JP2583113B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP2583113B2
JP2583113B2 JP63193706A JP19370688A JP2583113B2 JP 2583113 B2 JP2583113 B2 JP 2583113B2 JP 63193706 A JP63193706 A JP 63193706A JP 19370688 A JP19370688 A JP 19370688A JP 2583113 B2 JP2583113 B2 JP 2583113B2
Authority
JP
Japan
Prior art keywords
extrusion
magnet
powder
rare earth
extrusion ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63193706A
Other languages
Japanese (ja)
Other versions
JPH0243712A (en
Inventor
清司 小嶋
昭彦 井端
滋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63193706A priority Critical patent/JP2583113B2/en
Publication of JPH0243712A publication Critical patent/JPH0243712A/en
Application granted granted Critical
Publication of JP2583113B2 publication Critical patent/JP2583113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類(R)、鉄(Fe)、ホウ素(B)を
主成分とする希土類永久磁石、中でも、軸垂直面内に等
方的に磁化容易軸が配向化している面異方性の希土類磁
石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a rare earth permanent magnet containing rare earth (R), iron (Fe), and boron (B) as main components, in particular, isotropic in a plane perpendicular to the axis. The present invention relates to a method for producing a plane-anisotropic rare earth magnet in which the easy axis of magnetization is oriented.

〔従来の技術〕[Conventional technology]

従来、希土類磁石としてのR−Fe−B系異方性磁石の
製造方法には、R−Fe−B系合金の正方晶相を主体とす
る粉末を磁場中成形して焼結した焼結体を作製するもの
(特開昭59−46008号公報)あるいは、アモルファスも
しくは微結晶相からなる溶湯急冷粉末を高温成形して塑
性加工した成形体を作製するもの(特開昭60−100402号
公報)等が知られているが、最近では、主に前者の方法
による一軸異方性磁石が市販され実用に供されており、
また、後者の方法においても高温成形した高温圧縮加工
する方法で一軸異方性磁石が作られている。
Conventionally, a method for producing an R-Fe-B-based anisotropic magnet as a rare earth magnet includes a sintered body obtained by compacting a powder mainly composed of a tetragonal phase of an R-Fe-B-based alloy in a magnetic field and sintering the powder. (Japanese Unexamined Patent Publication No. Sho 59-46008), or a molded article obtained by subjecting a quenched powder of an amorphous or microcrystalline phase to high-temperature molding and plastic working (Japanese Patent Unexamined Publication No. 60-100402). In recent years, uniaxial anisotropic magnets mainly by the former method have been marketed and put to practical use,
Also in the latter method, a uniaxial anisotropic magnet is produced by a method of high-temperature compression working at high temperature.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記したいずれの方法によっても、こ
れによって得られる磁石は主として一軸異方性磁石であ
って、全周囲において径方向に優れた特性を有していて
モータ用磁石等に好適な異方性磁石を得ることが困難で
あった。
However, according to any of the above methods, the magnet obtained by this method is mainly a uniaxial anisotropic magnet, which has excellent properties in the radial direction all around, and is suitable for a magnet for motors and the like. It was difficult to obtain a magnet.

すなわち、前者の焼結による方法においては、ラジア
ル異方性磁石の磁場中配向によって成形されるものであ
って、磁場中配向させた異方的性状のものを焼結するた
め焼結時にクラックが入り易く、機械的強度における信
頼性に欠けるという難点があった。
That is, in the former method of sintering, the material is formed by the orientation of the radial anisotropic magnet in the magnetic field, and the anisotropic material oriented in the magnetic field is sintered to crack during sintering. There was a problem that it was easy to enter and lacked reliability in mechanical strength.

