JPH0689432B2 - Method of manufacturing permanent magnet material - Google Patents

Method of manufacturing permanent magnet material

Info

Publication number
JPH0689432B2
JPH0689432B2 JP61197272A JP19727286A JPH0689432B2 JP H0689432 B2 JPH0689432 B2 JP H0689432B2 JP 61197272 A JP61197272 A JP 61197272A JP 19727286 A JP19727286 A JP 19727286A JP H0689432 B2 JPH0689432 B2 JP H0689432B2
Authority
JP
Japan
Prior art keywords
magnet material
permanent magnet
container
producing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61197272A
Other languages
Japanese (ja)
Other versions
JPS6353238A (en
Inventor
嵩司 古谷
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61197272A priority Critical patent/JPH0689432B2/en
Publication of JPS6353238A publication Critical patent/JPS6353238A/en
Publication of JPH0689432B2 publication Critical patent/JPH0689432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、異方性Nd−Fe−B系永久磁石材料の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing an anisotropic Nd—Fe—B based permanent magnet material.

従来の技術 永久磁石材料は、一般家庭電気製品から精密機器、自動
車部品に至るまで、広い分野にわたって使用されてお
り、電子機器の小型化、高効率化の要求にともない、そ
の磁気特性の向上が益々求められるようになっている。
2. Description of the Related Art Permanent magnet materials are used in a wide range of fields, from general household appliances to precision equipment and automobile parts, and their magnetic properties have been improved with the demand for miniaturization and high efficiency of electronic equipment. Increasingly demanding.

Nd−Fe−B系の磁石材料についても種々の提案がなさ
れ、例えば、Nd−Fe−B系合金を急冷凝固して薄帯を製
造し、これを粒径250μ程度に粉砕し、得られた粉末を
圧縮成形して磁石材料を製造する方法は公知である。
又、Nd−Fe−B合金を急冷凝固させて得られた薄帯を粉
砕し、得られた粉末を700℃程度の温度でホットプレス
し、次いで加熱して塑性変形させ、異方性磁石材料を製
造する方法も公知である。
Various proposals have also been made for Nd-Fe-B based magnet materials. For example, Nd-Fe-B based alloys are rapidly solidified to produce thin strips, which are pulverized to a particle size of about 250 μ. A method for producing a magnetic material by compression molding a powder is known.
In addition, the ribbon obtained by rapidly solidifying Nd-Fe-B alloy is crushed, and the obtained powder is hot-pressed at a temperature of about 700 ° C and then heated to be plastically deformed. A method for producing is also known.

発明が解決しようとする問題点 しかしながら、前者の方法では、圧縮成形を磁場中で行
っても異方性の永久磁石材料は得られない。又、後者の
方法では、塑性変形を行うに際し、合金微粉末の表面が
酸化を起こし、磁気特性、特に保磁力の低下を引き起こ
し、又、塑性変形に際してホットプレスによって成形さ
れた成形物が欠けたり、或いは崩れたりするという欠点
があった。
Problems to be Solved by the Invention However, in the former method, an anisotropic permanent magnet material cannot be obtained even if compression molding is performed in a magnetic field. In the latter method, when plastic deformation is performed, the surface of the fine alloy powder oxidizes, causing a decrease in magnetic properties, particularly coercive force, and the molded product formed by hot pressing during plastic deformation may be chipped. Or, there was a drawback that it would collapse.

本発明は、従来の技術における上記のような欠点に鑑み
てなされたものである。
The present invention has been made in view of the above-mentioned drawbacks in the conventional technique.

問題点を解決するための手段 本発明は、異方性のNd−Fe−B系永久磁石材料の製造方
法に関するものであって、Nd−Fe−B系合金を急冷凝固
させて得られた薄帯を粉砕し、得られた粉末を、プレス
成形した後、内部を真空または不活性ガス雰囲気に保持
した容器に充填し、容器を密封し、容器内の充填物を塑
性変形して異方性化させることを特徴とする。
The present invention relates to a method for producing an anisotropic Nd-Fe-B system permanent magnet material, which is obtained by rapidly solidifying an Nd-Fe-B system alloy. After the band is crushed and the obtained powder is press-molded, it is filled into a container whose inside is kept in a vacuum or an inert gas atmosphere, the container is sealed, and the filling in the container is plastically deformed to anisotropy. It is characterized by making it.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明において使用されるNd−Fe−B系合金は、例えば
次の一般式で示されるものである。
The Nd-Fe-B based alloy used in the present invention is represented by, for example, the following general formula.

