JPS63107009A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63107009A
JPS63107009A JP62104624A JP10462487A JPS63107009A JP S63107009 A JPS63107009 A JP S63107009A JP 62104624 A JP62104624 A JP 62104624A JP 10462487 A JP10462487 A JP 10462487A JP S63107009 A JPS63107009 A JP S63107009A
Authority
JP
Japan
Prior art keywords
alloy
hot
magnet
hot working
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62104624A
Other languages
Japanese (ja)
Other versions
JPH0766892B2 (en
Inventor
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JPS63107009A publication Critical patent/JPS63107009A/en
Publication of JPH0766892B2 publication Critical patent/JPH0766892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a rare earth-iron group permanent magnet having high performance at low cost by using a casting method as the process of a base and combining hot working. CONSTITUTION:An alloy mainly comprising a rare earth element, iron and boron is dissolved and cast, and hot-worked. Or the alloy consisting of said basic ingredients is dissolved and cast, hot-worked, and thermally treated. Or the alloy composed of said basic ingredients is dissolved and cast, hot-worked and thermally treated, hydrogen is occluded into said cast alloy and the alloy is crushed, and the powder of the crushed alloy is kneaded with an organic binder and pressure-molded. A temperature in said hot working is brought to a recrystallization temperature or more of 500-1100 deg.C, either of extrusion, rolling working or stamping working is employed as hot working, and the magnet alloy is oriented and treated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類、鉄及びボロンを基本成分とする永久
磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a permanent magnet whose basic components are rare earth elements, iron, and boron.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで幅広い分野で使用されている
重要な電気、電子材料の一つである。
[Prior Art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers.

最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。現在使用さ
れている永久磁石のうち代表的なものはアルニコ、ハー
ドフェライト及び希土類−遷移金属系磁石である。特に
希土類−遷移金属系磁石であるR−Co系永久磁石やR
−Fe−B系永久磁石は、高い磁気性能が得られるので
従来から多くの研究開発が成されている。
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance. Typical permanent magnets currently in use are alnico, hard ferrite, and rare earth-transition metal magnets. In particular, R-Co permanent magnets, which are rare earth-transition metal magnets, and R
Since -Fe-B permanent magnets provide high magnetic performance, much research and development has been carried out on them.

従来、これらR−Fe−B系永久磁石の製造方法に関し
ては以下の文献に示すような方法がある。
Conventionally, there are methods for manufacturing these R-Fe-B permanent magnets as shown in the following documents.

(1)粉末冶金法に基づく焼結による方法。(1) A sintering method based on powder metallurgy.

(文献12文献2) (2)アモルファス合金を製造するに用いる急冷薄帯製
造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂結合法で磁石にするメルトスピニング法による
急冷薄片を用いた樹脂結合方法。(文献31文献4) (3)上記(2)の方法で使用した急冷薄片を2段階の
ホットプレス法で機械的配向処理を行う方法。(文献4
1文献5) ここで、 文献1:特開昭59−46008号公報;文献2 : 
M、Sagawa、 S、Fujlmura、 N、T
ogava、 tl。
(Reference 12 Reference 2) (2) A quenched thin strip manufacturing device used for manufacturing amorphous alloys produces quenched thin flakes with a thickness of about 30 μm, and the quenched thin flakes are made into magnets using a resin bonding method. Resin bonding method used. (Reference 31 Reference 4) (3) A method in which the rapidly cooled flakes used in the method (2) above are mechanically oriented by a two-step hot press method. (Reference 4
1 Reference 5) Here, Reference 1: Japanese Unexamined Patent Publication No. 1983-46008; Reference 2:
M, Sagawa, S, Fujilmura, N, T
ogava, tl.

YaIIlaioto and Y、Matsuura
;J、Appl、Phys、Vol、55(8B5Ma
roh 1984.p2083゜文献3:特開昭59−
211549号公報;文献4 : R,W、Lee:A
ppl、Phys、Lett、 Vol、4B(8) 
YaIIlaioto and Y, Matsuura
;J, Appl, Phys, Vol, 55 (8B5Ma
roh 1984. p2083゜Reference 3: Unexamined Japanese Patent Publication No. 1983-
Publication No. 211549; Document 4: R, W, Lee: A
ppl, Phys, Lett, Vol, 4B(8)
.

15 April 1985.p790;文献5:特開
昭80−100402号公報次に上記の従来方法につい
て説明する。
15 April 1985. p790; Document 5: Japanese Unexamined Patent Publication No. 80-100402 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解、鋳造により合金インゴ
ットを作製し、粉砕して適当な粒度(数μm)の磁石粉
を得る。磁石粉は成形助剤のバインダーと混練され、磁
場中でプレス成形されて成形体が出来上がる。成形体は
アルゴン中で1100℃前後の温度で1時間焼結され、
その後室温まで急冷される。焼結後、600℃前後の温
度で熱処理することにより更に保磁力を向上させる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with an appropriate particle size (several μm). Magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact was sintered in argon at a temperature of around 1100°C for 1 hour.
It is then rapidly cooled to room temperature. After sintering, the coercive force is further improved by heat treatment at a temperature of around 600°C.

