JP2830125B2 - Manufacturing method of anisotropic rare earth magnet - Google Patents

Manufacturing method of anisotropic rare earth magnet

Info

Publication number
JP2830125B2
JP2830125B2 JP1198172A JP19817289A JP2830125B2 JP 2830125 B2 JP2830125 B2 JP 2830125B2 JP 1198172 A JP1198172 A JP 1198172A JP 19817289 A JP19817289 A JP 19817289A JP 2830125 B2 JP2830125 B2 JP 2830125B2
Authority
JP
Japan
Prior art keywords
punch
die
peripheral surface
sleeve
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1198172A
Other languages
Japanese (ja)
Other versions
JPH0362507A (en
Inventor
斎藤  誠
輝夫 渡辺
靖正 葛西
日吉 山田
紀夫 吉川
吉田  裕
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1198172A priority Critical patent/JP2830125B2/en
Priority to EP90303835A priority patent/EP0392799B2/en
Priority to AT90303835T priority patent/ATE95627T1/en
Priority to DE69003720T priority patent/DE69003720T3/en
Priority to US07/507,438 priority patent/US4963320A/en
Publication of JPH0362507A publication Critical patent/JPH0362507A/en
Application granted granted Critical
Publication of JP2830125B2 publication Critical patent/JP2830125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の目的】[Object of the invention]

(産業上の利用分野) 本発明は、異方性希土類磁石の製造方法に係わり、さ
らに詳しくは、Nd−Fe−B系磁石で代表されるR−Fe−
B系(RはLa系の希土類金属,Feは遷移金属を代表して
示す,Bは他の特性改善金属を代表して示す。)の異方性
永久磁石の製造方法に関する。 (従来の技術) R−Fe−B系永久磁石には、 (イ)母材合金を溶融し、型に鋳込んで鋳塊とし、これ
を粉砕して極微細粉末とし、この粉末を磁場中において
金型を用いて成形圧粉し、焼結して異方性とした焼結磁
石と、 (ロ)母材合金の溶湯を超急冷して薄帯とし、その粗粉
砕粉末をそのままあるいは例えば第4図(a)に示すよ
うに、いったん冷間圧粉成形(成形圧力例えば、4ton/c
m2)して理論密度比約80%の予備成形体51とし、この予
備成形体51を用いて、第4図(b)に示すダイス52と上
パンチ53とにより温度約700℃でホットプレス(プレス
圧力例えば、1ton/cm2)して等方磁性の素材54とし、こ
の素材54を第4図(c)に示す別のダイス55と、上パン
チ56とにより900℃以下の温度で減面率40%以上の塑性
変形加工(押出し圧力例えば、4ton/cm2)を施して異方
化した超急冷磁石素材5を用いた超急冷磁石と、 がある。 (発明が解決しようとする課題) これらの高磁気特性磁石は、特にOA,FA機器用の小型
モーター類に適用できれば、モーターの小型化,軽量化
を図る上で極めて有用であるにも拘わらず、現時点では
実用化技術上の問題があって、モーターへの適用が十分
になされていないのが実情である。 上記希土類磁石をこれらのモーター類に適用するに
は、半径方向に磁気異方化した薄肉のスリーブ状ないし
リング状磁石とするのが最も望ましいが、上記前者の焼
結磁石では、粉末を磁場中で成形する際に半径方向の磁
場を付与するのが難しく、そのため異方化の程度は板状
磁石の場合に比べて50〜60%程度と低くなること、およ
び異方化したものは焼結時の加熱・冷却で熱膨張の異方
化によって割れが生じやすいという問題がある。 他方、後者の超急冷磁石では、磁場中での成形を必要
とせず、塑性変形によって異方化を行うため、上記スリ
ーブ状ないしはリング状磁石にあってもその異方化は最
大限になし得るものの、例えば第4図(b)に示したダ
イス52と、上パンチ53とによる等方性で理論密度比99%
以上の素材54の成形と第4図(c)に示したダイス55と
上パンチ56とにより塑性変形加工を施して異方化する成
形の2ヒートが必要であり、かつまた、この材料はその
磁性が結晶粒に敏感であり、長時間加熱で結晶粒が粗大
化すると磁性が低下してしまう問題がある。加えてこの
材料は極めて脆性であるため、押出し成形で素材をスリ
ーブ状,リング状に成形する場合に第4図(c)に示す
ような大きな成形割れ58を生じてしまう。 (発明の目的) 本発明は、上記後者の超急冷磁石において、これをス
リーブ状ないしはリング状の横断面環状に成形するに際
して、1ヒート加熱により高い磁性の異方性磁石を得、
かつまた1セットの成形型によって型費を安くし、さら
には成形割れを防止することを目的としている。
(Industrial Application Field) The present invention relates to a method for producing an anisotropic rare earth magnet, and more specifically, R-Fe- represented by an Nd-Fe-B-based magnet.
The present invention relates to a method for producing a B-based (R is a La-based rare earth metal, Fe represents a transition metal, and B represents another property improving metal) anisotropic permanent magnet. (Prior art) R-Fe-B permanent magnets include: (a) a base material alloy is melted and cast into a mold to form an ingot, which is pulverized into an ultrafine powder; In (2), a sintered magnet formed into a compact by using a mold and sintered to make it anisotropic; and (b) a melt of a base material alloy is super-quenched to form a ribbon, and the coarsely pulverized powder is used as it is or for example. As shown in FIG. 4 (a), once cold compacting (forming pressure, for example, 4 ton / c
m 2 ) to obtain a preformed body 51 having a theoretical density ratio of about 80%, and using this preformed body 51, hot pressing is performed at a temperature of about 700 ° C. by a die 52 and an upper punch 53 shown in FIG. (Pressing pressure, for example, 1 ton / cm 2 ) to obtain an isotropic magnetic material 54, which is reduced at a temperature of 900 ° C. or less by another die 55 and an upper punch 56 shown in FIG. And a super-quenched magnet using a super-quenched magnet material 5 anisotropically subjected to plastic deformation processing (extruding pressure, for example, 4 ton / cm 2 ) having an area ratio of 40% or more. (Problems to be Solved by the Invention) These magnets having high magnetic properties are extremely useful in reducing the size and weight of motors, especially if they can be applied to small motors for OA and FA equipment. At present, however, there is a problem in practical application technology, and the fact is that it has not been sufficiently applied to motors. In order to apply the rare-earth magnet to these motors, it is most preferable to use a thin sleeve-shaped or ring-shaped magnet which is magnetically anisotropic in the radial direction. It is difficult to apply a magnetic field in the radial direction when forming by molding, so the degree of anisotropy is about 50 to 60% lower than that of a plate magnet, and the anisotropic material is sintered There is a problem that cracks easily occur due to anisotropic thermal expansion due to heating and cooling at the time. On the other hand, the latter super-quenched magnet does not require molding in a magnetic field and performs anisotropy by plastic deformation. Therefore, even in the case of the above-mentioned sleeve-shaped or ring-shaped magnet, the anisotropy can be maximized. However, the theoretical density ratio is 99% due to the isotropy of the die 52 and the upper punch 53 shown in FIG. 4B, for example.
