturing method of the present invention have the potential to be high-performance and low-cost, so they can be used as magnet parts for various actuators such as small motors, and for magnetic resonance imaging diagnostic equipment (nR).
It is expected that it will be widely used as giant magnet parts such as I).

〔従来の技術〕[Conventional technology]

希土類元素Rと代表的遷移金属元素Fe、!:Bとを2
:14:1に近い割合で含む合金溶湯を単ロール法等の
液体象、冷性により超急冷することにより、すぐれた磁
石特性を有する2、冷薄帯を得ることができる(米国特
許第4802931号明細書、特開昭59−64739
号公報、特開昭60−9852号公報)。この急冷薄帯
は磁気的にはほとんど等方性である。
Rare earth element R and representative transition metal element Fe! :B and 2
: By ultra-quenching a molten alloy containing a ratio close to 14:1 using a liquid phase or cold method such as a single roll method, a cold ribbon with excellent magnetic properties can be obtained (US Pat. No. 4,802,931). No. specification, JP-A-59-64739
(Japanese Patent Application Laid-Open No. 60-9852). This quenched ribbon is almost magnetically isotropic.

上記のNd−Fe−B系合金の急冷薄帯を粉砕して得た
粉末を、熱間で圧縮成形すること(ホットプレス)によ
り合金の真密度に近い状態で成形バルク化することがで
きる。これは米国特許第4792367号明細書、特開
昭60−100402号公報およびR,W、Leeによ
る発表論文rt(at−pressed neodym
ium−ironboron magnets J (
Applied Physics Letters、V
ol。
By hot compression molding (hot pressing) the powder obtained by crushing the quenched ribbon of the Nd-Fe-B alloy described above, it is possible to form a molded bulk in a state close to the true density of the alloy. This is based on U.S. Pat.
ium-ironboron magnets J (
Applied Physics Letters, V
ol.

46、No、8. pp 790−791.^pril
 15.1985)に報告されている。上記の熱間圧縮
成形体の残留磁束密度として約8kGの値が得られるこ
とが従来の技術として知られている。
46, No, 8. pp 790-791. ^pril
15.1985). It is known from the prior art that a value of about 8 kG can be obtained as the residual magnetic flux density of the above-mentioned hot compression molded body.

より高い残留磁束密度を得るには磁石に異方性を付与す
る必要がある。前記のR,W、Leeは塑性変形による
異方性化法を提案している。この方法は、Nd−Fe−
B系の合金粉末の圧縮成形体の密度を、ホットプレスに
よって合金の真密度に近い密度まで高めたのちに、その
成形体を再度据え込み加工(Die−Upset)によ
って塑性変形するというものである。この据え込み加工
の程度或いは合金組成に応じて8〜13kGの残留磁束
密度が得られることが報告されている(例えば、Y、N
ozawa他、J、Appl。
In order to obtain higher residual magnetic flux density, it is necessary to impart anisotropy to the magnet. R, W, and Lee mentioned above have proposed an anisotropy method using plastic deformation. This method uses Nd-Fe-
After increasing the density of a compression molded body of B-series alloy powder to a density close to the true density of the alloy by hot pressing, the molded body is plastically deformed by die-upsetting again. . It has been reported that a residual magnetic flux density of 8 to 13 kG can be obtained depending on the degree of upsetting or the alloy composition (for example, Y, N
ozawa et al., J. Appl.

Phys、、Vol、64.No、10.  pp52
85−5289.November15、1988)。
Phys., Vol. 64. No, 10. pp52
85-5289. November 15, 1988).

このように成形体に塑性変形を加えて異方性磁石を得る
方法は、製造工程が長いうえに、塑性変形中に表面に割
れが生じるなど磁石の製品形状を出しにくいという欠点
がある。
This method of obtaining an anisotropic magnet by applying plastic deformation to a molded body has the disadvantage that the manufacturing process is long and that it is difficult to produce a finished magnet shape, such as cracks occurring on the surface during plastic deformation.

本出願人は先に、異方性磁石成形用のR−Fe−B光異
方性粉末の製造方法として、上記の等方性の象、冷薄帯
(又はそれを粉砕して得られる粉末)を金属製の容器に
詰めて、容器と一緒に熱間圧延する方法を提案した(特
願平1mm202675号)。この異方性粉末を配向さ
せて成形する方法を用いれば、任意の製品形状の異方性
磁石を容易に得ることができる。
The present applicant has previously developed a method for producing R-Fe-B optically anisotropic powder for forming anisotropic magnets using the above-mentioned isotropic elephant, cold ribbon (or powder obtained by crushing it). ) was proposed to be packed in a metal container and hot-rolled together with the container (Japanese Patent Application No. 202675). By using this method of orienting and molding anisotropic powder, it is possible to easily obtain an anisotropic magnet of any product shape.