(2)のメルトスピニング法による急冷薄片を用いた樹
脂結合方法では、先ず急冷薄帯製造装置の最適な回転数
でR−Fe−B合金の急冷薄帯を作る。得られた厚さ3
0μmのリボン状薄帯は、直径が1000Å以下の結晶
の集合体であり、脆くて割れ易く、結晶粒は等方向に分
布しているので、磁気的にも等方性である。この薄帯を
適当な粒度に粉砕して、樹脂と混練してプレス成形すれ
ば7ton/C−程度の圧力で、約85体積%の充填が
可能となる。
In the resin bonding method (2) using quenched flakes by the melt spinning method, first, a quenched ribbon of R-Fe-B alloy is produced at an optimal rotation speed of a quenched ribbon manufacturing apparatus. Obtained thickness 3
A ribbon-like thin strip of 0 μm is an aggregate of crystals with a diameter of 1000 Å or less, is brittle and easily broken, and since the crystal grains are distributed in the same direction, it is also magnetically isotropic. If this ribbon is crushed to a suitable particle size, kneaded with a resin, and press-molded, it is possible to fill the ribbon to about 85% by volume at a pressure of about 7 tons/C-.

(3)の製造方法は、始めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約70
0℃で予備加熱したグラファイトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達した時
−軸性の圧力が加えられる。温度、時間は特定しないが
、充分な塑性が出る条件としてT−725±25℃、圧
力はP −1,4ton/cd程度が適している。この
段階では磁石は僅かにプレス方向に配向しているとは言
え、全体的には等方性である。次のホットプレスは、大
面積を存する型で行なわれる。最も一般的には、700
℃で0.7ton/ c−で数秒間プレスする。すると
試料は最初の厚みの1/2になりプレス方向と平行に配
向して、合金は異方性化する。これらの工程による方法
は二段階ホットプレス法と呼ばれている。この方法で緻
密で異方性を有するR−Fe−B磁石を得るものである
In the manufacturing method (3), first, a ribbon-like quenched ribbon or piece of ribbon is heated in a vacuum or in an inert atmosphere for about 70 minutes.
Place in a graphite or other heat-resistant press mold preheated to 0°C. When the ribbon reaches the desired temperature - axial pressure is applied. Although the temperature and time are not specified, suitable conditions for producing sufficient plasticity include T-725±25°C and pressure of about P-1.4 ton/cd. At this stage, although the magnet is slightly oriented in the pressing direction, it is generally isotropic. The subsequent hot pressing is carried out in a mold with a large surface area. Most commonly, 700
Press at 0.7 ton/c for a few seconds. The sample then becomes 1/2 of its original thickness and is oriented parallel to the pressing direction, making the alloy anisotropic. A method using these steps is called a two-step hot press method. By this method, a dense and anisotropic R-Fe-B magnet is obtained.

尚、最初のメルトスピニング法で作られるリボン薄帯の
結晶粒は、それが最大の保磁力を示す時の粒径よりも小
さめにしておき、後のホットプレス中に結晶粒の粗大化
が生じて最適の粒径になるようにしておく。
It should be noted that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which the ribbon exhibits its maximum coercive force, so that coarsening of the crystal grains may occur during subsequent hot pressing. to obtain the optimum particle size.

しかし、この方法では高温例えば800℃以上では結晶
粒の粗大化が著しく、それによって保持力iHcが極端
に低下し、実用的な永久磁石にはならない。
However, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, and the magnet cannot be used as a practical permanent magnet.

[発明が解決しようとする問題点] 叙上の従来技術で一応R−Fe−B系磁石は製造出来る
が、これらの製造方法には次の如き欠点を有している。
[Problems to be Solved by the Invention] Although R-Fe-B magnets can be manufactured using the above-mentioned conventional techniques, these manufacturing methods have the following drawbacks.

(1)の焼結法は、合金を粉末にするのが必須であるが
、R−Fe−B系合金は大変酸素に対して活性であるの
で、粉末化すると余計酸化が激しくなり、焼結体中の酸
素濃度はどうしても高くなってしまう。又粉末を成形す
るときに、例えばステアリン酸亜鉛のような成形助剤を
使用しなければならず、これは焼結工程で前もって取り
除かれるのであるが、数刻は磁石体の中に炭素の形で残
ってしまう。この炭素は著しくR−Fe−Bの磁気性能
を低下させ好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but since R-Fe-B alloys are very active against oxygen, oxidation becomes even more intense when they are turned into powder. The oxygen concentration in the body inevitably increases. Also, when compacting the powder, compacting aids, such as zinc stearate, must be used, which are removed beforehand during the sintering process, but some carbon forms remain inside the magnet. So it remains. This carbon is undesirable because it significantly reduces the magnetic performance of R-Fe-B.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われる。これは大変脆く、ハンドリングが難しい
。従って焼結炉にきれいに並べて入れるのには、相当の
手間が掛かることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. It is very fragile and difficult to handle. Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、一般的に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、生産効率が悪く、結局磁石の製造コストが高
くなってしまう。従って、比較的原料費の安いR−Fe
−B系磁石の長所を活かすことが出来る方法とは言い難
い。
Because of these drawbacks, generally speaking, R-Fe-B
Manufacturing sintered magnets of this type not only requires expensive equipment, but also has poor production efficiency, resulting in high magnet manufacturing costs. Therefore, R-Fe, which has relatively low raw material cost,
-It is hard to say that this is a method that can take advantage of the advantages of B-based magnets.

次に(2)並びに(3)の方法は、真空メルトスピニン
グ装置を使用するがこの装置は現在では、大変生産性が
悪くしかも高価である。
Next, methods (2) and (3) use a vacuum melt spinning device, which currently has very low productivity and is expensive.

(2)の方法では原理的に等方性であるので低エネルギ
ー積であり、ヒステリシスループの角形性もよくないの
で温度特性に対しても、使用する面においても不利であ
る。
The method (2) is isotropic in principle, resulting in a low energy product, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and usage.