Two heats of forming the material 54 and forming anisotropically by performing plastic deformation with the die 55 and the upper punch 56 shown in FIG. 4C are required. The magnetism is sensitive to crystal grains, and there is a problem that magnetism decreases when the crystal grains are coarsened by heating for a long time. In addition, since this material is extremely brittle, when the material is formed into a sleeve shape or a ring shape by extrusion, a large forming crack 58 as shown in FIG. 4 (c) occurs. (Object of the Invention) The present invention relates to the latter ultra-quenched magnet, which is formed into a sleeve-shaped or ring-shaped ring-shaped annular cross section by heating with one heat to obtain a highly magnetic anisotropic magnet.
Further, the purpose of the present invention is to reduce the cost of the mold by one set of the molds and to prevent the mold cracking.

【発明の構成】Configuration of the Invention

(課題を解決するための手段) 本発明に係わる異方性希土類磁石の製造方法は、請求
項第(1)項に記載のように、両端で開口するダイス
と、該ダイスの一方側の開口で該ダイスの内周面に沿っ
て外周面を摺動可能としたスリーブパンチおよび該スリ
ーブパンチの内周面に沿って外周面を摺動可能としたコ
アパンチを有する複動パンチと、該複動パンチと対向し
且つ該ダイスの他方側の開口で該ダイスの内周面に沿っ
て外周面を摺動可能とした対向パンチを備え、前記ダイ
スとスリーブパンチおよびコアパンチを有する複動パン
チと対向パンチとの間で成形空間が形成される成形型を
用い、希土類磁石の母材合金溶湯を超急冷して薄帯と
し、該薄帯を粉砕した粉末を冷間圧粉成形した予備成形
体を前記成形空間内で650〜900℃に予熱された状態にし
て前記複動パンチを構成するスリーブパンチおよびコア
パンチと対向パンチとの間で前記予備成形体の密度が理
論密度の99%以上となるまで該予備成形体を一様に加圧
圧縮した後、前記複動パンチのうちスリーブパンチによ
る加圧を停止してコアパンチと対向パンチとの間で加圧
圧縮すると共にダイスの内周面とコアパンチの外周面と
の間で押出し成形することにより横断面環状の異方性希
土類磁石を1ヒート加熱で製造することを特徴としてい
る。また、請求項第(2)項に記載された発明では、請
求項第(1)項に記載の方法において、冷間圧粉成形し
た予備成形体を用いる代わりに、素材粉末のまま成形空
間内で650〜900℃に予熱された状態にして複動パンチを
構成するスリーブパンチおよびコアパンチと対向パンチ
との間で一様に加圧圧縮する構成としたことを特徴とし
ている。さらに、請求項第(3)項に記載された発明で
は、請求項第(1)項または第(2)項に記載の方法に
おいて、スリーブパンチによる加圧を停止する代わり
に、スリーブパンチで前記加圧圧縮力よりも低い加圧力
を加工素材端面に付与した状態にしてコアパンチと対向
パンチとの間で加圧圧縮すると共にダイスの内周面とコ
アパンチの外周面との間で押出し成形する構成としたこ
とを特徴としている。さらにまた、請求項第(4)項に
記載された発明では、請求項第(1)項,第(2)項ま
たは第(3)項に記載の方法において、加圧圧縮および
押出し成形を1Torrよりも低圧の真空下または不活性ガ
ス雰囲気下で行う構成としたことを特徴としている。さ
らにまた、請求項第(5)項に記載された発明では、請
求項第(1)項,第(3)項または第(4)項に記載の
方法において、素材粉末を冷間圧粉成形して予備成形体
とするにあたり、成形用型および粉末粒相互の潤滑能を
向上させるためにステアリン酸リチウムなどの潤滑剤を
2重量%以下混合することによってその圧粉密度を向上
させた予備成形体とする構成としたことを特徴としてい
る。 本発明に係わる異方性希土類磁石の製造方法において
は、前述したように、冷間圧粉成形した予備成形体(請
求項第(1)項の場合)あるいは素材粉末(請求項第
(2)項記載の場合)を、コアパンチとスリーブパンチ
を有する2アクションの複動パンチを用いて、650〜900
℃に加熱した素材を第1ステップでは両パンチに同一の
作動を与えることにより、すなわち両パンチを一体とし
て作動させることにより対向パンチとの間で一様に加圧
圧縮することによって、理論密度比99%以上の磁気的等
方性の中実または中空成形体よりなる圧粉成形素材を得
たのち、そのまま第2ステップとして同一型内で、再ヒ
ートなしに、複動パンチのうちスリーブパンチによる加
圧を停止してコアパンチと対向パンチとの間で加圧圧縮
すると共にダイスの内周面とコアパンチの外周面との間
(すなわち、スリーブパンチが後退して形成される空
間)で押出し成形することによってスリーブ状ないしは
リング状の横断面環状をなす異方性希土類磁石素材を得
るようにし、その後適宜着磁して異方性希土類永久磁石
となるようにしている。 なお、この第2ステップではスリーブパンチは加工材
端面から完全に後退させてもよいが、請求項第(3)項
に記載したように、むしろ前記加圧圧縮力よりも低い一
定の圧力で加工材の端面を加圧した状態を保つことによ
って成形割れの発生をより一層確実に防止することがで
きるようになる。 また、請求項第(4)項に記載したように、これらの
成形は1Torrよりも低圧の真空下又は不活性ガス雰囲気
下で650〜900℃の加熱下で行うことがより望ましい。 本発明が適用されるR−Fe−B系磁石において、Rは
Ndで代表されるLa系の希土類元素であり、この磁石には
少量のCo,Dy2O3,Ga等の磁石特性を向上させるための物
質や、Ni,Zn,Pb,Al等の耐食性,耐熱性,加工性を改善
するための物質を含有させることができることはいうま
でもないところである。 本発明に係わる異方性希土類磁石の製造方法では、素
材粉末あるいはそれを冷間圧粉成形した予備成形体を用
いて、磁気的等方性の中実または中空素材よりなる圧粉
成形素材を成形し、引つづきこれを押出し成形してスリ
ーブ状ないしリング状等の横断面環状の磁石素材に成形
するが、この際の押出し成形方法としては後方押出し成
形や前方押出し成形のいずれであっても可能である。こ
れらの成形加工において、従来の場合、第1ステップで
は粉末またはその予備成形体を加熱圧縮して磁気的等方
性の圧粉成形素材を成形し、第2ステップでは再加熱し
て別の成形型において押出し成形して磁気的異方性のス
リーブ状ないしはリング状の横断面環状に成形してい
る。しかるに、従来の場合、この材料は長時間加熱によ
って結晶粒が成長してその磁気的特性が劣化してしま
う。 そこで、本発明は、コアパンチとスリーブパンチのダ
ブルアクションパンチを用いることによって1ヒートで
かつ1組の成形型で磁気的異方性のスリーブ状ないしリ
ング状をなす断面環状の永久磁石を得るようにしたもの
である。さらには、第2ステップの押出し成形におい
て、加工材端面の自由表面にもスリーブパンチによって
一定の加工圧縮を付与保持することによって、成形割れ
の発生をより一層効果的に防ぎ得るものとしている。 第1図は本発明に係わる異方性希土類磁石の製造方法
の実施態様を示すもので、希土類磁石の母材合金溶湯を
超急冷して薄帯とし、前記薄帯を粉砕した粉末を予備成
形し、慣用の粉末成形法で冷間成形された予備成形体を
用意する。この予備成形体の密度は理論密度比で70〜80
%であり、一般的な成形方法によれば約80%である。こ
の予備成形体は図示しない加熱手法によってあらかじめ
650〜900℃、より望ましくは700〜800℃に予熱してお
く。次いで、第1図(a)に示すように、前記予備成形
体1をダイス2と、コアパンチ3およびスリーブパンチ
4を有する複動パンチ5と、対向パンチ6とを備えた成
形型7の成形空間7a内に入れ、このとき、成形型7も図
示しない方法で600〜900℃、より望ましくは700〜800℃
に予熱しておく。また、予備成形体1が小型の場合には
成形型7のみを予熱して、予備成形体1は成形型7から
の伝熱で加熱してもよいし、予備成形体1が大型の場合
には予備成形体1のみを予熱して、成形型7は室温のま
まで成形できる場合もある。さらには予備成形体1の代
わりに、素材粉末のまま成形型7の成形空間7a内にセッ
トすることも可能である。またこれら全体は密封槽内に
保持し、その槽内雰囲気を1Torrよりも低い圧力の真空
となるか、あるいはアルゴンガス等の不活性ガスを充満
させて酸化防止雰囲気としておくのも必要に応じて好ま
しい。 次に、複動パンチ5のコアパンチ3とスリーブパンチ
4をそれらの先端面3a,4aが同一面となるように一体で