NdxByFe1-x-y (式中、0.05≦x≦0.30、0.01≦y≦0.10(モル比) 上記一般式中、Ndは、その一部が他の希土類元素によっ
て置換されていても良く、又、Bは、その一部がC、
N、Si、P及びAlから選択された1種又はそれ以上の元
素で置換されていても良い。又、Feは、その20重量%ま
でをCo、Mn、Ni、Ti、Zr、Hf、V、Nb、Cr、Ta、Mo、及
びWから選択された1種又はそれ以上の元素によって置
換されていても良い。
During Nd x B y Fe 1-xy ( where in 0.05 ≦ x ≦ 0.30,0.01 ≦ y ≦ 0.10 ( mole ratio) above general formula, Nd may be substituted partly by other rare earth elements , B is a part of C,
It may be substituted with one or more elements selected from N, Si, P and Al. Further, Fe is substituted by up to 20% by weight thereof with one or more elements selected from Co, Mn, Ni, Ti, Zr, Hf, V, Nb, Cr, Ta, Mo and W. May be.

本発明においては、上記組成で示される合金成分を不活
性雰囲気中で溶解し、超急冷法により薄帯にし、得られ
た薄帯を常法により、例えばボールミル等により微粉砕
する。次いで、得られた粉末を容器に充填するが、容器
としては、例えば鉄製の物が使用される。充填された容
器は密閉されるが、密閉された容器内は不活性ガス雰囲
気又は真空に保持する必要があり、特に真空、例えば1
×10-2mmHg程度の真空にするのが望ましい。不活性ガス
としてはアルゴン、ネオン、ヘリウム、窒素等が使用で
きるが、その場合でも減圧の状態に保持するのが好まし
い。
In the present invention, the alloy components represented by the above composition are melted in an inert atmosphere, a ribbon is formed by a superquenching method, and the obtained ribbon is finely pulverized by a conventional method, for example, by a ball mill. Next, the obtained powder is filled in a container, and as the container, for example, an iron product is used. The filled container is hermetically sealed, but the hermetically sealed container must be kept under an inert gas atmosphere or a vacuum, particularly a vacuum such as 1
A vacuum of about 10-2 mmHg is desirable. As the inert gas, argon, neon, helium, nitrogen or the like can be used, but even in that case, it is preferable to keep the pressure reduced.

容器に粉末を充填する場合、取り扱いの容易さ、及び最
終製品の密度の上昇による磁気特性の向上を図るため
に、粉末は予め室温で所定の形状にプレス成形し、高密
度にした状態のものにしておいても良い。
When filling a container with powder, the powder is pressed into a predetermined shape at room temperature in advance and has a high density in order to facilitate handling and improve the magnetic properties by increasing the density of the final product. You may leave it.

容器に充填し、密閉された粉末又はその成形物は、次い
で、塑性変形処理が施されて異方性化される。塑性変形
は、例えば、一方向のプレス、圧延、スウエージング、
鍛伸等の方法で行われる。
The powder or the molded product filled in the container and sealed is then subjected to plastic deformation treatment to be anisotropy. Plastic deformation is, for example, unidirectional pressing, rolling, swaging,
It is carried out by a method such as forging.

塑性変形は変形量30%以上になるように行うのが好まし
い。何故ならば、変形量が30%より低いと、充分な磁気
特性が得られないからである。
The plastic deformation is preferably performed so that the deformation amount is 30% or more. This is because if the deformation amount is lower than 30%, sufficient magnetic properties cannot be obtained.