また、後者の塑性加工による方法においては、機械的
強度の点では有利であり、前掲の特開昭60−100402号公
報には種々の塑性加工の手法が開示されてはいるが、径
方向に優れた特性を有する磁石を得るには至っていな
い。しかも、前記公報記載の方法によれば、溶湯急冷粉
末を室温で予備成形したり、あるいは高温成形したりし
て、ひとまず等方性磁石体を作製した後、この等方性磁
石体に対して圧縮加工や後方押出加工を施しているた
め、塑性加工工程が二段階となって、多様な形状並びに
寸法が要請される各種の磁石製品に対応し得ないという
問題点があった。
Further, in the latter method of plastic working, it is advantageous in terms of mechanical strength, and although the above-mentioned Japanese Patent Application Laid-Open No. 60-100402 discloses various plastic working methods, A magnet having excellent characteristics has not yet been obtained. Moreover, according to the method described in the above-mentioned publication, the molten metal quenched powder is preformed at room temperature, or is formed at a high temperature, to produce an isotropic magnet body for the time being, and then with respect to this isotropic magnet body. Since compression and backward extrusion are performed, there is a problem in that the plastic working process is performed in two steps and cannot cope with various magnet products requiring various shapes and dimensions.

本発明は、溶湯急冷粉末を用いて高温下で塑性加工す
る方法において、モータ用等に好適な、全周にわたって
径方向に優れた特性を有する永久磁石、すなわち一軸垂
直面内に等方的に磁化容易軸が配向化している面異方性
磁石の製造方法を提供することを目的とするものであ
る。
The present invention provides a method of plastic working at a high temperature using a quenched powder of a molten metal, which is suitable for motors and the like, and is a permanent magnet having excellent properties in the radial direction over the entire circumference, that is, isotropically in a uniaxial vertical plane. It is an object of the present invention to provide a method for manufacturing a plane anisotropic magnet in which the easy axis of magnetization is oriented.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明は、希土類、鉄、ホ
ウ素を主成分とする非晶質相または微細結果質相あるい
はこれらの混合相からなる磁石合金の粉末を高温処理し
て永久磁石とする製造方法において、前記磁石合金の粉
末を押出比2.4以上で押出加工することを特徴とするも
のである。
In order to achieve the above object, the present invention provides a permanent magnet by subjecting a magnetic alloy powder comprising a rare earth, iron, an amorphous phase containing boron as a main component or a fine resultant phase or a mixed phase thereof to high temperature. The manufacturing method is characterized in that the magnet alloy powder is extruded at an extrusion ratio of 2.4 or more.

〔作用〕[Action]

上記組成の溶湯急冷粉末を押出比2.4以上で押出加工
することにより、押出軸に垂直な面内に等方的に磁化容
易軸が配向化した面異方性磁石を作製することができ
る。それによって得られた磁石体は高温における組成加
工により、ほぼ100%充填された合金となるので、機械
的強度は大きいものとなる。
By extruding the melt quenched powder having the above composition at an extrusion ratio of 2.4 or more, it is possible to produce a plane anisotropic magnet in which the axis of easy magnetization is isotropically oriented in a plane perpendicular to the extrusion axis. The magnet body thus obtained becomes a nearly 100% filled alloy by the composition processing at a high temperature, so that the mechanical strength is high.

また、この押出加工による本発明方法によるときは、
前押しとして適当な強度の金属を押込みさえしておけ
ば、金型には上部開口部以外に開口しているところはな
くなるため、前記開口部から溶湯急冷粉末を投入してポ
ンチを押込むことにより金型内には密閉された状態とな
る。この金型内において、前記粉末は加圧成形されつつ
塑性加工を受けることになり、次第に磁化容易軸が押出
方向に垂直な面内に等方的に配向した集合組織が形成さ
れていき、塑性加工量としての押出比の値が2.4以上と
なると、その配向性はほぼ飽和状態に達するものであ
る。したがって、本発明方法では予備加工としての室温
成形や高温成形が不要になる。
Also, according to the method of the present invention by this extrusion process,
If only a metal of appropriate strength is pushed in as a pre-press, there is no place other than the upper opening in the mold, so the molten metal quenched powder is put in from the opening and the punch is pushed in. As a result, the inside of the mold is sealed. In this mold, the powder is subjected to plastic working while being pressed, and a texture in which the axis of easy magnetization is gradually oriented isotropically in a plane perpendicular to the extrusion direction is formed. When the value of the extrusion ratio as the processing amount is 2.4 or more, the orientation reaches a substantially saturated state. Therefore, in the method of the present invention, room-temperature molding or high-temperature molding as preliminary processing becomes unnecessary.