圧下して予備成形体1を対向パンチ6との間で均一に加
圧圧縮することによって、第1図(b)に示すように、
圧成形素材9を得る。この際の加圧圧力としては、0.5
〜2.0ton/cm2程度、より望ましくは1〜1.5ton/cm2を与
えるのがよい。これにより理論密度比99%以上の圧粉成
形素材(円柱状等方性磁石素材)9を得る。 次いで、第1図(c)に示すように、複動パンチ5の
うちスリーブパンチ4による加圧を停止しコアパンチ3
のみを圧下してこのコアパンチ3と対向パンチ6との間
で加圧圧縮すると共にダイス2の内周面とコアパンチ3
の外周面と間で後方押出しを行い、第1図(b)の圧粉
成形素材9をスリーブ状の横断面環状をなす異方性希土
類磁石素材10に成形する。この際の押出し圧力をパンチ
面圧で2〜5ton/cm2、より望ましくは3〜4ton/cm2とす
るのがよい。 なお、この後方押出し時には内表面に成形割れが生じ
ることがないとはいえないため、その上端面10bに、ス
リーブパンチ4によって第1図(c)に矢印で示す方向
に加圧力を加えて圧縮応力を付与しておくことによっ
て、この割れの発生をより一層確実に防ぐことができる
ようになる。その際の圧縮力としては、圧力で0.2〜1.0
ton/cm2、より望ましくは0.4〜0.6ton/cm2を与えるのが
よい。 押出し成形の終了後、対向パンチ6を上昇させてスリ
ーブ状をなす異方性希土類磁石素材10を成形型7からノ
ックアウトし、別途その底部10aを切断して除去したの
ち半径方向に磁化することによって異方性希土類磁石が
得られる。 本発明に係わる異方性希土類磁石の製造方法において
は、上記した後方押出しのほかに、前記押出し成形法を
用いることもでき、この前方押出しによる成形例を第2
図に基づいて説明する。 第2図に示す成形型7において、複動パンチ5のうち
のスリーブパンチ4はその内周面がコアパンチ3の外周
面でスライド可能に嵌合したもので、第2図(a)に示
すように、最初にコアパンチ3の先端面3aとスリーブパ
ンチ4の先端面4aとをそろえた状態に保持して、ダイ2
との成形空間7aに予備成形体をセットし、次いで対向パ
ンチ6を圧下することによりコアパンチ3およびスリー
ブパンチ4(すなわち、複動パンチ5)との間で一様に
加圧圧縮して理論密度比99%以上の圧粉成形素材9とす
る。次に、第2図(b)に示すように、スリーブパンチ
4による加圧を停止したコアパンチ3のみを固定したま
ま対向パンチ6を圧下して、この対向パンチ6とコアパ
ンチ3との間で加圧圧縮すると共に、ダイス2の内周面
とコアパンチ3の外周面との間で前方押出しを行い、圧
粉成形素材9をスリーブ状の異方性希土類磁石素材10に
成形する。この場合、異方性希土類磁石素材10の下端面
10bにはスリーブパンチ4によって一定の圧縮力を与え
ておくことにより成形割れの発生をより一層確実に防ぐ
ことができるようになる。 ところで、かかるスリーブ状成形品である異方性希土
類磁石素材10の成形において、半径方向に十分な磁気異
方性を生じさせるためには、押出し減面率として40〜80
%、より望ましくは55〜65%が必要である。したがっ
て、薄肉のスリーブを得るためには、磁石素材として第
1図および第2図に示したような円柱状の予備成形体1
よりなる素材を用いると、押出し減面率が大きくなりす
ぎる場合がある。 そこで、このような場合には、第3図に示すように厚
肉円筒形状の予備成形体1を素材とするのもよい。すな
わち、第3図(a)に示すようにダイス2と、コアパン
チ3およびスリーブパンチ4を有する複動パンチ5と、
対向パンチ6とを備えた成形型7の成形空間7a内に厚肉
円筒状の冷間圧粉成形した予備成形体1をセットし、次
いで第3図(b)に示すように、複動パンチ5のコアパ
ンチ3とスリーブパンチ4とを同時に圧下して対向パン
チ6との間で一様に加圧圧縮することにより、理論密度
比99%以上の等方性磁石素材である圧粉成形素材9を得
る。この際、コアパンチ3は厚肉円筒状の予備成形体1
の中空部1bの中に入り込む小径部3bを備えたものを使用
しており、第3図(b)に示すように圧粉成形素材9の
中にコアパンチ3の小径部3bが入り込んだ状態となって
いる。また対向パンチ6には前記コパンチ3の小径部3b
を受け入れる中空部6bが設けてある。次に、第3図
(c)に示すように、複動パンチ5のうちスリーブパン
チ4による加圧を停止し、コアパンチ3のみを圧下して
このコアパンチ3と対向パンチ6との間で加圧圧縮する
と共にダイス2の内周面とコアパンチ3の外周面との間
で後方押出しを行い、薄膜のスリーブ状成形品である異
方性希土類磁石素材10の押出し成形する。この間、異方
性希土類磁石素材10の端面10bにスリーブパンチ4の一
定圧縮力を付与しておけば、成形割れの発生をより一層
確実に防ぐことができるが、加圧しなくても成形は可能
である。 (発明の効果) 本発明に係わる異方性希土類磁石の製造方法では、前
述した構成を有するものであるから、磁場中での成形を
必要とせず、塑性変形によって異方化を行うようにした
のち着磁する異方性の超急冷磁石において、これをスリ
ーブ状ないしはリング状の断面環状に成形するに際し
て、1ヒート加熱により高い磁気特性の異方性希土類磁
石が製造されるようになる。 (実施例) 実施例1 Nd13.5Fe80.56.0の組成を有する希土類磁石の母材
合金溶湯を超急冷して得た厚さ20μmの薄帯を粉砕し
て、大きさ約200μmのフレーク状粉末を得た。次い
で、この粉末に0.5重量%のステアリン酸リチウムを均
一に混合した後、慣用の粉末成形プレスを用いて外径2
9.5mm,高さ25mmの円柱状予備成形体を得た。続いて、こ
の予備成形体を慣用の真空脱脂炉を用いて真空度10-2To
rr,温度450℃,保持時間30minで脱脂してステアリン酸
リチウムを蒸発除去した。この予備成形体の密度を測定
した結果は理論密度比で77%であった。 次に、この予備成形体の表面に潤滑剤としてグラファ
イト粉末を塗布して乾燥した後、アルゴンガス雰囲気中
で2min加熱して750℃に昇温した後、直ちに第1図に示
したダイス2の内径30mmの成形型7の成形空間7a内に装
入した。この場合、成形型7はあらかじめ750℃に予熱
しておき、アルゴンガス雰囲気中で、まず、コアパンチ
3およびスリーブパンチ4を同時に圧下して対向パンチ
6との間で一様に加圧圧縮し、加圧圧力1ton/cm2で均一
に圧縮して圧粉成形素材9を得た。なお、製造工程上は
成形型7から取り出す必要はないが参考のために、この
状態で圧粉成形素材9を成形型7から取出し、冷却して
寸法および密度を測定した結果、直径30.1mm,高さ18.5m
m,理論密度比99.6%であった。 次に、上記と同じ成形工程により均一圧縮した圧粉成
形素材9を得た後、第1図(c)に示すように、スリー
ブパンチ4による加圧を停止し直径24mmのコアパンチの
みを圧下してこのパンチ3と対向パンチ6との間で加圧
圧縮すると共にダイス2の内周面とコアパンチ3の外周
面と間で後方押出し成形してスリーブ状の成形品である
異方性希土類磁石素材10を得た。この場合のコアパンチ
3による加圧力は4.0ton/cm2とし、スリーブパンチ4に
は加圧力0.6ton/cm2の圧力を付与したまま成形品である
異方性希土類磁石素材10の端面10bの位置変化に追随す
るようにしておいた。 この異方性希土類磁石素材10を冷却した後、アルゴン
雰囲気室から取出して寸法測定した結果、外径30.1mm,
内径24.1mm,高さ45mm,底厚3.5mmであり、その内外表面
には成形割れが皆無であった。 次に、このスリーブ状異方性希土類磁石素材10の底部
10aを切断して除去した後、これを半径方向に磁化して
異方性希土類磁石となし、その半径方向の最大磁気エネ
ルギーを測定したところ、31MG・Oeの優れた磁気特性の
ものを得ることができた。 実施例2 上記と同じフレーク状の粉末を用い、その100gを秤量
して、アルゴン雰囲気中で800℃に予熱した第1図に示
した成形型7の成形空間7a内に粉末のままそして加熱す
ることなく装入した。この成形型7のダイス2の内径は
300mmとした。 ついで、第1図(b)に示すようにコアパンチ3およ
びスリーブパンチ4を同時に圧下して対向パンチ6との
間で加圧圧力1ton/cm2で加圧したまま2min保持して、成
形型7からの伝熱によって粉末を加熱すると同時に、そ
の密度の向上をはかった。 次にコアパンチ(直径24mm)3のみを圧下して後方押
出し成形することによって、スリーブ状の成形品である
異方性希土類磁石素材10を得た。この場合のコアパンチ
3の圧力は3.5ton/cm2とし、スリーブパンチ4は後退さ
せて加圧力が付与されないようにした。 次いで、上記異方性希土類磁石素材10を冷却した後、
アルゴン雰囲気室から取出して寸法測定した結果、外径
30.1mm,内径24.1mm,高さ45.5mm,底厚3.4mmであった。但
し、その内表面には深さ約1.2mmの成形割れが生じてい
た。 次に、このスリーブ状成形品である異方性希土類磁石
素材10の底部10aを切断して除去した後、この内径部分
を研削することによって成形割れ部を除去して、内径2
6.5mmとした。これを半径方向に磁化して異方性希土類
永久磁石となし、半径方向の最大磁気エネルギーを測定
した結果、28MG.Oeの優れた磁気特性のものを得ること
ができた。