上記の異方性粉末の成形方法としては、従来、異方性粉
末にエポキシ等の樹脂を加え、磁場中で圧縮成形する方
法が一般的であった(例えばり、J。
Conventionally, the method for molding the above-mentioned anisotropic powder has been to add a resin such as epoxy to the anisotropic powder and compression mold it in a magnetic field (for example, see J.

Eshelman  他、J、 Appl、phys、
、Vol、64.No、LO。
Eshelman et al., J. Appl, phys.
, Vol. 64. No, L.O.

pp 5293−5295. November 15
.1988)。この方法を用いて得られる樹脂結合磁石
の残留磁束密度は8〜9kGであり、実用磁石として十
分に満足できる特性ではない。
pp 5293-5295. November 15
.. 1988). The residual magnetic flux density of the resin-bonded magnet obtained using this method is 8 to 9 kG, which is not a sufficiently satisfactory characteristic as a practical magnet.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

希土類磁石を安価に製造するには、量産性のある方法で
、なおかつ成形後に切断又は研磨を省略できる様な方法
、いわゆるニアネットシェイブ(Near−Net−5
hape)成形法が望ましい。
In order to manufacture rare earth magnets at low cost, there is a method that is mass-producible and can omit cutting or polishing after forming, the so-called near-net shave (Near-Net-5).
hape) molding method is preferred.

本発明は、Nd−Fe−B光異方性粉末から高い磁気特
性を有する磁石を得る方法を捉供することを目的とする
The present invention aims to provide a method for obtaining a magnet with high magnetic properties from Nd-Fe-B optically anisotropic powder.

〔課題を解決するための手段] 本発明の要旨とするところは以下の通りである。[Means to solve the problem] The gist of the present invention is as follows.

すなわち、本発明は、RZTM14BI正方晶化合物(
ただしRはNd又はPrの少なくとも一種を含む希土類
元素、TM=Fe+−、Co、 (0≦x≦0.4)を
主相とし、該RzTM+J+正方晶化合物の結晶粒の大
きさが1irm以下である異方性希土類磁石粉末を成形
してなる希土類磁石の製造方法において、前記粉末の形
状が偏平状であり、前記粉末の厚さをt、最大長さをd
とした場合に、tが0.1 mm以上で2m以下であり
、かつd/tが2以上で40以下である粉末を積層配向
させて熱間圧縮成形することを特徴とする希土類磁石の
製造方法である。
That is, the present invention provides RZTM14BI tetragonal compound (
However, R has a main phase of a rare earth element containing at least one of Nd or Pr, TM=Fe+-, Co, (0≦x≦0.4), and the crystal grain size of the RzTM+J+tetragonal compound is 1irm or less. In a method for manufacturing a rare earth magnet formed by molding a certain anisotropic rare earth magnet powder, the shape of the powder is flat, the thickness of the powder is t, and the maximum length is d.
In the case where It's a method.

上記の製造方法により高い残留磁束密度及び最大エネル
ギー積を有する異方性磁石を得ることができる。この異
方性磁石の保磁力を向上させるには原子百分率で5%以
下のCuを含有させることが有効である。
By the above manufacturing method, an anisotropic magnet having a high residual magnetic flux density and a maximum energy product can be obtained. In order to improve the coercive force of this anisotropic magnet, it is effective to contain 5% or less of Cu in terms of atomic percentage.

また、上記の熱間圧縮成形を加圧下における通電加熱に
より行うことにより本発明の粘土W[石の製造を高速で
行うことができる。
Moreover, by performing the above-mentioned hot compression molding by electrically heating under pressure, the clay W [stone] of the present invention can be manufactured at high speed.

(作 用) 単ロール法液体急冷によって製造されるNd−FeB系
薄帯はフレーク状であり、その代表的寸法は厚さ20〜
30tm、幅l〜2InI11、長さ10〜30III
II+である。
(Function) The Nd-FeB ribbon produced by the single-roll liquid quenching process is flake-like, and its typical dimensions are 20 to 20 mm thick.
30tm, width l~2InI11, length 10~30III
II+.

薄帯は微細なRZTMI48+結晶粒(約0.1irr
n)からなり、磁蒐的にはほとんど等方性である。この
1帯又はその粉砕片を金属製容器に封入し熱間圧延する
方法(パック圧延)により異方性粉末を得ることができ
る。熱間圧延の過程では、ます薄帯が厚さ方向に積み重
なって接合され、その薄帯の集合体がさらに塑性変形を
うける。その結果、薄帯は磁気的に異方性化される。一
つの圧延粉末(異方性粉末)は数多くの異方性化された
薄帯からなる。
The ribbon is composed of fine RZTMI48+ crystal grains (approximately 0.1irr
n), and is almost magnetically isotropic. An anisotropic powder can be obtained by a method of enclosing this band or its crushed pieces in a metal container and hot rolling (pack rolling). In the hot rolling process, thin strips are piled up in the thickness direction and joined together, and the aggregate of the thin strips is further subjected to plastic deformation. As a result, the ribbon becomes magnetically anisotropic. One rolled powder (anisotropic powder) consists of many anisotropic ribbons.