〔実 施 例〕〔Example〕

以下、本発明の実施例を詳述する。まず、本発明者等
は、全周囲において径方向に優れた特性を有し、モータ
用磁石等に好適に使用できる異方性磁石、すなわちR−
Fe−B系合金材料からなる円柱体の軸垂直面内に磁化容
易軸が配向化した集合組織を有する異方性磁石の作製が
可能な塑性加工手法として押出加工方法を選択し、検討
を加えた。
Hereinafter, examples of the present invention will be described in detail. First, the present inventors have developed an anisotropic magnet having excellent characteristics in the radial direction over the entire circumference and suitable for use as a motor magnet or the like,
Extrusion was selected as a plastic working method capable of producing an anisotropic magnet having a texture in which the axis of easy magnetization was oriented in the plane perpendicular to the axis of a cylindrical body made of an Fe-B alloy material. Was.

一般に、塑性加工された物質はその結晶構造に応じ
て、その物質特有の集合組織を形成する。
Generally, a plastically processed material forms a texture unique to the material according to its crystal structure.

この点に関しては既に、前掲の特開昭60−100402号公
報には、圧縮加工によって圧縮方向に磁化容易軸が配向
化して、一軸性異方性磁石が得られることが開示されて
いる。この押出加工方法を応用して、円柱状材料の径方
向へ圧縮力を付与するようにすれば、モータ用に適した
特性を有する集合組織が実現できる可能性がある。
Regarding this point, Japanese Patent Application Laid-Open No. SHO 60-100402 has already disclosed that the easy axis of magnetization is oriented in the compression direction by the compression processing, and a uniaxial anisotropic magnet can be obtained. By applying this extrusion method to apply a compressive force in the radial direction of the columnar material, there is a possibility that a texture having characteristics suitable for a motor can be realized.

しかしながら、塑性加工量の相違によって前記材料の
集合組織の内容や組織化の程度が異なったものになるこ
とは広く知られており、この塑性加工量の設定が初期の
集合組織の成否を決定するものである。
However, it is widely known that the content of texture and the degree of organization of the material differ due to the difference in the amount of plastic working, and the setting of the amount of plastic working determines the success or failure of the initial texture. Things.

そこで、本考案者等は塑性加工量を表す数値値とし
て、押出比、すなわち押出加工前後の断面積比を採用
し、検討することにとしたのである。
Therefore, the present inventors have adopted the extrusion ratio, that is, the cross-sectional area ratio before and after the extrusion processing, as a numerical value representing the amount of plastic working, and decided to study.

この検討のために、溶湯急冷法により作成したR−Fe
−B系合金材料からなる薄片を粉砕しておおよそ1mm以
下の粒径の粉末に加工したものを用いて押出比を変化さ
せた実験を行い、これによって得られた試料塊から四角
柱の測定試料を切り出して、軸方向と、径方向の2方向
との合計3方向について磁気特性を測定した。この測定
試験はArガス雰囲気中において、押出加工温度:700℃の
条件下で実施した。
For this study, R-Fe prepared by the molten metal quenching method was used.
-An experiment was conducted in which the flakes made of a B-based alloy material were crushed and processed into powder having a particle size of about 1 mm or less and the extrusion ratio was changed, and a square pillar measurement sample was obtained from the sample mass obtained by this. Was cut out, and the magnetic characteristics were measured in a total of three directions, that is, two directions, an axial direction and a radial direction. This measurement test was performed in an Ar gas atmosphere under the conditions of an extrusion processing temperature of 700 ° C.

第1図および第2図は前記測定試験での磁気測定の結
果を示すものである。
FIG. 1 and FIG. 2 show the results of the magnetic measurement in the measurement test.