(Means for Solving the Problems) According to a method for manufacturing an anisotropic rare earth magnet according to the present invention, a die having openings at both ends and an opening on one side of the die are provided as described in claim (1). A double punch having a sleeve punch slidable on the outer peripheral surface along the inner peripheral surface of the die and a core punch slidable on the outer peripheral surface along the inner peripheral surface of the sleeve punch; A double-acting punch having a die, a sleeve punch, and a core punch, and a double-acting punch; Using a forming die in which a forming space is formed between the preform and the preformed body obtained by ultra-quenching the base metal alloy of the rare earth magnet to form a ribbon, and cold-compacting the powder obtained by pulverizing the ribbon. Preheated to 650-900 ° C in the molding space Then, the preform is uniformly pressed and compressed until the density of the preform becomes 99% or more of the theoretical density between the sleeve punch and the core punch forming the double-acting punch and the opposing punch. Of the double-acting punches, the pressurization by the sleeve punch is stopped, the pressure is compressed between the core punch and the opposing punch, and the cross-section is annular by extruding between the inner peripheral surface of the die and the outer peripheral surface of the core punch. Characterized in that the anisotropic rare earth magnet is manufactured by one heat heating. Further, in the invention described in claim (2), in the method described in claim (1), instead of using the pre-compacted body formed by cold compaction, the raw material powder is formed in the molding space. The double punch is pre-heated to 650 to 900 ° C. to form a double-acting punch, and is uniformly pressed and compressed between the core punch and the opposing punch. Further, in the invention described in claim (3), in the method described in claim (1) or (2), instead of stopping the pressurization by the sleeve punch, the method uses the sleeve punch. A structure in which a pressing force lower than the pressing and compressing force is applied to the end face of the material to be pressed and compressed between the core punch and the opposing punch and extruded between the inner peripheral surface of the die and the outer peripheral surface of the core punch. It is characterized by having. Furthermore, in the invention described in claim (4), in the method described in claim (1), (2) or (3), the pressure compression and the extrusion molding are performed at 1 Torr. It is characterized in that the process is performed under a lower pressure vacuum or an inert gas atmosphere. Furthermore, in the invention described in claim (5), in the method according to claim (1), (3) or (4), the material powder is cold compacted. In order to improve the lubricating ability between the molding die and the powder grains, a preform is formed by mixing a lubricant such as lithium stearate at 2% by weight or less to improve the green density. It is characterized by having a body configuration. In the method for producing an anisotropic rare earth magnet according to the present invention, as described above, the cold compacted preform (in the case of claim (1)) or the raw material powder (in the case of claim (2)) 650 to 900 using a two-action double-acting punch having a core punch and a sleeve punch.
In the first step, the material heated to 0 ° C. is subjected to the same operation for both punches, that is, by operating both punches as a unit, thereby uniformly pressing and compressing the material with the opposing punch to obtain a theoretical density ratio. After obtaining a green compact of 99% or more of magnetically isotropic solid or hollow compact, as a second step in the same mold, without reheating, using a sleeve punch among double acting punches The pressing is stopped, the pressure is compressed between the core punch and the opposing punch, and the extrusion is performed between the inner peripheral surface of the die and the outer peripheral surface of the core punch (that is, the space formed by the retreat of the sleeve punch). In this way, an anisotropic rare earth magnet material having an annular cross section in the shape of a sleeve or a ring is obtained, and then magnetized appropriately to form an anisotropic