異方性粉末の形状は厚さ方向に薄い偏平状であり、その
粉末を構成するNdJe+aB+結晶粒の磁化容易軸(
C軸)の方向は粉末の厚さ方向に向いている(第1図(
a):急冷薄帯、第1図(b) :異方性粉末)。
The shape of the anisotropic powder is thin and flat in the thickness direction, and the easy magnetization axis (
C axis) is oriented toward the thickness direction of the powder (Fig. 1 (
a): Quenched ribbon, Figure 1(b): Anisotropic powder).

ここで、NdzFe+J+結晶粒は熱間圧延時に粒成長
し、栄、冷時の約0.1 urrrよりも大きくなるが
1rmを越えることはない。
Here, the NdzFe+J+ crystal grains grow during hot rolling and become larger than about 0.1 urrr when cold, but do not exceed 1 rm.

上記の異方性粉末をダイのキャビチーに装填すると、形
状が偏平であるために厚さ方向に粉末が積み重なり、配
向性の高い状態(積層配向)が実現される。この状態の
粉末に圧力を加え温度をあげて熱間圧縮成形することよ
り加圧方向に高い磁気特性を存する異方性磁石を得るこ
とができる(第1図(C):異方性磁石)。この方法に
より得られる磁石の密度はほとんど合金の真密度(7,
5g/cd)に近い値になるために、磁石は高い残留磁
束密度(従って高い最大エネルギー積)を示す。
When the above-mentioned anisotropic powder is loaded into the cavity of the die, since the powder is flat in shape, the powder is piled up in the thickness direction, and a highly oriented state (stacked orientation) is achieved. By applying pressure to the powder in this state, raising the temperature, and hot compression molding, it is possible to obtain an anisotropic magnet that has high magnetic properties in the direction of pressure (Figure 1 (C): Anisotropic magnet) . The density of the magnet obtained by this method is almost the true density of the alloy (7,
5 g/cd), the magnet exhibits a high residual flux density (and thus a high maximum energy product).

本発明により得られる磁石の特性は異方性の偏平粉末の
積層配向の度合いによって決まる。残留磁束密度として
1okG以上の値を得るためには、偏平粉末の偏平度d
/t(t:偏平粉末の厚さ、d:偏平粉末の最大長さ)
が2以上である必要がある(第2図)。偏平度が40を
越えると粉末が大きくなるために熱間圧縮成形による緻
密化が困難になる。したがって、本発明のd/tは2以
上で40以下に限定される。上記の偏平粉末の厚さtは
、熱間圧延における圧延前の充填粉末の圧下方向の厚さ
と最終圧延率によって調製可能である。本発明の偏平粉
末の厚さtの下限は0.1mmである。なぜならば、厚
さが0.1閣未満になると圧延後の金属製容器から圧延
粉末を回収することが困難になるからである。本発明の
偏平粉末の厚さむの上限は2mmである。なぜならば、
tが2mmを越えると、熱間圧縮成形による緻密化が困
難になるからである。
The characteristics of the magnet obtained by the present invention are determined by the degree of lamination orientation of the anisotropic flat powder. In order to obtain a residual magnetic flux density of 1 okG or more, the flatness d of the flat powder must be
/t (t: thickness of flat powder, d: maximum length of flat powder)
must be 2 or more (Figure 2). When the flatness exceeds 40, the powder becomes large and densification by hot compression molding becomes difficult. Therefore, d/t of the present invention is limited to 2 or more and 40 or less. The thickness t of the above-mentioned flat powder can be adjusted by the thickness in the rolling direction of the filling powder before rolling in hot rolling and the final rolling rate. The lower limit of the thickness t of the flat powder of the present invention is 0.1 mm. This is because when the thickness is less than 0.1 mm, it becomes difficult to recover the rolled powder from the metal container after rolling. The upper limit of the thickness of the flat powder of the present invention is 2 mm. because,
This is because if t exceeds 2 mm, densification by hot compression molding becomes difficult.

以下、本発明の詳細について記す。The details of the present invention will be described below.