第1図は最大エネルギー積(BH)maxと押出比との関
係を表す線図、第2図は保磁力BHCおよび残留磁化Brと
の押出比との関係を表す線図である。これらの図に示す
ように、押出比が増大するに従って軸方向の磁気特性
は、残留磁化Br、最大エネルギー積(BH)maxが徐々に
減少し、押出比2.4を超えるとほぼ一定値となる。これ
に対して、径方向の電気特性は、前記軸方向の磁気特性
とは逆に2方向共ほぼ同じ値で残留磁化Br、最大エネル
ギー積(BH)maxが徐々に増加するが、この径方向の磁
気特性も押出比2.4以上ではほぼ一定となる。
FIG. 1 is a diagram showing the relationship between the maximum energy product (BH) max and the extrusion ratio, and FIG. 2 is a diagram showing the relationship between the coercive force BHC and the extrusion ratio with the residual magnetization Br. As shown in these figures, as the extrusion ratio increases, the magnetic properties in the axial direction gradually decrease in the residual magnetization Br and the maximum energy product (BH) max, and become substantially constant when the extrusion ratio exceeds 2.4. On the other hand, the electric characteristics in the radial direction are opposite to the magnetic characteristics in the axial direction, and the remanent magnetization Br and the maximum energy product (BH) max gradually increase at substantially the same value in the two directions. The magnetic properties of these are almost constant at an extrusion ratio of 2.4 or more.

上記試験結果から明らかなように、押出加工が進むに
従って磁化容易軸が径方向への配向化、すなわち、押出
軸に垂直な面内への配向化が進むものであり、押出比が
2.4を超えると磁気特性はほぼ一定となる。この点につ
いて考察を加えると、押出比が2.4以上では、押出加工
によりそれまでに配向化していた組織が壊されて、その
壊された部分や、配向化が不十分な部分が新たに配向化
するという現象が生じて、全体的には磁気特性的には一
定となっていると考えられるものである。
As is clear from the above test results, as the extrusion process proceeds, the axis of easy magnetization is oriented in the radial direction, that is, the orientation in the plane perpendicular to the extrusion axis proceeds, and the extrusion ratio is increased.
When it exceeds 2.4, the magnetic properties become almost constant. Considering this point, when the extrusion ratio is 2.4 or more, the previously oriented structure is destroyed by the extrusion process, and the broken part and the insufficiently oriented part are newly oriented. This phenomenon is considered to occur, and the magnetic characteristics are considered to be constant as a whole.

なお、保磁力BHCは、今回の実験の押出比の範囲内で
は、軸方向では減少しているが、径方向では変化が少な
くほぼ一定であった。
The coercive force BHC decreased in the axial direction within the range of the extrusion ratio in this experiment, but was substantially constant in the radial direction with little change.

また、上記実験では、押出比の増大に伴って金型等に
加わる圧力が増大し、特に、押出比=6の場合では、使
用した金型およびポンチに対して限界強度に近い圧力が
加わることが判明した。したがって、量産体制を考慮す
ると、金型寿命等との関係から、特に大きい押出比の採
用が困難であり、また、加工力は小さい程好ましいた
め、これらの点を考慮に入れた場合、最適な押出比とし
ては、2.4以上で、しかも、2.4に近い値に近づけること
が望ましい。
Also, in the above experiment, the pressure applied to the mold and the like increased with the increase of the extrusion ratio. In particular, when the extrusion ratio was 6, a pressure close to the limit strength was applied to the mold and punch used. There was found. Therefore, in consideration of the mass production system, it is difficult to employ a particularly large extrusion ratio in view of the relationship with the mold life and the like, and the smaller the processing force, the more preferable. It is desirable that the extrusion ratio be 2.4 or more and be close to a value close to 2.4.