(3)の方法は、ホットプレスを二段階に使うというユ
ニークな方法であるが、実際に量産を考えると大変非効
率になることは否めないであろう。
Method (3) is a unique method that uses a hot press in two stages, but it cannot be denied that it is extremely inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が著しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

本発明は、以上の従来技術の欠点を解決するものであり
、その目的とするところは鋳造法をベースの工程とし熱
間加工を併用することにより高性能且つ低コストな希土
類−鉄系永久磁石の製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, and its purpose is to create a high-performance, low-cost rare earth-iron permanent magnet by using a casting method as a base process and also using hot working. The purpose of this invention is to provide a method for manufacturing the same.

[問題点を解決するための手段] 本発明の永久磁石の製造方法の第1は、希土類元素、鉄
及びボロンを基本成分とする磁石の製造方法において、
少なくとも、前記基本成分からなる合金を溶解及び鋳造
する工程、鋳造後熱間加工する工程とからなることを特
徴とする永久磁石の製造方法であり、第2の方法は、第
1の方法の鋳造後熱間加工する工程に次いで熱処理する
工程を付加したことを特徴とする永久磁石の製造方法で
あり、第3の方法は、第1の方法の鋳造後の熱間加工す
る工程の後、続いて熱処理後鋳造合金に水素を吸蔵させ
粉砕する工程と、次いで粉砕された合金の粉末をを機バ
インダーと共に混練し加圧成型する工程とからなること
を特徴とする永久磁石の製造方法である。
[Means for Solving the Problems] The first method of manufacturing a permanent magnet of the present invention is a method of manufacturing a magnet whose basic components are rare earth elements, iron, and boron.
A method for producing a permanent magnet, comprising at least the steps of melting and casting an alloy made of the basic components, and hot working after casting, and the second method is a method for producing a permanent magnet that is similar to the casting method of the first method. A method for producing a permanent magnet, characterized in that a step of heat treatment is added subsequent to the step of post-hot working, and the third method is a method for manufacturing a permanent magnet, which is characterized in that a step of heat treatment is added after the step of hot working after casting in the first method. This method of manufacturing a permanent magnet is characterized by comprising a step of absorbing hydrogen into a cast alloy after heat treatment and pulverizing it, and then kneading the pulverized alloy powder with a machine binder and press-molding it.

[作用] 前記のように希土類−鉄系磁石の製造方法である焼結法
、急冷法は夫々粉砕による粉末管理の困難さ、生産性の
悪さといった大きな欠点を有している。
[Function] As mentioned above, the sintering method and the rapid cooling method, which are methods for producing rare earth-iron magnets, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity.

本発明者等は、これらの欠点を改良するため、バルク状
態での磁石化の研究に着手し、先ず前記希土類元素、鉄
及びボロンを基本成分とする磁石の組成域で熱間加工に
よる異方化が出来、更にこの鋳造インゴットを熱処理後
、水素粉砕によって粉末化し、有機物バインダーと混線
硬化させて樹脂結合型磁石を得ることが出来ることを知
見した。
In order to improve these drawbacks, the present inventors undertook research on magnetization in the bulk state, and first developed an anisotropic process by hot working in the composition range of a magnet whose basic components are rare earth elements, iron, and boron. The inventors have discovered that it is possible to obtain a resin-bonded magnet by heat-treating the cast ingot, pulverizing it by hydrogen pulverization, and cross-curing it with an organic binder.

この方法における熱間加工による異方化は、前記文献4
に示すような急冷法のような2段階でなく、1段階のみ
でよく、バルクのまま加工出来るので生産性は著しく高
い。また鋳造インゴットを粉砕する必要がないので、焼
結法はどの厳密な雰囲気管理を行う必要はなく、設備費
が大きく低減される。
The anisotropy caused by hot working in this method is described in the above-mentioned document 4.
Only one step is required, instead of two steps as in the quenching method shown in Figure 2, and the process can be carried out in bulk, resulting in extremely high productivity. Furthermore, since there is no need to crush the cast ingot, the sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced.

更に樹脂結合磁石においても、急冷法によった磁石のよ
うに原理的に等方性であるといった問題点がなく、異方
性の樹脂結合磁石が得られ、R−Fe−B磁石の高性能
、低コストという特徴を生かすことが出来る。
Furthermore, resin-bonded magnets do not have the problem of being isotropic in principle like magnets produced by the quenching method, and an anisotropic resin-bonded magnet can be obtained, achieving the high performance of R-Fe-B magnets. , it is possible to take advantage of the feature of low cost.

バルク状態で磁石化するという研究(文献6)は、Nd
   Fe   Co   V   B   とい1B
、2  50.7  22.8 1.3 9.2う組成
でのアルゴンガス吹付は大気中溶解で吸い上げた小型サ
ンプルによる試験であり、これは少量採取による急冷の
効果が出たものと考えられる。
Research on magnetization in the bulk state (Reference 6) shows that Nd
Fe Co V B Toi 1B
, 2 50.7 22.8 1.3 9.2 The argon gas spraying with the composition was a test using a small sample sucked up by dissolution in the atmosphere, and this is thought to be due to the rapid cooling effect of small sample collection. .

文献6:三保広晃他(日本金属学界、昭和60年度秋期
講演会、講演番号(544) この組成では、通常の鋳造では主相であるNd2 F 
614B相が粗大化してしまい少々の塑性加工では良好
な磁気特性は得られない。
Document 6: Hiroaki Miho et al. (Japanese Society of Metals, 1985 Autumn Lecture, Lecture number (544)) In this composition, Nd2F, which is the main phase in normal casting,
The 614B phase becomes coarse and good magnetic properties cannot be obtained by a little plastic working.