本発明の希土類磁石の製造方法に関わる望ましい磁石の
成分範囲は以下の通りである。希土類元素Rの構成は特
に限定されないが、高特性の磁石を得るには全R中の少
なくとも60%がNd及び/又はPrであることが望ま
しい。本発明は熱間圧延によって異方性化された粉末の
積層配向・熱間圧縮成形を骨子とする。熱間圧延によっ
て高特性の異方性粉末を得るには、Rの量としては原子
百分率で12%以上で20%以下である必要がある。R
の量が12%未満では十分な異方性化が達成されず、R
の量が20%を越えると残留磁束密度の低下を無視でき
ない。保磁力を向上させるためには、前記のRの一部を
全R量の20%を越えない範囲でoyにするのが有効で
ある。R中のDyの占める割合が20%を越えると残留
磁束密度の低下を無視できない。
Desirable component ranges of the magnet related to the rare earth magnet manufacturing method of the present invention are as follows. Although the composition of the rare earth element R is not particularly limited, it is desirable that at least 60% of the total R be Nd and/or Pr in order to obtain a magnet with high characteristics. The gist of the present invention is lamination orientation and hot compression molding of powder made anisotropic by hot rolling. In order to obtain an anisotropic powder with high properties by hot rolling, the amount of R needs to be 12% or more and 20% or less in atomic percentage. R
If the amount of R is less than 12%, sufficient anisotropy will not be achieved and R
If the amount exceeds 20%, the decrease in residual magnetic flux density cannot be ignored. In order to improve the coercive force, it is effective to set a portion of the R to oy within a range not exceeding 20% of the total R amount. If the proportion of Dy in R exceeds 20%, the decrease in residual magnetic flux density cannot be ignored.

本発明の製造方法による希土類磁石においては、保磁力
の向上のために原子百分率で5%以下のCuを添加する
のが有効である。ここで、Cu添加量が5%を越えると
Cuが非磁性元素であるために残留磁束密度の低下が無
視できないほど大きくなる。
In the rare earth magnet manufactured by the manufacturing method of the present invention, it is effective to add 5% or less of Cu in atomic percentage to improve the coercive force. Here, if the amount of Cu added exceeds 5%, since Cu is a nonmagnetic element, the decrease in residual magnetic flux density becomes so large that it cannot be ignored.

Bの量が原子百分率で2%未満の場合にはR,Fe、7
相が多量に出現し、10%を越えるとB−rich相が
多量に出現する。いずれの相も熱間圧延による粉末の異
方性化を阻害する。したがって、Bの量は2%以上で1
0%以下の範囲が望ましい。
When the amount of B is less than 2% in atomic percentage, R, Fe, 7
A large amount of B-rich phase appears, and when it exceeds 10%, a large amount of B-rich phase appears. Both phases inhibit the anisotropy of the powder due to hot rolling. Therefore, the amount of B is 1 at 2% or more.
A range of 0% or less is desirable.

合金のキュリー温度をあげて使用温度における磁束密度
の温度変化を小さくするために、Feの一部をCoで置
換することがある。本発明の場合にも、全遷移金属元素
(TM)の40%以下の割合をCoにする(すなわち、
TM−Fe+−x Co x (0≦x≦0.4)) 
、::とが可能である。Coの置換量が40%を越える
と保磁力が低下する。
In order to raise the Curie temperature of the alloy and reduce the temperature change in magnetic flux density at the operating temperature, a portion of Fe may be replaced with Co. Also in the case of the present invention, Co accounts for 40% or less of the total transition metal elements (TM) (i.e.,
TM-Fe+-xCox (0≦x≦0.4))
, :: and are possible. When the amount of Co substitution exceeds 40%, the coercive force decreases.

上記成分の急冷粉末は、通常の単ロール法によって最も
安定して得られるが、他の双ロール法もしくはガスアト
マイズ法によっても得られる。
The quenched powder of the above components is most stably obtained by the usual single-roll method, but it can also be obtained by other twin-roll methods or gas atomization methods.

急冷粉末の異方性は粉末に塑性変形を施すことによって
達成される。本出願人が先に提案した方法(特願平1m
m202675号)は、金属製容器に急冷粉末を詰めて
容器と一緒に粉末を熱間圧延する方法(バック圧延)で
あり、最も合理的に高特性の異方性粉末を得ることがで
きる。本発明においては、容器内を真空にするか又はア
ルゴンガス等の不活性雰囲気で置換し、加熱による粉末
の酸化を防止する。圧延は500〜900″Cの温度、
好ましくは600〜800°Cの温度の最適温度で行う
。その理由は、圧延温度が500 ’Cより低い場合に
は塑性変形を起こし難く、900°Cを越えると結晶粒
が粗大化し保磁力が低下するからである。異方性粉末と
して高特性を得るには、急冷粉末の厚さ減少率で表した
圧延率で40%以上の圧延を行う必要がある。
Anisotropy in quenched powder is achieved by subjecting the powder to plastic deformation. The method previously proposed by the applicant (Patent Application Hei 1m
M202675) is a method (back rolling) in which a metal container is filled with rapidly cooled powder and the powder is hot rolled together with the container (back rolling), and an anisotropic powder with high properties can be obtained in the most rational manner. In the present invention, the inside of the container is evacuated or replaced with an inert atmosphere such as argon gas to prevent oxidation of the powder due to heating. Rolling at a temperature of 500-900″C,
It is preferably carried out at an optimum temperature of 600-800°C. The reason is that when the rolling temperature is lower than 500'C, plastic deformation is difficult to occur, and when it exceeds 900°C, the crystal grains become coarse and the coercive force decreases. In order to obtain high properties as an anisotropic powder, it is necessary to perform rolling at a rolling rate of 40% or more expressed as the thickness reduction rate of the rapidly solidified powder.