更に、上記実験においては、溶湯急冷粉末を予備成形
することなく、粉末状態のままで押出金型内に投入して
押出加工を行った。その結果、第1回の押し出し時には
R−Fe−B系合金材料の成形体、または変形抵抗が近似
する別の金属材料からなる円柱体を用いる必要がある
が、第2回目以降は粉末を投入して押し出すことができ
た。このように、押出金型の内径に合わせた成形体を予
め成形する必要がなくなるため、専用の成形用金型を省
略できる。
Further, in the above experiment, the molten metal quenched powder was put into an extrusion die in a powder state without being preformed, and extrusion was performed. As a result, at the time of the first extrusion, it is necessary to use a molded body of the R-Fe-B alloy material or a cylindrical body made of another metal material having a similar deformation resistance, but the powder is injected after the second time. I was able to extrude. As described above, since it is not necessary to preliminarily mold a molded body corresponding to the inner diameter of the extrusion die, a dedicated molding die can be omitted.

また、材料粉末を直接的に金型内に投入する本発明方
法では、押し出された磁石体の機械的強度を得るため
に、2.4以上の押出比を要する。なお、2.4以下の押出比
では、加工力は小さくて済むものの、得られた磁石体は
機械的強度がやや低く、高速回転用のロータ磁石として
使用するには不安がある。
Further, in the method of the present invention in which the material powder is directly injected into the mold, an extrusion ratio of 2.4 or more is required to obtain the mechanical strength of the extruded magnet body. At an extrusion ratio of 2.4 or less, although the processing force is small, the obtained magnet body has a somewhat low mechanical strength, and there is anxiety about using it as a rotor magnet for high-speed rotation.

以下、本発明の具体的な実施例を示す。 Hereinafter, specific examples of the present invention will be described.

実施例 Ndメタルと電解鉄とホウ素とを配合して溶解後、鋳造
した鋳塊を使用して、単ロール式の溶湯急冷法によって
薄片を作成し、更に、この薄片を約1mm以下の粒径の粉
末に粉砕した。なお、この薄片を組成分析したところ、
Nd13.0原子%、Pr0.8原子%、B4.8原子%、Fe81.3%と
少量の不純物という結果が得られた。
Example After blending and dissolving Nd metal, electrolytic iron and boron, using a cast ingot, a flake was prepared by a single roll type molten metal quenching method, and the flake was further subjected to a particle size of about 1 mm or less. Into powder. The composition of this flake was analyzed.
As a result, a small amount of impurities of 13.0 atomic% of Nd, 0.8 atomic% of Pr, 4.8 atomic% of B, and 81.3% of Fe was obtained.

次に、真空ホットプレス炉内に、内径が30mmから19mm
に連続的に変化している押出金型を据え置き、炉内を10
-4Torrまで真空排気してから、Arガスを注入して大気圧
に戻すと共に、押出金型を700℃まで昇温させた。
Next, in a vacuum hot press furnace, the inner diameter is 30mm to 19mm.
Hold the extrusion die continuously changing to
After evacuating to -4 Torr, Ar gas was injected to return to atmospheric pressure, and the temperature of the extrusion mold was raised to 700 ° C.

そして、第1回目の押出材としては黒鉛系潤滑剤を十
二分に塗布したMnAlC合金材料を使用し、この材料を金
型内に押込み投入し、次いでポンチを上げて黒鉛系の粉
末潤滑剤を投入すると共に、押出金型の内径より1mm程
度小さい外径のポンチを用いて押込み、更に、金型の内
面とポンチとの隙間に潤滑剤を押し上げることにより、
潤滑剤を金型内面に付着させた後、ポンチを上げて溶湯
急冷粉末を投入し、最初のポンチに換えて、溶湯急冷粉
末を押込んだ。この後、同様の操作を繰り返して、溶湯
急冷粉末の押出材を作成した。
As the first extruded material, a MnAlC alloy material sufficiently coated with a graphite-based lubricant is used, and this material is pushed into a mold, and then the punch is lifted to obtain a graphite-based powder lubricant. And by pushing in using a punch with an outer diameter about 1 mm smaller than the inner diameter of the extrusion mold, and further pushing up the lubricant into the gap between the inner surface of the mold and the punch,
After the lubricant was adhered to the inner surface of the mold, the punch was raised and the molten metal quenched powder was injected, and the molten metal quenched powder was pushed in instead of the first punch. Thereafter, the same operation was repeated to prepare an extruded material of the quenched powder of the molten metal.