従来のR−Fe−B系磁石の組成は、文献2に示される
ようなR15Fe77B8が最適とされていた。
The optimal composition of conventional R-Fe-B magnets was R15Fe77B8 as shown in Document 2.

この組成は主相R2Fe14B化合物を原子百分率にし
た組成RFe   B   に比してRoll、7  
 B2.4 5.9 Bに富む側に移行している。このことは保磁力を得るた
めには、主相のみでなくRリッチ相、Bリッチ相という
非磁性相が必要であるという点から説明されている。
This composition has a Roll, 7
B2.4 5.9 Shifting to the B-rich side. This is explained from the point that in order to obtain a coercive force, not only the main phase but also non-magnetic phases such as an R-rich phase and a B-rich phase are required.

ところが本発明による組成では逆にBが少ない側に移行
したところに保磁力のピーク値が存在する。この組成域
では、焼結法の場合、保磁力が激減するので、これまで
あまり問題にされていなかった。しかし通常の鋳造法で
は高い保磁力は得られないが熱間加工を施すことによっ
て高い保磁力が得られる。
However, in the composition according to the present invention, on the contrary, the peak value of the coercive force exists where the B content shifts to the side where there is less B. In this composition range, the coercive force is drastically reduced in the case of the sintering method, so it has not been much of a problem so far. However, although high coercive force cannot be obtained by ordinary casting methods, high coercive force can be obtained by hot working.

これらの点は以下のように考えられる。先ず焼結法を用
いても鋳造法を用いても、保磁力機構そのものはntJ
cleatiorl modelに従っている。これは
、両者の初磁化曲線がS m Co 5のように急峻な
立上がりを示すことかられかる。このタイプの磁石の保
磁力は基本的には単磁区モデルによっている。
These points can be considered as follows. First of all, whether a sintering method or a casting method is used, the coercive force mechanism itself is ntJ.
It follows the creatiorl model. This is because the initial magnetization curves of both exhibit a steep rise like S m Co 5. The coercive force of this type of magnet is basically based on a single domain model.

即ちこの場合、大きな結晶磁気異方性を有するR2Fe
14B化合物が、大きすぎると粒内に磁壁を有するよう
になるため、磁化の反転は磁壁の移動によって容易に起
きて、保磁力は小さい。
That is, in this case, R2Fe having large magnetocrystalline anisotropy
If the 14B compound is too large, it will have domain walls within the grains, so reversal of magnetization will easily occur due to movement of the domain walls, and the coercive force will be small.

一方、粒子が小さくなって、ある寸法以下になると、粒
子内に磁壁を有さなくなり、磁化の反転は回転のみによ
って進行するため、保磁力は大きくなる。
On the other hand, when the particles become smaller to a certain size or less, the particles no longer have domain walls, and the reversal of magnetization proceeds only by rotation, so the coercive force increases.

つまり適切な保磁力を得るためにはRF e 14B相
が適切な粒径を有することが必要である。この粒径とし
ては10μm前後が適当であり、焼結タイプの場合は、
焼結前の粉末粒度の調整によって粒径を適合させること
が出来る。
That is, in order to obtain an appropriate coercive force, it is necessary that the RF e 14B phase has an appropriate particle size. The appropriate particle size is around 10 μm, and in the case of sintered type,
The particle size can be adapted by adjusting the powder particle size before sintering.

ところが鋳造法と熱間加工法とを組合わせた場合、R2
F 814B化合物の結晶の大きさは先ず初めに溶湯か
ら凝固する段階で決定されるが、熱間加工によって結晶
が微細化されるので、磁石の最終の結晶の大きさは熱間
加工の処理条件を選定することによって調節出来、十分
な保磁力を作り出すことが出来る。
However, when the casting method and hot working method are combined, R2
The crystal size of the F814B compound is first determined at the stage of solidification from the molten metal, but since the crystals are made finer by hot working, the final crystal size of the magnet depends on the hot working processing conditions. It can be adjusted by selecting , and a sufficient coercive force can be created.

次に、樹脂結合化であるが前記文献4の急冷法でも確か
に樹脂結合磁石は作成出来る。
Next, regarding resin bonding, resin bonded magnets can certainly be created using the quenching method described in Document 4.

しかし、急冷法で作成される粉末は、直径が1000Å
以下の多結晶が等方向に集合したものであるため磁気的
にも等方性であり、異方性磁石は作成出来ず、R−Fe
−B系の低コスト、高性能という特徴が生かせない。水
系の場合、水素粉砕によって機械的な歪みの小さな粉砕
を行えば、保持力がかなり維持出来るので樹脂結合化を
行なえる。この方法の最大のメリットは、文献4と異な
り、異方性磁石の作成が可能な点にある。
However, the powder created by the rapid cooling method has a diameter of 1000 Å.
Since the following polycrystals are gathered in the same direction, it is magnetically isotropic, and it is not possible to create an anisotropic magnet.
-The characteristics of low cost and high performance of the B series cannot be utilized. In the case of a water-based material, if pulverization is performed using hydrogen pulverization with small mechanical strain, the holding force can be maintained considerably and resin bonding can be performed. The biggest advantage of this method is that, unlike Document 4, it is possible to create an anisotropic magnet.

以下、本発明による永久磁石の好ましい組成範囲につい
て説明する。
The preferred composition range of the permanent magnet according to the present invention will be explained below.

希土類元素としては、Y、La、Ce、Pr。Rare earth elements include Y, La, Ce, and Pr.