作用 本発明は、Nd−Fe−B系合金を急冷凝固させて得られた
薄帯を粉砕し、得られた粉末を、プレス成形した後、内
部を真空または不活性ガス雰囲気に保持した容器に充填
し、容器を密封し、容器内の充填物を塑性変形させるも
のであるから、粉砕により得られた粉末の表面は酸化さ
れることなく異方性化される。したがって、得られるNd
−Fe−B系磁石材料は、優れた磁気特性を有するものと
なる。
Action The present invention is to crush a ribbon obtained by rapidly solidifying Nd-Fe-B alloy, crush the obtained powder, and press-mold the resulting powder into a container whose inside is kept in a vacuum or an inert gas atmosphere. Since the filler is filled, the container is sealed, and the filler in the container is plastically deformed, the surface of the powder obtained by pulverization is anisotropy without being oxidized. Therefore, the obtained Nd
The —Fe—B based magnet material has excellent magnetic properties.

実施例 以下、本発明を実施例によって説明する。Examples Hereinafter, the present invention will be described with reference to Examples.

実施例1 Nd29重量%、B1重量%及びFe残部よりなる組成の合金を
溶解炉により溶製し、鋳塊を得た。この鋳塊を溶解し、
ロール周速20m/secで回転する片ロール上にアルゴンに
より吹き出して薄帯化し、得られた薄帯をボールミルに
よって粒径200μ以下になるまで粉砕した。得られた粉
末を7t/cm2の圧力で室温において所定の形状にプレス成
形し、得られた成形物を炭素鋼容器に真空度1×10-2mm
Hgになるように真空密封した。この炭素鋼容器をプレス
によって第1表に記載の温度で、変形量50%になるよう
に圧縮し、塑性変形させることによって異方性化した。
得られた磁石材料から、磁気特性試験片を切り出し、磁
気特性を測定した。その結果は、第1表に示す通りであ
った。なお、以下において、Brは残留磁束密度を、BHc
は保磁力を、(BH)maxは最大エネルギ積を示す。
Example 1 An alloy having a composition of 29 wt% Nd, 1 wt% B and the balance of Fe was melted in a melting furnace to obtain an ingot. Melt this ingot,
Argon was blown onto a single roll rotating at a roll peripheral speed of 20 m / sec to make a ribbon, and the obtained ribbon was pulverized by a ball mill until the particle diameter became 200 μ or less. The obtained powder is press-molded into a predetermined shape at room temperature at a pressure of 7 t / cm 2 , and the obtained molded product is placed in a carbon steel container at a vacuum degree of 1 × 10 -2 mm.
It was vacuum-sealed to Hg. This carbon steel container was pressed by the press at the temperature shown in Table 1 so that the amount of deformation was 50%, and plastically deformed to anisotropy.
A magnetic property test piece was cut out from the obtained magnetic material, and the magnetic property was measured. The results are as shown in Table 1. In the following, Br is the residual magnetic flux density, B Hc
Indicates the coercive force, and (BH) max indicates the maximum energy product.

第1表から明らかなように、塑性変形温度が100ないし9
00℃においては、磁気特性が優れたものになるが、特に
400〜700℃においては優れた結果が得られた。
As is clear from Table 1, the plastic deformation temperature is 100 to 9
At 00 ℃, the magnetic properties are excellent, but especially
Excellent results were obtained at 400-700 ° C.

実施例2 実施例1におけると同様に処理して磁石材料を製造し、
磁気特性を測定した。但し、塑性変形を、温度600℃の
下で、第2表に記載の変形量になるように行った。結果
は、第2表に示す通りであった。
Example 2 A magnet material is manufactured by the same process as in Example 1,
The magnetic properties were measured. However, the plastic deformation was performed at a temperature of 600 ° C. so that the deformation amount was as shown in Table 2. The results are as shown in Table 2.

第2表から明らかなように、塑性変形に際しての変形量
が30%以上になると、磁気特性は優れたものになった。
As is clear from Table 2, when the amount of deformation during plastic deformation was 30% or more, the magnetic properties became excellent.