rare earth permanent magnet. . In this second step, the sleeve punch may be completely retracted from the end face of the work material, but as described in claim (3), the work is performed at a constant pressure lower than the pressurizing compression force. By keeping the end face of the material pressed, the occurrence of forming cracks can be more reliably prevented. Further, as described in claim (4), it is more preferable that these moldings are performed under a vacuum at a pressure lower than 1 Torr or under a heating at 650 to 900 ° C. in an inert gas atmosphere. In the R-Fe-B magnet to which the present invention is applied, R is
La-based rare earth element represented by Nd. This magnet has a small amount of Co, Dy 2 O 3 , Ga and other substances for improving magnet properties, Ni, Zn, Pb, Al and other corrosion resistance. It goes without saying that a substance for improving heat resistance and workability can be contained. In the method for producing an anisotropic rare earth magnet according to the present invention, a green compact formed of a magnetically isotropic solid or hollow material is formed by using a raw material powder or a preform obtained by cold compacting the same. It is molded and subsequently extruded to form a magnet material having an annular cross section such as a sleeve or a ring, and the extrusion method at this time may be either backward extrusion or forward extrusion. It is possible. In these molding processes, in the conventional case, in the first step, the powder or its preform is heated and compressed to form a magnetically isotropic green compact, and in the second step, it is reheated to form another compact. It is extruded in a mold to form a magnetically anisotropic sleeve or ring-shaped annular cross section. However, in the conventional case, the magnetic properties of this material deteriorate due to the growth of crystal grains due to long-time heating. Accordingly, the present invention provides a magnetically anisotropic sleeve-shaped or ring-shaped permanent magnet having a ring shape in one heat and one set of molds by using a double action punch of a core punch and a sleeve punch. It was done. Further, in the extrusion in the second step, the generation of cracks in the molding can be more effectively prevented by applying and maintaining a constant processing compression to the free surface of the end face of the processing material by the sleeve punch. FIG. 1 shows an embodiment of a method for producing an anisotropic rare earth magnet according to the present invention, in which a base metal alloy of a rare earth magnet is rapidly quenched into a ribbon, and powder obtained by pulverizing the ribbon is preformed. Then, a preformed body cold-formed by a conventional powder molding method is prepared. The density of this preform is 70 to 80 in theoretical density ratio.
%, And about 80% according to a general molding method. This preform is pre-formed by a heating method (not shown).
Preheat to 650-900 ° C, more preferably 700-800 ° C. Next, as shown in FIG. 1 (a), the preform 1 is formed into a molding space of a molding die 7 including a die 2, a double-acting punch 5 having a core punch 3 and a sleeve punch 4, and an opposing punch 6. 7a, at this time, the mold 7 is also 600-900 ° C., more preferably 700-800 ° C. by a method not shown.
Preheat. When the preform 1 is small, only the mold 7 may be preheated, and the preform 1 may be heated by the heat transfer from the mold 7, or when the preform 1 is large. In some cases, only the preform 1 is preheated and the mold 7 can be molded at room temperature. Further, instead of the preform 1, the raw material powder can be set in the molding space 7 a of the molding die 7 as it is. Also, all of them are held in a sealed tank, and the atmosphere in the tank is evacuated to a pressure lower than 1 Torr, or filled with an inert gas such as argon gas to provide an antioxidant atmosphere as required. preferable. Next, the core punch 3 and the sleeve punch 4 of the double-acting punch 5 are integrally pressed down such that their tip surfaces 3a, 4a are flush with each other, and the preform 1 is uniformly pressed with the opposing punch 6. By compressing, as shown in FIG.