Nd、Sm、Eu、Gd、Tb、Dy、t(o、Er、
Tm、Yb、Luが候補として挙げられ、これらのうち
の1種あるいは2種以上を組合わせて用いられる。最も
高い磁気性能はPrで得られる。
Nd, Sm, Eu, Gd, Tb, Dy, t(o, Er,
Tm, Yb, and Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr.

従って実用的にはPr、Pr−Nd合金、Ce−Pr−
Nd合金等が用いられる。また少;の添加元素、例えば
重希土元素のDY、Tb等やAI。
Therefore, Pr, Pr-Nd alloy, Ce-Pr-
Nd alloy or the like is used. Also, a small amount of additive elements, such as heavy rare earth elements DY, Tb, etc., and AI.

Mo、Si等は保磁力の向上に有効である。Mo, Si, etc. are effective in improving coercive force.

R−Fe−B系磁石の主相はR2Fe14Bである。従
ってRが8原子96未満では、もはや上記化合物を形成
せずα−鉄と同一構造の立方晶組織となるため高磁気特
性は得られない。一方Rが30原子%を越えると非磁性
のRリッチ相が多くなり磁気特性は著しく低下する。よ
ってRの範囲は8〜30原子%が適当である。しかし鋳
造磁石とするため、好ましくはR8〜25原子%が適当
である。
The main phase of the R-Fe-B magnet is R2Fe14B. Therefore, if R is less than 8 atoms and 96 atoms, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is formed, so that high magnetic properties cannot be obtained. On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range of R is 8 to 30 atomic %. However, in order to form a cast magnet, preferably R8 to 25 atomic % is appropriate.

Bは、R2Fe14B相を形成するための必須元素であ
り、2原子%未満では菱面体のR−Fe系になるため高
保磁力は望めない。また28原子%を越えるとBに富む
非磁性相が多くなり、残留磁束密度は著しく低下してく
る。しかし鋳造磁石としては好ましくはB88原子以下
がよく、それ以上では特殊な冷却を施さないかぎり、微
細なR2F e 14B相を得ることが出来ず、保磁力
は小さい。
B is an essential element for forming the R2Fe14B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, as a cast magnet, B88 atoms or less are preferable, and if it is larger than that, a fine R2F e 14B phase cannot be obtained unless special cooling is performed, and the coercive force is small.

Coは水系磁石のキュリ一点を増加させるのにを効な元
素であり、基本的にFeのサイトを置換しR2F 81
4Bを形成するのだが、この化合物は結晶異方性磁界が
小さく、その量が増すにつれて磁石全体としての保磁力
は小さくなる。そのため永久磁石として考えられるIK
Oe以上の保磁力を与えるには50原子%以内がよい。
Co is an element that is effective in increasing the Curie point of water-based magnets, and basically replaces Fe sites to create R2F 81
4B, but this compound has a small crystal anisotropy magnetic field, and as the amount of this compound increases, the coercive force of the magnet as a whole decreases. Therefore, IK can be considered as a permanent magnet.
In order to provide a coercive force of Oe or more, the content is preferably within 50 atomic %.

Alは、保持力の増大効果を示す。(文献7:Zhan
g Maocai他:Proceedlngsofth
e 8th Internatlonal Works
hop on Rare−Farth Magnets
、 1985.pこの文献7は焼結磁石に対する効果を
示したものであるが、その効果は鋳造磁石でも同様に存
在する。しかしAIは非磁性元素であるため、その添加
量を増すと残留磁束密度が低下し、15原子%を越える
とハードフェライト以下の残留磁束密度になってしまう
ので希土類磁石としての目的を果たし得ない。よってA
Iの添加量は15原子%以下がよい。
Al exhibits the effect of increasing holding power. (Reference 7: Zhan
g Maocai et al.: Proceedlngsofth
e 8th International Works
hop on Rare-Farth Magnets
, 1985. Although this document 7 shows the effect on sintered magnets, the same effect also exists on cast magnets. However, since AI is a non-magnetic element, increasing the amount added will lower the residual magnetic flux density, and if it exceeds 15 at %, the residual magnetic flux density will be lower than that of hard ferrite, so it cannot fulfill its purpose as a rare earth magnet. . Therefore A
The amount of I added is preferably 15 atomic % or less.

又、本発明において、熱間加工とは冷間加工に対する概
念であり、塑性加工によって生じる加工歪みの大半を加
工中に取除きながら加工する高温での塑性加工を指す。
Further, in the present invention, hot working is a concept with respect to cold working, and refers to plastic working at a high temperature in which most of the working strain caused by plastic working is removed during processing.

従って、熱間加工中には、再結晶による結晶粒の微細化
及びそれに続く結晶粒の成長も起り、これらの現象も熱
間加工には含まれることは明らかである。
Therefore, during hot working, crystal grain refinement due to recrystallization and subsequent growth of crystal grains also occur, and it is clear that these phenomena are also included in hot working.

熱間加工における温度は再結晶温度以上が望ましく、本
発明のR−Fe−B系合金においては好ましくは500
℃以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, and in the R-Fe-B alloy of the present invention, preferably 500
℃ or higher.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] 実施例、1 本発明による製造法の工程図を第1図に示す。[Example] Example, 1 A process diagram of the manufacturing method according to the present invention is shown in FIG.

先ず第1図に示す如く所望の組成の合金を誘導炉で溶解
し、鋳型に鋳造する。
First, as shown in FIG. 1, an alloy having a desired composition is melted in an induction furnace and cast into a mold.

次に磁石に異方性を付与するために、各種の熱間加工を
施した。
Next, various types of hot working were performed to impart anisotropy to the magnet.