発明の効果 本発明は、前記の構成を有することにより、従来、異方
性磁石の製造が困難であったNd−Fe−B系合金の急冷凝
固による薄帯から、磁場をかけることなく容易に異方性
化された磁石材料を製造することができる。そして、そ
の異方性化は、上記薄帯を粉砕して得た粉末を容器に充
填し、密閉して行なうから、粉末粒子の表面が酸化され
ることなく行なうことができ、従って、得られるNd−Fe
−B系磁石材料は、優れた磁気特性を有する。
EFFECTS OF THE INVENTION The present invention has the above-described structure, so that it is easy to produce an anisotropic magnet without applying a magnetic field from a ribbon formed by rapid solidification of an Nd-Fe-B alloy, which has been difficult to produce. An anisotropic magnet material can be manufactured. Then, the anisotropy is performed by filling the container with the powder obtained by crushing the thin ribbon and sealing it, so that the surface of the powder particles can be performed without being oxidized, and thus the anisotropy can be obtained. Nd-Fe
The -B magnet material has excellent magnetic properties.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Nd−Fe−B系合金を急冷凝固させて得られ
た薄帯を粉砕し、得られた粉末を、プレス成形した後、
内部を真空または不活性ガス雰囲気に保持した容器に充
填し、容器を密封し、容器内の充填物を塑性変形して異
方性化させることを特徴とする永久磁石材料の製造方
法。
1. A ribbon obtained by rapidly solidifying an Nd-Fe-B alloy is crushed, and the obtained powder is press-molded,
A method for producing a permanent magnet material, which comprises filling a container whose interior is maintained in a vacuum or an inert gas atmosphere, sealing the container, and plastically deforming the filling in the container to make it anisotropic.
【請求項2】塑性変形を100℃〜900℃の温度で行うこと
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。
2. The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 100 ° C. to 900 ° C.
【請求項3】塑性変形を400℃〜700℃の温度で行うこと
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。
3. The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 400 ° C. to 700 ° C.
【請求項4】塑性変形を30%以上の変形量になるように
行うことを特徴とする特許請求の範囲第1項に記載の永
久磁石材料の製造方法。
4. The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed so that the deformation amount is 30% or more.
【請求項5】上記薄帯を粉砕して得られた粉末を室温で
プレス成形して高密度化し、容器に充填することを特徴
とする特許請求の範囲第1項に記載の永久磁石材料の製
造方法。
5. The permanent magnet material according to claim 1, wherein the powder obtained by crushing the thin strip is press-molded at room temperature to densify it and filled in a container. Production method.
JP61197272A 1986-08-25 1986-08-25 Method of manufacturing permanent magnet material Expired - Lifetime JPH0689432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197272A JPH0689432B2 (en) 1986-08-25 1986-08-25 Method of manufacturing permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197272A JPH0689432B2 (en) 1986-08-25 1986-08-25 Method of manufacturing permanent magnet material

Publications (2)

Publication Number Publication Date
JPS6353238A JPS6353238A (en) 1988-03-07
JPH0689432B2 true JPH0689432B2 (en) 1994-11-09

Family

ID=16371709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197272A Expired - Lifetime JPH0689432B2 (en) 1986-08-25 1986-08-25 Method of manufacturing permanent magnet material

Country Status (1)

Country Link
JP (1) JPH0689432B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162750A (en) * 1984-02-01 1985-08-24 Nippon Gakki Seizo Kk Rare earth magnet and its production

Also Published As

Publication number Publication date
JPS6353238A (en) 1988-03-07

Similar Documents

Publication Publication Date Title
JPS63111155A (en) Production of permanent magnet material
JPH0689432B2 (en) Method of manufacturing permanent magnet material
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPS6181604A (en) Preparation of rare earth magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS61119006A (en) Manufacture of sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS61208808A (en) Manufacture of sintered magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP2893705B2 (en) Manufacturing method of permanent magnet
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy
JPS6236366B2 (en)
JPH01175207A (en) Manufacture of permanent magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPS5946081B2 (en) Permanent magnet manufacturing method
JPS6140738B2 (en)
JPH0732102B2 (en) Rare earth alloy permanent magnet manufacturing method
JPH0639601B2 (en) Method for producing Nd-Fe based plastic magnet material
JPS62227061A (en) Manufacture of permanent magnet material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term