A pressed material 9 is obtained. The pressurizing pressure at this time is 0.5
It is preferable to provide about 2.0 ton / cm 2 , more preferably 1 to 1.5 ton / cm 2 . As a result, a green compact material (columnar isotropic magnet material) 9 having a theoretical density ratio of 99% or more is obtained. Next, as shown in FIG. 1 (c), the pressing by the sleeve punch 4 of the double-acting punch 5 is stopped and the core punch 3 is pressed.
Only the core punch 3 and the opposing punch 6 are pressed and compressed, and the inner peripheral surface of the die 2 and the core punch 3 are compressed.
Is extruded backward to form an anisotropic rare-earth magnet material 10 having a sleeve-like annular cross-section. The extrusion pressure at this time is preferably 2 to 5 ton / cm 2 , more preferably 3 to 4 ton / cm 2 in terms of punch surface pressure. In this backward extrusion, it cannot be said that a molding crack does not occur on the inner surface. Therefore, a pressing force is applied to the upper end face 10b by the sleeve punch 4 in the direction indicated by the arrow in FIG. By applying a stress, the occurrence of the crack can be more reliably prevented. The compression force at that time is 0.2 to 1.0 by pressure
ton / cm 2, more preferably it is give 0.4~0.6ton / cm 2. After the end of the extrusion molding, the opposing punch 6 is lifted to knock out the sleeve-shaped anisotropic rare-earth magnet material 10 from the mold 7, and the bottom 10a is separately cut and removed, and then magnetized in the radial direction. An anisotropic rare earth magnet is obtained. In the method of manufacturing an anisotropic rare earth magnet according to the present invention, in addition to the backward extrusion described above, the extrusion molding method can be used.
Description will be made based on the drawings. In the forming die 7 shown in FIG. 2, the sleeve punch 4 of the double-acting punch 5 has its inner peripheral surface slidably fitted on the outer peripheral surface of the core punch 3, as shown in FIG. 2 (a). First, the tip surface 3a of the core punch 3 and the tip surface 4a of the sleeve punch 4 are kept aligned, and the die 2
The preform is set in the molding space 7a, and then the opposing punch 6 is pressed down to uniformly press and compress the core punch 3 and the sleeve punch 4 (that is, the double-acting punch 5). The green compact 9 having a ratio of 99% or more. Next, as shown in FIG. 2 (b), the opposing punch 6 is depressed with only the core punch 3 for which pressurization by the sleeve punch 4 is stopped being fixed, and the pressure between the opposing punch 6 and the core punch 3 is increased. The powder compact 9 is formed into a sleeve-shaped anisotropic rare-earth magnet material 10 while being compressed and simultaneously extruded forward between the inner peripheral surface of the die 2 and the outer peripheral surface of the core punch 3. In this case, the lower end surface of the anisotropic rare earth magnet material 10
By applying a constant compressive force to the sleeve 10b by the sleeve punch 4, the occurrence of forming cracks can be prevented more reliably. By the way, in forming the anisotropic rare earth magnet material 10 which is a sleeve-shaped molded product, in order to generate sufficient magnetic anisotropy in the radial direction, the extrusion area reduction rate should be 40 to 80.
%, More preferably 55-65%. Therefore, in order to obtain a thin sleeve, a cylindrical preform 1 as shown in FIGS. 1 and 2 is used as a magnet material.
If a material made of such a material is used, the extrusion area reduction rate may be too large. Therefore, in such a case, the preform 1 having a thick cylindrical shape may be used as the material as shown in FIG. That is, as shown in FIG. 3 (a), a die 2, a double-acting punch 5 having a core punch 3 and a sleeve punch 4,
A preform 1 formed of a thick cylindrical cold compact is set in a molding space 7a of a molding die 7 having an opposing punch 6, and then, as shown in FIG. The core punch 3 and the sleeve punch 4 are simultaneously pressed down and uniformly pressed and compressed between the opposing punches 6 to obtain a green compact 9 which is an isotropic magnet material having a theoretical density ratio of 99% or more. Get. At this time, the core punch 3 is a thick cylindrical preform 1
The small diameter portion 3b of the core punch 3 is inserted into the green compact 9 as shown in FIG. 3 (b). Has become. The opposite punch 6 has a small-diameter portion 3b of the co-punch 3
There is provided a hollow portion 6b for receiving the pressure. Next, as shown in FIG. 3 (c), the pressurization by the sleeve punch 4 of the double-acting punch 5 is stopped, and only the core punch 3 is depressed to pressurize between the core punch 3 and the opposing punch 6. While being compressed, backward extrusion is performed between the inner peripheral surface of the die 2 and the outer peripheral surface of the core punch 3 to extrude the anisotropic rare earth magnet material 10 which is a thin-film sleeve-shaped molded product. During this time, if a constant compressive force of the sleeve punch 4 is applied to the end face 10b of the anisotropic rare earth magnet material 10, the occurrence of molding cracks can be more reliably prevented, but molding is possible without applying pressure. It is. (Effect of the Invention) In the method for producing an anisotropic rare earth magnet according to the present invention, which has the above-described configuration, it is not necessary to perform molding in a magnetic field, and the anisotropy is performed by plastic deformation. When an anisotropic ultra-quenched magnet that is magnetized later is formed into a sleeve or ring-shaped annular cross section, an anisotropic rare-earth magnet having high magnetic properties can be manufactured by one heat heating. Example 1 A 20 μm-thick ribbon obtained by ultra-quench-cooling a base metal alloy of a rare-earth magnet having a composition of Nd 13.5 Fe 80.5 B 6.0 is pulverized into a flake-like powder having a size of about 200 μm. I got Next, after uniformly mixing 0.5% by weight of lithium stearate with the powder, the outer diameter of the powder was adjusted using a conventional powder molding press.
A cylindrical preform having a height of 9.5 mm and a height of 25 mm was obtained. Subsequently, the preform was vacuum-degreased to 10 -2 To using a conventional vacuum degreasing furnace.