熱間圧延後の圧延材は通常割れ、ヒビの入った破片状の
ものとして回収される。異方性粉末はその圧延材を粉砕
することによって得られる。粉末の偏平度は圧延材の厚
さtと粉砕粒径d(粉末の最大長さ)の比d/tで定義
され、圧延率と粉砕粒径を変えることにより調製可能で
ある。粉砕にはブラウンミル、ビンミル等の粉砕機を用
いることができる。
After hot rolling, the rolled material is usually broken and recovered as fragments with cracks. Anisotropic powder is obtained by crushing the rolled material. The flatness of the powder is defined by the ratio d/t of the thickness t of the rolled material and the pulverized particle size d (maximum length of the powder), and can be adjusted by changing the rolling rate and the pulverized particle size. For pulverization, a pulverizer such as a brown mill or a bottle mill can be used.

異方性粉末の成形は熱間圧縮成形によって行う。The anisotropic powder is molded by hot compression molding.

本発明の中心となる積層配向は、異方性粉末の偏平度が
高ければ、粉末をダイのキャビチーに装填するだけで自
然に行われる。より積層配向を助長するにはダイに振動
を加えることが有効である。
If the anisotropic powder has a high degree of flatness, the laminated orientation, which is the core of the present invention, can be achieved naturally by simply loading the powder into the cavity of a die. It is effective to apply vibration to the die to further promote stacking orientation.

熱間圧縮成形は、500〜900°Cの温度範囲におい
て、0.1〜5ton/ c+flの圧力下で行われる
。これは高周波誘導加熱による通常のホットプレス機に
よって容易に行われる。また、生産性を蔓めるために、
通電焼結機を用いて加圧下で通電加熱により粉末を急速
に加熱し、短時間(1〜5分)で目的とする熱間圧縮成
形を完了させることができる。
Hot compression molding is carried out at a temperature range of 500-900°C and under a pressure of 0.1-5 ton/c+fl. This is easily done in a conventional hot press using high frequency induction heating. Also, in order to increase productivity,
The powder is rapidly heated by current heating under pressure using an electric current sintering machine, and the desired hot compression molding can be completed in a short time (1 to 5 minutes).

通電加熱は急速であるので生産性に冨む。Electrical heating increases productivity because it is rapid.

[実施例] 実施例1 原子百分率でFe−14%Nd−5%B−1%Cu(N
d+4Fea。
[Example] Example 1 Fe-14%Nd-5%B-1%Cu(N
d+4Fea.

B5Cu+)の組成の合金を高周波誘導加熱により溶解
し、直径1mmの穴を持つ石英ノズルからその溶湯を回
転する銅製ロールの表面上に噴射した。この時のロール
の表面速度は25m/secで、微細な結晶粒の得られ
る最適の急冷条件である。得られた薄帯の厚さは20〜
30mm、幅1〜2wn、長さは10〜30皿である。
B5Cu+) was melted by high-frequency induction heating, and the molten metal was injected onto the surface of a rotating copper roll through a quartz nozzle with a 1 mm diameter hole. The surface speed of the roll at this time was 25 m/sec, which is the optimum rapid cooling condition for obtaining fine crystal grains. The thickness of the obtained ribbon is 20~
30mm, width 1~2wn, length 10~30 plates.

この薄帯を355n以下に粉砕した。This ribbon was pulverized to 355 nm or less.

上記の手順により得た粉末を鉄製のバイブに挿入したの
ちに、内部を10−〜10−’torrに減圧し密閉し
た。これを700°Cの温度で熱間圧延し、薄帯の厚さ
減少率で82%の圧延を施した。作製した圧延材の平均
の厚さtは0.24mmと0.98++onの二種であ
る。圧延材の厚さ方向の磁気特性は(BH)may =
 35MGOeである。これらの圧延材を粉砕し、粒径
がO〜0.611n(平均粒径d =0.3 mm) 
、0.7〜1.0 m(d =0.85m++) 、1
.0〜4.0 mm (d =2−.5 an)、及び
4.0〜5.7 mm(d =4.9 mm)の4種の
サイズの異方性粉末を作製した。ここで粉末の偏平度は
d/tで表される。
After the powder obtained by the above procedure was inserted into an iron vibrator, the pressure inside the vibrator was reduced to 10-10-'torr and the vibrator was sealed. This was hot-rolled at a temperature of 700°C, resulting in a reduction in the thickness of the ribbon of 82%. The average thickness t of the produced rolled materials is 0.24 mm and 0.98++on. The magnetic properties of the rolled material in the thickness direction are (BH)may =
It is 35MGOe. These rolled materials were crushed to a particle size of 0 to 0.611n (average particle size d = 0.3 mm).
, 0.7-1.0 m (d = 0.85 m++) , 1
.. Anisotropic powders were produced in four sizes: 0 to 4.0 mm (d = 2-.5 an), and 4.0 to 5.7 mm (d = 4.9 mm). Here, the flatness of the powder is expressed as d/t.