また、この押出加工時における加工圧は、40kgf/mmで
あり、上記実施例方法により得られた外径19mmの円柱体
から5mm角の四角柱を切り出して磁気特性を測定した。
その結果、押出方向では、残留Br=3.2KG、保持力BHC=
2.5KOe、最大エネルギー積(BH)max=1.8MGOeであり、
また、径方向特性は2方向共ほぼ同じ値で残留磁化Br=
8.8KG、保持力BHC=6.8KOe、最大エネルギー積(BH)ma
x=16.6MG・Oeであった。また、密度は7.5g/ccで充填率
はほぼ100%であった。更に、この押出材から押出軸垂
直面に平行な円盤と、押出軸に平行な円盤とを切り出し
て、磁気トルク曲線を測定したところ、押出軸に垂直な
面内が磁化容易面で、押出軸が磁化困難軸となってお
り、面異方性磁石であることが確認できた。
The processing pressure during this extrusion was 40 kgf / mm, and a square prism of 5 mm square was cut out from the cylindrical body having an outer diameter of 19 mm obtained by the above-mentioned method, and the magnetic properties were measured.
As a result, in the extrusion direction, residual Br = 3.2KG, holding force BHC =
2.5KOe, maximum energy product (BH) max = 1.8MGOe,
The radial characteristics are almost the same in both directions and the residual magnetization Br =
8.8KG, holding power BHC = 6.8KOe, maximum energy product (BH) ma
x = 16.6MG · Oe. The density was 7.5 g / cc and the filling rate was almost 100%. Furthermore, a disk parallel to the extrusion axis perpendicular to the extrusion axis and a disk parallel to the extrusion axis were cut out from this extruded material, and the magnetic torque curve was measured. Indicates a hard magnetization axis, and it was confirmed that the magnet was a plane anisotropic magnet.

実施例 内径が18mmから10mmに連続的に変化している押出金型
を用いて、実施例と同じ材料粉末を用いて押出加工を
行った。これによって得られた外径10mmの円柱体は長さ
10cmで、長手方向での磁気特性のバラツキは少なく、小
径の長尺磁石である径方向に高特性を有するものの作製
に有利な方法であることが判明した。
Example Using an extrusion die having an inner diameter continuously changing from 18 mm to 10 mm, extrusion was performed using the same material powder as in the example. The resulting cylindrical body with an outer diameter of 10 mm has a length
At 10 cm, there was little variation in the magnetic properties in the longitudinal direction, and it was found to be an advantageous method for producing a small-diameter long magnet having high radial properties.

また、光学顕微鏡で拡大検査したところ、粉末は高温
での塑性変形により完全なバルクになっており、粒界で
のクラックは発見されなかった。
Further, when the powder was examined under magnification with an optical microscope, the powder was completely bulky due to plastic deformation at a high temperature, and no crack was found at the grain boundary.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の希土類磁石の製造方法
によるときは、溶湯急冷粉末を押出比2.4以上で押出加
工することにより、従来得られなかったR−Fe−B系合
金材料からモータ用に適した面異方性磁石を得ることが
できる。この面異方性磁石は軸垂直面内で等方的に磁化
容易軸が配向しているので、全周に亙って径方向特性が
均一で、外周着磁をする際に、ユーザー側で着磁数や着
磁幅を自在に選択することができる。
As described above, when the method for manufacturing a rare-earth magnet of the present invention is used, the quenched molten powder is extruded at an extrusion ratio of 2.4 or more, so that the R-Fe-B-based alloy material which has not been obtained conventionally can be used for motors. A suitable plane anisotropic magnet can be obtained. In this plane anisotropic magnet, the axis of easy magnetization is isotropically oriented in the plane perpendicular to the axis, so that the radial characteristics are uniform over the entire circumference, and when the outer circumference is magnetized, the user must The number of magnetizations and the width of magnetization can be freely selected.