Lithium was degreased at a temperature of 450 ° C. for a holding time of 30 minutes to remove lithium stearate by evaporation. As a result of measuring the density of this preform, the theoretical density ratio was 77%. Next, after applying graphite powder as a lubricant on the surface of the preformed body and drying, heating in an argon gas atmosphere for 2 minutes and raising the temperature to 750 ° C., the die 2 shown in FIG. It was charged into a molding space 7a of a molding die 7 having an inner diameter of 30 mm. In this case, the molding die 7 is preheated to 750 ° C. in advance, and the core punch 3 and the sleeve punch 4 are simultaneously reduced in an argon gas atmosphere so as to be uniformly pressurized and compressed with the opposing punch 6, The powder was compacted uniformly at a pressure of 1 ton / cm 2 to obtain a green compact 9. In the manufacturing process, it is not necessary to take out from the molding die 7, but for reference, the compacting material 9 was taken out from the molding die 7 in this state, cooled, and the dimensions and density were measured. Height 18.5m
m, theoretical density ratio was 99.6%. Next, after obtaining the green compact 9 which has been uniformly compressed by the same molding process as above, the press by the sleeve punch 4 is stopped and only the core punch having a diameter of 24 mm is lowered as shown in FIG. 1 (c). An anisotropic rare earth magnet material which is a sleeve-shaped molded product which is pressurized and compressed between the lever punch 3 and the opposing punch 6 and is rearward extruded between the inner peripheral surface of the die 2 and the outer peripheral surface of the core punch 3. I got 10. Pressure applied by Koapanchi 3 in this case is set to 4.0ton / cm 2, the position of the end face 10b of the anisotropic rare earth magnet material 10 is still molded article the sleeve punch 4 applying pressure of pressure 0.6ton / cm 2 I tried to keep up with the changes. After cooling this anisotropic rare earth magnet material 10, it was taken out of the argon atmosphere chamber and the dimensions were measured.
It had an inner diameter of 24.1 mm, a height of 45 mm, and a bottom thickness of 3.5 mm, and had no forming cracks on its inner and outer surfaces. Next, the bottom of this sleeve-shaped anisotropic rare earth magnet material 10
After cutting and removing 10a, this was magnetized in the radial direction to form an anisotropic rare earth magnet, and the maximum magnetic energy in the radial direction was measured. Was completed. Example 2 The same flake powder as above was weighed, and 100 g of the powder was weighed and heated as it was in a molding space 7a of a molding die 7 shown in FIG. 1 which was preheated to 800 ° C. in an argon atmosphere. Charged without. The inner diameter of the die 2 of this mold 7 is
It was 300 mm. Next, as shown in FIG. 1 (b), the core punch 3 and the sleeve punch 4 are simultaneously pressed down and held for 2 minutes while being pressed with the opposing punch 6 at a pressing pressure of 1 ton / cm 2 , and the forming die 7 is pressed. At the same time, the powder was heated by the heat transfer from the powder and the density was improved. Next, only the core punch (diameter 24 mm) 3 was pressed down and extruded backward to obtain an anisotropic rare earth magnet material 10 as a sleeve-shaped molded product. In this case, the pressure of the core punch 3 was 3.5 ton / cm 2 , and the sleeve punch 4 was retracted so that no pressing force was applied. Next, after cooling the anisotropic rare earth magnet material 10,
Take out from the argon atmosphere chamber and measure the dimensions.
It was 30.1 mm, inner diameter 24.1 mm, height 45.5 mm, and bottom thickness 3.4 mm. However, a forming crack having a depth of about 1.2 mm occurred on the inner surface. Next, after cutting and removing the bottom portion 10a of the anisotropic rare earth magnet material 10 which is a sleeve-shaped molded product, the formed inner diameter portion is ground to remove a formed crack, and the inner diameter 2 is removed.
6.5 mm. This was magnetized in the radial direction to form an anisotropic rare earth permanent magnet, and the maximum magnetic energy in the radial direction was measured. As a result, an excellent magnetic property of 28 MG.Oe was obtained.

【発明の効果】【The invention's effect】

本発明に係わる異方性希土類磁石の製造方法では、両
端で開口するダイスと、該ダイスの一方側の開口で該ダ
イスの内周面に沿って外周面を摺動可能としたスリーブ
パンチおよび該スリーブパンチの内周面に沿って外周面
を摺動可能としたコアパンチを有する複動パンチと、該
複動パンチと対向し且つ該ダイスの他方側の開口で該ダ
イスの内周面に沿って外周面を摺動可能とした対向パン
チを備え、前記ダイスとスリーブパンチおよびコアパン
チを有する複動パンチと対向パンチとの間で成形空間が
形成される成形型を用い、希土類磁石の母材合金溶湯を
超急冷して薄帯とし、該薄帯を粉砕した粉末を冷間圧粉
成形した予備成形体を前記成形空間内で650〜900℃に予
熱された状態にして前記複動パンチを構成するスリーブ
パンチおよびコアパンチと対向パンチとの間で前記予備
成形体の密度が理論密度の99%以上となるまで該予備成
形体を一様に加圧圧縮した後、前記複動パンチのうちス
リーブパンチによる加圧を停止してコアパンチと対向パ
ンチとの間で加圧圧縮すると共にダイスの内周面とコア
パンチの外周面との間で押出し成形することにより横断
面環状の異方性希土類磁石を1ヒート加熱で製造するよ
うにしており、上記製造方法において、冷間圧粉成形し
た予備成形体を用いる代わりに、素材粉末のまま成形空
間内で650〜900℃に予熱された状態にして複動パンチを
構成するスリーブパンチおよびコアパンチと対向パンチ
との間で一様に加圧圧縮するようにしており、さらに上
記製造方法において、スリーブパンチによる加圧を停止
する代わりに、スリーブパンチで前記加圧圧縮力よりも
低い加圧力を加工素材端面に付与した状態にしてコアパ
ンチと対向パンチとの間で加圧圧縮すると共にダイスの
内周面とコアパンチの外周面との間で押出し成形するよ
うにしており、さらにまた上記製造方法において、加圧
圧縮および押出し成形を1Torrよりも低圧の真空下また
は不活性ガス雰囲気下で行うようにしており、さらにま
た上記製造方法において、素材粉末を冷間圧粉成形して
予備成形体とするにあたり、成形用型および粉末粒相互
の潤滑能を向上させるためにステアリン酸リチウムなど
の潤滑剤を2重量%以下混合することによってその圧粉
密度を向上させた予備成形体とするようにしたから、磁
場中での成形を必要とせず、塑性変形によって異方化を
行うようにしたのち着磁する異方性の超急冷永久磁石に
おいて、これをスリーブ状ないしはリング状の横断面環
状に成形するに際して、1ヒート加熱により高い磁気特
性の異方性永久磁石とすることが可能であり、かつまた
加熱圧縮して理論密度比を99%以上に高める加圧圧縮
と、スリーブ状ないしはリング状に成形する押出し成形
とを同一の成形型で行っているため型費用の著しい低減
をはかることが可能であり、さらにはとくにスリーブ状
ないしはリング状の内面における割れの発生をも防止す
ることが可能であるという著しく優れた効果がもたらさ
れる。そして、従来のように、理論密度比99%以上の加
圧圧縮と塑性加工とを別々の成形型でおこないそして2
ヒートの加熱を行う場合のように、長時間加熱で結晶粒
が粗大化することによる磁気特性の低下がないという著
しく優れた効果がもたらされる。