作製した粉末を通電焼結機を用いて熱間で圧縮成形した
。この実験においては、粉末をセラミツクス型のダイの
キャビチーに装填し、粉末に400kg/ciの圧力を
加えた状態で、100OAの通電により粉末を加熱した
。ここでキャビチーは直径20IIfiの空洞である。
The prepared powder was hot compression molded using an electric current sintering machine. In this experiment, the powder was loaded into the cavity of a ceramic die, and the powder was heated by applying a current of 100 OA while applying a pressure of 400 kg/ci to the powder. Here, the cavity is a cavity with a diameter of 20IIfi.

上記の圧力下では試料の実測温度が約800°Cに到達
した時点で粉末の密度は合金の真密度に近い7.5g/
 cnlに達した。加熱開始から焼結終了までに要した
時間は3〜4分であった。得られた成形体の加圧方向に
60kOeのパルス着磁を行った後に自記磁束計により
磁気特性を測定した。
Under the above pressure, when the measured temperature of the sample reaches approximately 800°C, the density of the powder is 7.5g/2, which is close to the true density of the alloy.
reached cnl. The time required from the start of heating to the end of sintering was 3 to 4 minutes. After performing pulse magnetization of 60 kOe in the pressing direction of the obtained compact, the magnetic properties were measured using a self-recording magnetometer.

第2図に成形体の加圧方向の磁気特性を粉末の偏平度d
/tに対して示す。d/tが大きいほど高い特性が得ら
れ、d / tが5以上の場合には最大エネルギー積(
BH)max = 30MGOeに及ぶ高特性が得られ
る。ここで、本実施例に用いた圧延材そのものの特性は
(BH)IIlax = 35MGOeであるので、十
分に高い積層配向が行われているのがわかる。
Figure 2 shows the magnetic properties of the compact in the pressing direction, and the flatness d of the powder.
/t. The larger d/t is, the better the characteristics are obtained, and when d/t is 5 or more, the maximum energy product (
BH) max = 30 MGOe high characteristics can be obtained. Here, since the property of the rolled material itself used in this example is (BH)IIlax = 35MGOe, it can be seen that a sufficiently high lamination orientation is achieved.

第3図にt =0.24皿でd / t、 =10.4
の場合の熱間圧縮成形体の断面組織写真を示す。写真か
ら異方性粉末が加圧方向に積層されているのがわかる。
Figure 3 shows d/t, = 10.4 in t = 0.24 dishes.
A photograph of the cross-sectional structure of the hot compression molded product in the case of is shown. The photo shows that the anisotropic powder is layered in the direction of pressure.

実施例2 積層配向した圧延粉末の成形性及び磁気特性を見る実験
を行った。用いた合金の組成はNd 、 、Fe、。
Example 2 An experiment was conducted to examine the formability and magnetic properties of laminated and oriented rolled powder. The composition of the alloy used was Nd, Fe,.

B6とNd、、Fe、。B5Cu1の組成の二種類であ
る。実施例1に記述した製造方法に従い、圧延率82%
の異方性粉末を作製した。粉末の形状は平均厚さt=0
.63mmで、平均偏平度d/t =4.0のものであ
る。
B6 and Nd,,Fe,. There are two types of compositions of B5Cu1. According to the manufacturing method described in Example 1, the rolling reduction was 82%.
Anisotropic powder was prepared. The shape of the powder has an average thickness of t=0
.. It is 63 mm and has an average flatness d/t = 4.0.

成形体の形状としてはボイスコイルモータ用の台形状磁
石(厚さ6mm、台形面の面積7C111)を選び、成
形は通電加熱を用いた熱間圧縮成形により行った。
A trapezoidal magnet for a voice coil motor (thickness: 6 mm, trapezoidal surface area: 7C111) was selected as the shape of the molded body, and the molding was performed by hot compression molding using electrical heating.

成形した磁石の形状は、用いたダイのキャビチー及びパ
ンチの形状によって決められ、磁石の寸法精度としても
十分に満足するものが得られた。
The shape of the molded magnet was determined by the cavity of the die used and the shape of the punch, and the dimensional accuracy of the magnet was sufficiently satisfactory.