また、溶湯急冷粉末を直接押出加工することができる
ので、従来のような予備成形が不要となり、ユーザーの
多様な寸法・形状の要請に対して予備成形金型の準備が
不要であり、押出金型とポンチを一組準備するだけで済
み、しかも、押出比を2.4以上でそれに近い値に設定す
ることにより加工圧を小さくして金型寿命を延ばすこと
ができ、ひいては製造コストダウンに大きく寄与するも
のである。
Also, since the melt quenched powder can be directly extruded, there is no need for conventional preforming, and there is no need to prepare a preforming die in response to the user's request for various dimensions and shapes. Only one set of mold and punch is required, and by setting the extrusion ratio to a value close to 2.4 or higher, the working pressure can be reduced and the life of the mold can be prolonged. Is what you do.

更に、粉末材料から直接成形する場合も、押出比2.4
以上とすることにより、高温押出加工により完全なバル
ク体に成形でき、機械的強度が大きいので焼結体の場合
のような使用上の制約もなく、使用範囲の大きい優れた
磁石が得られるなどの優れた効果を発揮するものとなっ
た。
Furthermore, when molding directly from powder material, the extrusion ratio is 2.4.
By the above, it is possible to form a complete bulk body by high-temperature extrusion, and because of its high mechanical strength, there is no restriction on use as in the case of a sintered body, and an excellent magnet with a large use range can be obtained. The effect was excellent.

【図面の簡単な説明】[Brief description of the drawings]

第1図は最大エネルギー積(BH)maxと押出比との関係
を表す線図、第2図は保持力BHCおよび残留磁化Brと押
出比との関係を表す線図である。
FIG. 1 is a diagram showing the relationship between the maximum energy product (BH) max and the extrusion ratio, and FIG. 2 is a diagram showing the relationship between the coercive force BHC and the residual magnetization Br and the extrusion ratio.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類、鉄、ホウ素を主成分とする非晶質
相または微細結晶質相あるいはこれらの混合相からなる
磁石合金の粉末を高温処理して永久磁石とする製造方法
において、前記磁石合金の粉末を押出比2.4以上で押出
加工することを特徴とする希土類磁石の製造方法。
1. A method for producing a permanent magnet by subjecting a magnetic alloy powder comprising an amorphous phase or a fine crystalline phase containing rare earth, iron and boron as main components or a mixed phase thereof to a high temperature, to produce a permanent magnet. A method for producing a rare earth magnet, comprising extruding an alloy powder at an extrusion ratio of 2.4 or more.
JP63193706A 1988-08-03 1988-08-03 Rare earth magnet manufacturing method Expired - Lifetime JP2583113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193706A JP2583113B2 (en) 1988-08-03 1988-08-03 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193706A JP2583113B2 (en) 1988-08-03 1988-08-03 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0243712A JPH0243712A (en) 1990-02-14
JP2583113B2 true JP2583113B2 (en) 1997-02-19

Family

ID=16312431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193706A Expired - Lifetime JP2583113B2 (en) 1988-08-03 1988-08-03 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2583113B2 (en)

Also Published As

Publication number Publication date
JPH0243712A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
KR20150033423A (en) Method for fabricating anisotropic permanent hot-deformed magnet using hot deformaion and the magnet fabricated thereby
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
EP0348038A2 (en) Manufacturing method of a permanent magnet
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2583113B2 (en) Rare earth magnet manufacturing method
JP3818397B2 (en) Manufacturing method of multi-structure rare earth metal magnet body
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0444301A (en) Manufacture of rare-earth permanent magnet
US5342574A (en) Method for producing anisotropic rare earth magnet
GB2206241A (en) Method of making a permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
KR100211603B1 (en) Method for manufacturing permanent magnet in rare earth system
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JPS63107009A (en) Manufacture of permanent magnet