各種の熱間加工として第2図に押出し加工の説明図、第
3図に圧延加工の説明図、第4図にスタンプ加工の説明
図を示す。
As various hot workings, Fig. 2 shows an explanatory diagram of extrusion processing, Fig. 3 shows an explanatory diagram of rolling processing, and Fig. 4 shows an explanatory diagram of stamping processing.

図において、1:油圧プレス、2:ダイ、3:磁石合金
、4:磁化溶湯方向、5:ロール、6:スタンプ、7;
基板を示す。
In the figure, 1: hydraulic press, 2: die, 3: magnet alloy, 4: direction of magnetized molten metal, 5: roll, 6: stamp, 7;
The board is shown.

本実施例においては、熱間加工として■押出し加工、■
圧延加工、■スタンプ加工のいずれかを1000℃で施
し、磁石合金の配向処理を行った。
In this example, the hot processing includes ■extrusion processing,
Either rolling or stamping was performed at 1000°C to orient the magnetic alloy.

■の押出し加工については、等方向に力が加わるように
ダイ2側からも力が加わるように工夫した。
Regarding the extrusion process (2), we devised a way to apply force from the die 2 side so that the force was applied in the same direction.

■の圧延加工及び■のスタンプ加工については、極力歪
速度が小さくなるようにロール5.スタンプ6の速度を
調整した。
For the rolling process (2) and the stamping process (2), roll 5. Adjusted the speed of Stamp 6.

いずれの方法でも高温領域(500〜1100℃)にお
いて矢視する如く合金の押される方向に平行になるよう
に結晶の磁化容易軸は配向する。
In either method, the axis of easy magnetization of the crystal is oriented parallel to the direction in which the alloy is pressed, as shown by the arrow, in the high temperature range (500 to 1100°C).

本発明者等は、希土類元素、鉄及びボロンを基本成分と
する合金を溶解・鋳造した後、塑性加工実験を広範囲に
亘り行い次の実験結果を得た。
After melting and casting an alloy whose basic components are rare earth elements, iron, and boron, the present inventors conducted extensive plastic working experiments and obtained the following experimental results.

(1)室温から200℃の間の低温で歪速度の大きい条
件で塑性加工すると大半の組成の合金インゴットには割
れが生じる。
(1) Cracks occur in alloy ingots of most compositions when plastically worked at low temperatures between room temperature and 200°C and at high strain rates.

割れていない小片を用いて磁気測定すると保磁力IHc
は加工率に見合って増大するが、結晶の配向はほとんど
起こらずミ従って残留磁束密度Brはほとんど増大しな
い。このようなことから、この範囲の塑性加工では最大
エネルギー積(BH) 、axはほとんど増大しない。
Coercive force IHc when magnetically measured using a small piece that is not broken
increases in proportion to the processing rate, but crystal orientation hardly occurs, so the residual magnetic flux density Br hardly increases. For this reason, in plastic working within this range, the maximum energy product (BH), ax, hardly increases.

(2)一方、1ion℃を越える高温で塑性加工すると
大きな歪速度でも割れ欠けは発生せず、加工性は良好と
なるとともに良好な結晶配向が生じる。しかし、保磁力
111cは低下してくる。
(2) On the other hand, when plastic working is performed at a high temperature exceeding 1 ion° C., no cracking occurs even at a high strain rate, the workability becomes good, and good crystal orientation occurs. However, the coercive force 111c decreases.

(3)500〜1100℃の間で熱間加工すると歪速度
が大きくとれるとともに、残留磁束密度Br及び保磁力
iHcが増大し、最大エネルギー積(Blり   も増
ax 大する。なかでも塑性加工温度は800〜1050℃が
良好である。
(3) When hot working between 500 and 1100°C, the strain rate can be increased, the residual magnetic flux density Br and the coercive force iHc increase, and the maximum energy product (Bl) also increases. Above all, the plastic working temperature A temperature of 800 to 1050°C is preferable.

(4)本発明の合金組成を鋳造したインゴットはその融
点近くまで加熱しても結晶粒の粗大化はわずかじか生じ
ない。
(4) Even when an ingot made of the alloy composition of the present invention is heated to near its melting point, coarsening of crystal grains occurs only slightly.

(5)また加工率と平均C軸と配向性の関係は加工率が
20%でC軸配向率が60〜70%、加工率が40%で
C軸配向率が65〜75%、加工率60%でC軸配向率
75〜85%、加工率80%でC軸配向率85〜959
6、加工率90%でC軸配向率85〜98%となる。
(5) The relationship between processing rate, average C-axis and orientation is as follows: When processing rate is 20%, C-axis orientation rate is 60-70%, when processing rate is 40%, C-axis orientation rate is 65-75%, and when processing rate is 40%, C-axis orientation rate is 65-75%. C-axis orientation rate is 75-85% at 60%, C-axis orientation rate is 85-959 at 80% processing rate.
6. At a processing rate of 90%, the C-axis orientation rate is 85-98%.

第1表の組成の合金を溶解し、第1図に示す方法で磁石
を作成した。ただし用いた熱間加工法は第1表中に併記
した。また熱間加工後のアニール熱処理はすべて100
0℃×24時間行った。
An alloy having the composition shown in Table 1 was melted and a magnet was produced by the method shown in FIG. However, the hot working method used is also listed in Table 1. In addition, all annealing heat treatment after hot processing is 100%
The test was carried out at 0°C for 24 hours.