上記二種類の組成の成形体の加圧方向の減磁曲線を第4
図に示し、それから得られる磁気特性を第1表に示す。
The demagnetization curves in the pressing direction of the molded bodies with the above two types of compositions are
The magnetic properties obtained therefrom are shown in Table 1.

減磁曲線としては角型性の高いものが得られ、(BH)
waxとしても30MGOe以上の高特性が得られた。
A highly square demagnetization curve was obtained, (BH)
Even as wax, high properties of 30 MGOe or more were obtained.

保磁力iHcはCu添加によって著しく高められた。The coercive force iHc was significantly increased by the addition of Cu.

第1表 C発明の効果〕 本発明による希土類磁石の製造方法は、超栄、冷Nd−
Fe−B系粉末を熱間圧延して異方性化すること、及び
その異方性粉末を配向させて熱間圧縮成形することから
なる。ここで、熱間圧延で製造される異方性粉末は形状
が偏平であるので、熱間圧縮成形用のダイに粉末を充填
する過程で粉末が積層配向する。その結果、成形された
磁石は高い磁気特性を示す。以上の様な方法においては
、通常よく行われる異方性粉末の磁場配向の操作が必要
ではなく、非常に簡単に高特性の磁石を得ることができ
る。
Table 1 C Effects of the Invention] The method for producing rare earth magnets according to the present invention includes Choei, cold Nd-
It consists of hot rolling Fe-B powder to make it anisotropic, and orienting the anisotropic powder and hot compression molding. Here, since the anisotropic powder produced by hot rolling has a flat shape, the powder is laminated and oriented in the process of filling the powder into a die for hot compression molding. As a result, the shaped magnet exhibits high magnetic properties. In the method described above, it is not necessary to manipulate the magnetic field orientation of anisotropic powder, which is usually performed, and a magnet with high characteristics can be obtained very easily.

また、熱間圧縮成形によって磁石が製造されるので、成
形後の形状が最終製品の形状に近いものになる。したが
って、寸法出しのための研磨等の後加工を必要としない
。よって、後加工を必要とする通常の常圧焼結磁石に対
してもコスト的に有利になる。
Furthermore, since the magnet is manufactured by hot compression molding, the shape after molding is close to the shape of the final product. Therefore, post-processing such as polishing for dimensioning is not required. Therefore, it is advantageous in terms of cost compared to normal pressureless sintered magnets that require post-processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層配向による異方性磁石を説明する図であり
、(a)は超急冷によって作られる急冷薄帯、(b)は
その薄帯を熱間圧延して作られる異方性粉末、(C)は
その異方性粉末を積層配向させて熱間圧縮成形すること
により作られる異方性磁石である。第2図は、異方性粉
末の偏平度d/tに対して成形磁石の磁気特性を示す図
である。第3図は、成形磁石における偏平粉末の積層の
様子を示す光学顕微鏡による金属組織写真図である。第
4図はCu添加とCu無添加の成形磁石の減磁曲線を表
す図である。 (C) 第 図 #末の備千度 d/ど 第8図 θ2rnM
Figure 1 is a diagram illustrating an anisotropic magnet produced by laminated orientation, in which (a) is a quenched ribbon made by ultra-quenching, and (b) is an anisotropic powder made by hot rolling the ribbon. , (C) is an anisotropic magnet made by laminating and orienting the anisotropic powder and hot compression molding. FIG. 2 is a diagram showing the magnetic properties of the molded magnet with respect to the flatness d/t of the anisotropic powder. FIG. 3 is a metal structure photograph taken with an optical microscope, showing how flat powder is laminated in a molded magnet. FIG. 4 is a diagram showing demagnetization curves of molded magnets with and without Cu addition. (C) Figure 8 θ2rnM

Claims (3)

【特許請求の範囲】[Claims] (1)R_2TM_1_4B_1正方晶化合物(ただし
RはNd又はPrの少なくとも一種を含む希土類元素、
TM=Fe_1_−_xCo_x(0≦x≦0.4))
を主相とし、該R_2TM_1_4B_1正方晶化合物
の結晶粒の大きさが1μm以下である異方性希土類磁石
粉末を成形してなる希土類磁石の製造方法において、前
記粉末の形状が偏平状であり、前記粉末の厚さをt、最
大長さをdとした場合に、tが0.1mm以上で2mm
以下であり、かつd/tが2以上で40以下である粉末
を積層配向させて熱間圧縮成形することを特徴とする希
土類磁石の製造方法。
(1) R_2TM_1_4B_1 tetragonal compound (R is a rare earth element containing at least one of Nd or Pr,
TM=Fe_1_−_xCo_x (0≦x≦0.4))
A method for producing a rare earth magnet by molding an anisotropic rare earth magnet powder having a main phase of R_2TM_1_4B_1 tetragonal compound with a crystal grain size of 1 μm or less, wherein the shape of the powder is flat, When the thickness of the powder is t and the maximum length is d, t is 0.1 mm or more and 2 mm.
A method for producing a rare earth magnet, characterized in that powders having a d/t of 2 or more and 40 or less are laminated and oriented and hot compression molded.
(2)原子百分率で5%以下のCuを含有することを特
徴とする請求項1記載の希土類磁石の製造方法。
(2) The method for producing a rare earth magnet according to claim 1, characterized in that it contains 5% or less of Cu in atomic percentage.
(3)熱間圧縮成形を加圧下における通電加熱により行
うことを特徴とする請求項1及び2記載の希土類磁石の
製造方法。
(3) The method for producing a rare earth magnet according to claims 1 and 2, wherein the hot compression molding is carried out by electrical heating under pressure.
JP2112851A 1990-04-28 1990-04-28 Manufacture of rare earth magnet Pending JPH0411703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112851A JPH0411703A (en) 1990-04-28 1990-04-28 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112851A JPH0411703A (en) 1990-04-28 1990-04-28 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH0411703A true JPH0411703A (en) 1992-01-16