第1表において熱間加工は、加工温度が500〜110
0℃、歪速度が10−4〜1/秒の間で種々の条件を組
合わせて行い、その中から代表例として1000°Cの
例を示したものである。又アニール処理の最適条件即ち
温度と時間は、合金の組成と熱間塑性加工条件によって
変化する。組成によっては500〜800℃、熱間加工
条件によっては800〜1000℃が良好となる。
In Table 1, hot working is performed at a processing temperature of 500 to 110.
Testing was carried out under various combinations of conditions at 0° C. and strain rates of 10 −4 to 1/sec, of which 1000° C. is shown as a representative example. Also, the optimum conditions for annealing, ie, temperature and time, vary depending on the composition of the alloy and the hot plastic working conditions. Depending on the composition, a temperature of 500 to 800°C is suitable, and a temperature of 800 to 1000°C is suitable depending on hot working conditions.

第2表は、組成としてPr  Pe  B  5Nd3
oPe55B 及びCe 3NdxoPrt4Fe5o
CO17Zr 2 B14を代表例にとり、塑性加工温
度と加工性◆1110” C軸配向率との関係を示した
ものである。加工率は80%を目標としΔ印は塑性加工
中割れが生じたもの、x印は塑性加工できなかったもの
を指す。
Table 2 shows the composition of Pr Pe B 5Nd3
oPe55B and Ce3NdxoPrt4Fe5o
Taking CO17Zr2B14 as a representative example, the relationship between plastic working temperature and workability ◆1110" C-axis orientation rate is shown. The working rate is targeted at 80%, and Δ marks indicate cracks occurred during plastic working. , x marks indicate those that could not be plastically processed.

塑性加工温度は500〜1100℃に亘って良好である
が、その中でも800〜1050℃が優れている。
The plastic working temperature ranges from 500 to 1,100°C, and among them, 800 to 1,050°C is excellent.

磁気特性と生産性の双方を併せて評価すると900〜1
050℃が最適である。歪速度は高温になる程そして希
土類元素をボロンの含有量が低い程大きくとることがで
きる。
When both magnetic properties and productivity are evaluated together, it is 900-1
050°C is optimal. The strain rate can be increased as the temperature increases and as the boron content of rare earth elements decreases.

本実験での歪速度は10−’〜1/秒の範囲を用いた。The strain rate in this experiment was in the range of 10-' to 1/sec.

中でも歪速度は1O−3〜10”/秒がより良好であっ
た。1000℃前後では歪速度を1〜102/秒とする
ことが加工方法特に押出成形においては加工応力が圧縮
応力が主で引張応力が小さいため可能であることが判明
した。
Among them, a strain rate of 1 O-3 to 10"/sec was better. At around 1000°C, it is recommended to set the strain rate to 1 to 102/sec. Especially in extrusion molding, the processing stress is mainly compressive stress. It turned out that this is possible because the tensile stress is small.

又、C軸配向率が高くなると残留磁束密度B「と保磁力
1c双方が大きくなり、(Bit)   は急激にax 増大する。
Furthermore, as the C-axis orientation rate increases, both the residual magnetic flux density B' and the coercive force 1c increase, and (Bit) and ax rapidly increase.

第3表に結果を示す。参考データとして熱間加工を行な
わない試料の残留磁束密度を示した。
Table 3 shows the results. The residual magnetic flux density of the sample without hot working is shown as reference data.

第3表より、押出し・圧延・スタンプのすべての熱間加
工法で残留磁束密度が増加し磁気的に異方化されたこと
がわかる。なかでも押出し法が勝れている。
From Table 3, it can be seen that the residual magnetic flux density increased and magnetic anisotropy was achieved by all hot working methods such as extrusion, rolling, and stamping. Among these, the extrusion method is superior.

[実施例2] ここでは、通常の鋳造方法を用いた実施例について述べ
る。
[Example 2] Here, an example using a normal casting method will be described.

先ず第4表のような組成の合金をを誘導炉で溶解し鉄鋳
型にて鋳造し、熱間加工の後インゴットを磁気的に硬化
させるため1000℃×24時間のアニール熱処理を施
した。
First, an alloy having the composition shown in Table 4 was melted in an induction furnace, cast in an iron mold, and after hot working, annealing heat treatment was performed at 1000° C. for 24 hours to magnetically harden the ingot.

このときアニール後の平均粒径は約15μmであった。At this time, the average grain size after annealing was about 15 μm.

この階段で切断・研削を施せば、異方性磁石となる。If this step is used to cut and grind the material, it will become an anisotropic magnet.

樹脂結合タイプの磁石の場合は、室温において18−8
ステンレス鋼製容器中、10気圧程度の水素ガス雰囲気
のもとての水素の吸蔵と10””torでの脱水素をく
りかえし行ない粉砕後、エポキシ樹脂を4重−%混練し
、10KOeの磁場で横磁場成形を行った。
For resin-bonded type magnets, 18-8 at room temperature.
After repeatedly absorbing hydrogen in a hydrogen gas atmosphere of about 10 atm in a stainless steel container and dehydrogenating it at 10'' tor, and pulverizing it, 4% epoxy resin was kneaded and mixed in a magnetic field of 10 KOe. Transverse magnetic field forming was performed.

以上の結果を第5表に示す。The above results are shown in Table 5.

第1表 第3表 第4表 第5表 [発明の効果] 叙上の如く本発明の永久磁石の製造方法によれば、希土
類元素等を、鋳造した後、温度が500〜1100℃、
加工率が50%以上、そして小さい歪速度で熱間加工す
ることにより、次の如き効果を奏するものである。
Table 1 Table 3 Table 4 Table 5 [Effects of the Invention] As described above, according to the method for producing a permanent magnet of the present invention, after casting rare earth elements, etc., the temperature is 500 to 1100 °C,
By hot working at a processing rate of 50% or more and a small strain rate, the following effects are achieved.

(1)C軸配同率を高めることができ、残留磁束密度B
rを著しく改善することができた。
(1) The C-axis orientation ratio can be increased, and the residual magnetic flux density B
It was possible to significantly improve r.

(2)又、結晶粒を微細化することにより、保磁力IH
cを著しく高めることができた。
(2) Also, by making the crystal grains finer, the coercive force IH
It was possible to significantly increase c.

(3)(1)及び(2)の相乗効果により最大エネルギ
ー積(B11)   を格段に高めることができた。
(3) The synergistic effect of (1) and (2) made it possible to significantly increase the maximum energy product (B11).

ax (4)従来の焼結法と比較し、加工工数及び生産設備投
資額を著しく低減させることができた。
ax (4) Compared to conventional sintering methods, processing man-hours and production equipment investment can be significantly reduced.

(5)従来のメルトスピニング法と比較し、高性能でし
かも低コストの磁石をつくることができた。
(5) Compared to the conventional melt spinning method, it was possible to produce magnets with high performance and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のR−Fe−B系磁石の製造工程図、第
2図は、熱間押出しによる磁石合金の配向処理説明図、
第3図は、熱間圧延による磁石合金の配向処理説明図、
第4図は、熱間スタンプ加工による磁石合金の配向処理
説明図である。 図において、1;油圧プレス、2;ダイ(型)、3;磁
石合金、4;磁化溶湯方向、5;ロール、6;スタンプ
、7;基板。 尚、図面中間符号は同−又は相当部分を示す。
Fig. 1 is a manufacturing process diagram of the R-Fe-B magnet of the present invention, Fig. 2 is an explanatory diagram of the orientation treatment of the magnet alloy by hot extrusion,
FIG. 3 is an explanatory diagram of orientation treatment of magnetic alloy by hot rolling,
FIG. 4 is an explanatory diagram of orientation processing of a magnetic alloy by hot stamping. In the figure, 1: hydraulic press, 2: die (mold), 3: magnet alloy, 4: direction of magnetized molten metal, 5: roll, 6: stamp, 7: substrate. Note that the reference numerals in the drawings indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素、鉄及びボロンを基本成分とする磁石
の製造方法において、少なくとも、前記基本成分からな
る合金を溶解及び鋳造する工程、鋳造後熱間加工する工
程とからなることを特徴とする永久磁石の製造方法。
(1) A method for manufacturing a magnet whose basic components are rare earth elements, iron, and boron, characterized by comprising at least the steps of melting and casting an alloy made of the basic components, and hot working after casting. A method of manufacturing permanent magnets.
(2)希土類元素、鉄及びボロンを基本成分とする磁石
の製造方法において、少なくとも、前記基本成分からな
る合金を溶解及び鋳造する工程、鋳造後熱間加工する工
程次いで熱処理する工程とからなることを特徴とする永
久磁石の製造方法。
(2) A method for manufacturing a magnet whose basic components are rare earth elements, iron, and boron, including at least the steps of melting and casting an alloy made of the basic components, hot working after casting, and then heat treatment. A method for producing a permanent magnet characterized by:
(3)希土類元素、鉄及びボロンを基本成分とする磁石
の製造方法において、少なくとも、前記基本成分からな
る合金を溶解及び鋳造する工程、鋳造後熱間加工する工
程と続いて熱処理後前記鋳造合金に水素を吸蔵させ粉砕
する工程と、次いで粉砕された合金の粉末を有機バイン
ダーと共に混練し加圧成型する工程とからなることを特
徴とする永久磁石の製造方法。
(3) A method for manufacturing a magnet whose basic components are rare earth elements, iron, and boron, which includes at least a step of melting and casting an alloy made of the basic components, a step of hot working after casting, and a step of hot working the cast alloy after heat treatment. 1. A method for producing a permanent magnet, comprising the steps of pulverizing the alloy by absorbing hydrogen therein, and then kneading the pulverized alloy powder with an organic binder and press-molding the powder.
JP62104624A 1986-04-30 1987-04-30 Permanent magnet manufacturing method Expired - Lifetime JPH0766892B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-100159 1986-04-30
JP10015986 1986-04-30

Publications (2)

Publication Number Publication Date
JPS63107009A true JPS63107009A (en) 1988-05-12
JPH0766892B2 JPH0766892B2 (en) 1995-07-19

Family

ID=14266535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104624A Expired - Lifetime JPH0766892B2 (en) 1986-04-30 1987-04-30 Permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0766892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203510A (en) * 1989-02-01 1990-08-13 Daido Steel Co Ltd Manufacture of rare earth-iron permanent magnet and mold used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet
JPS61238915A (en) * 1985-04-16 1986-10-24 Hitachi Metals Ltd Permanent magnet alloy and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet
JPS61238915A (en) * 1985-04-16 1986-10-24 Hitachi Metals Ltd Permanent magnet alloy and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203510A (en) * 1989-02-01 1990-08-13 Daido Steel Co Ltd Manufacture of rare earth-iron permanent magnet and mold used therefor

Also Published As

Publication number Publication date
JPH0766892B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JPS62276803A (en) Rare earth-iron permanent magnet
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPH01171209A (en) Manufacture of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JPS63107009A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH04143221A (en) Production of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet
JPH01175209A (en) Manufacture of permanent magnet
JPS63286516A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63286512A (en) Manufacture of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPS63213317A (en) Rare earth iron permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPS63287007A (en) Manufacture of permanent magnet
JPH03249125A (en) Production of permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 12