Family

ID=14597116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112851A Pending JPH0411703A (en) 1990-04-28 1990-04-28 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0411703A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220994A (en) * 1992-12-30 1994-08-09 Wacker Werke Gmbh & Co Kg Internal vibrator
JPH07307211A (en) * 1992-11-20 1995-11-21 General Motors Corp <Gm> Hot press magnet formed of anisotropic powder
WO2000047786A1 (en) * 1999-02-12 2000-08-17 General Electric Company Rare earth magnet for mri scanner made from treated pr-nd bearing ore residuum
JP2010258040A (en) * 2009-04-21 2010-11-11 Fuji Electric Holdings Co Ltd High coercive force coating magnet powder
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
WO2013091952A3 (en) * 2011-12-22 2014-10-02 Robert Bosch Gmbh Method for producing a machine element, and machine element for an electric machine
JP2018056525A (en) * 2016-09-30 2018-04-05 ミネベアミツミ株式会社 Method for manufacturing rare earth iron-based permanent magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307211A (en) * 1992-11-20 1995-11-21 General Motors Corp <Gm> Hot press magnet formed of anisotropic powder
JPH06220994A (en) * 1992-12-30 1994-08-09 Wacker Werke Gmbh & Co Kg Internal vibrator
WO2000047786A1 (en) * 1999-02-12 2000-08-17 General Electric Company Rare earth magnet for mri scanner made from treated pr-nd bearing ore residuum
JP2010258040A (en) * 2009-04-21 2010-11-11 Fuji Electric Holdings Co Ltd High coercive force coating magnet powder
CN103582715A (en) * 2011-07-08 2014-02-12 昭和电工株式会社 Alloy for R-T-B-based rare earth sintered magnet, process for producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process for producing R-T-B, and motor
JP2013216965A (en) * 2011-07-08 2013-10-24 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor
WO2013008756A1 (en) * 2011-07-08 2013-01-17 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor
JP2014169505A (en) * 2011-07-08 2014-09-18 Showa Denko Kk Alloy for r-t-b-based rare earth sintered magnet and method for manufacturing the same
JP2014205918A (en) * 2011-07-08 2014-10-30 昭和電工株式会社 Alloy for r-t-b-based rare earth sintered magnet, method of producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, method of producing r-t-b-based rare earth sintered magnet and motor
CN103582715B (en) * 2011-07-08 2016-01-20 昭和电工株式会社 The manufacture method of the manufacture method of R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy, R-T-B system rare earths sintered magnet alloy material, R-T-B system rare earths sintered magnet, R-T-B system rare earths sintered magnet and electric motor
US11024448B2 (en) 2011-07-08 2021-06-01 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
WO2013091952A3 (en) * 2011-12-22 2014-10-02 Robert Bosch Gmbh Method for producing a machine element, and machine element for an electric machine
CN104160599A (en) * 2011-12-22 2014-11-19 罗伯特·博世有限公司 Method for producing a machine element, and machine element for an electric machine
JP2018056525A (en) * 2016-09-30 2018-04-05 ミネベアミツミ株式会社 Method for manufacturing rare earth iron-based permanent magnet

Similar Documents

Publication Publication Date Title
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
JPS62291904A (en) Mafufacture of permanent magnet
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH02288305A (en) Rare earth magnet and manufacture thereof
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JPH0411703A (en) Manufacture of rare earth magnet
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP3622652B2 (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
KR102632582B1 (en) Manufacturing method of sintered magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH01192105A (en) Manufacture of permanent magnet
JPH0483307A (en) Manufacture of rare-earth element magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH01175207A (en) Manufacture of permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH01234518A (en) Production of rare earth permanent magnet stock
JPS63107009A (en) Manufacture of permanent magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH10163015A (en) Magnet alloy powder, its manufacture and magnet using the same
JPS63312915A (en) Production of permanent magnet