In the method of manufacturing an anisotropic rare earth magnet according to the present invention, a die having openings at both ends, a sleeve punch having an opening on one side of the die and an outer peripheral surface slidable along an inner peripheral surface of the die, and A double-acting punch having a core punch slidable on the outer peripheral surface along the inner peripheral surface of the sleeve punch, and facing the double-acting punch and along the inner peripheral surface of the die at an opening on the other side of the die. A base metal alloy of a rare earth magnet using a forming die including a facing punch slidable on an outer peripheral surface, and a forming space formed between a facing double punch and a double acting punch having the die, the sleeve punch, and the core punch; Into a ribbon by ultra-rapidly cooling the preformed body obtained by cold compacting the powder obtained by pulverizing the ribbon to form a double-acting punch in a state where it is preheated to 650 to 900 ° C. in the molding space. Sleeve punch and core pan After uniformly pressing and compressing the preformed body until the density of the preformed body becomes 99% or more of the theoretical density between the and the opposing punch, the pressing by the sleeve punch of the double acting punch is stopped. Then, an anisotropic rare earth magnet having an annular cross section is manufactured by one heat heating by pressing and compressing between the core punch and the opposing punch and extruding between the inner peripheral surface of the die and the outer peripheral surface of the core punch. In the above manufacturing method, instead of using a pre-compacted body that has been cold-compacted, a sleeve that constitutes a double-acting punch with the raw material powder preheated to 650 to 900 ° C. in a molding space. The punch and the core punch and the opposing punch are uniformly pressurized and compressed. Further, in the above-described manufacturing method, instead of stopping the pressurization by the sleeve punch, the pressurization by the sleeve punch is performed. With the pressing force lower than the compressive force applied to the end face of the work material, press and compress between the core punch and the opposing punch, and extrude between the inner peripheral surface of the die and the outer peripheral surface of the core punch. Further, in the above-mentioned production method, the pressure compression and extrusion molding are performed under a vacuum or an inert gas atmosphere at a pressure lower than 1 Torr. In forming into a preformed body, a preform having an improved green density by mixing a lubricant such as lithium stearate in an amount of 2% by weight or less in order to improve the lubricating ability between the molding die and the powder particles. Because it was made into a molded body, it does not require molding in a magnetic field, and anisotropic ultra-quenched permanent magnets that magnetize after performing anisotropy by plastic deformation, When it is formed into a sleeve or ring-shaped annular cross section, it can be made into an anisotropic permanent magnet with high magnetic properties by one heat heating, and it can be heated and compressed to a theoretical density ratio of 99% or more. Pressure and pressure, and extrusion molding to form a sleeve or a ring are performed in the same mold, so that it is possible to significantly reduce the cost of the mold. A remarkably excellent effect that cracks on the inner surface can be prevented can be prevented. Then, as in the prior art, press compression and plastic working at a theoretical density ratio of 99% or more are performed in separate molds, and
As in the case of heating, there is provided a remarkably excellent effect that there is no decrease in magnetic properties due to coarsening of crystal grains by heating for a long time.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)(c)は本発明の一実施態様におけ
る異方性希土類磁石の製造方法を工程順に示す各々断面
説明図、第2図(a)(b)は本発明の他の実施態様に
おける異方性希土類磁石の製造方法を工程順に示す各々
断面説明図、第3図(a)(b)(c)は本発明のさら
に他の実施態様における異方性希土類磁石の製造方法を
工程順に示す各々断面説明図、第4図(a)(b)
(c)は従来の異方性希土類磁石の製造方法を工程順に
示す各々断面説明図である。 1……予備成形体、 2……ダイス、 3……コアパンチ、 4……スリーブパンチ、 5……複動パンチ、 6……対向パンチ、 7……成形型、 7a……成形空間、 9……圧粉成形素材、 10……異方性希土類磁石素材。
1 (a), 1 (b) and 1 (c) are cross-sectional views showing a method of manufacturing an anisotropic rare earth magnet according to an embodiment of the present invention in the order of steps, and FIGS. 2 (a) and 2 (b) are drawings of the present invention. FIGS. 3 (a), 3 (b), and 3 (c) are cross-sectional views showing a method of manufacturing an anisotropic rare earth magnet according to another embodiment in the order of steps. 4 (a) and 4 (b) are cross-sectional explanatory views showing a manufacturing method in the order of steps.
(C) is sectional explanatory drawing which shows the manufacturing method of the conventional anisotropic rare earth magnet in order of a process. 1 ... preformed body, 2 ... die, 3 ... core punch, 4 ... sleeve punch, 5 ... double acting punch, 6 ... opposed punch, 7 ... molding die, 7a ... molding space, 9 ... … Mold compaction material, 10 …… Anisotropic rare earth magnet material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 裕 愛知県東海市加木屋町南鹿持18 (72)発明者 木南 俊哉 愛知県東海市加木屋町南鹿持18 (58)調査した分野(Int.Cl.6,DB名) H01F 41/02 B22F 3/03 B30B 11/22──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Yoshida18, Minamikamochi, Kagiyacho, Tokai City, Aichi Prefecture (72) Inventor, Toshiya Kinami18, Minamikamochi, Kagiyacho, Tokai City, Aichi Prefecture18 (58) Fields surveyed (Int.Cl. 6 , DB name) H01F 41/02 B22F 3/03 B30B 11/22

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】両端で開口するダイスと、該ダイスの一方
側の開口で該ダイスの内周面に沿って外周面を摺動可能
としたスリーブパンチおよび該スリーブパンチの内周面
に沿って外周面を摺動可能としたコアパンチを有する複
動パンチと、該複動パンチと対向し且つ該ダイスの他方
側の開口で該ダイスの内周面に沿って外周面を摺動可能
とした対向パンチを備え、前記ダイスとスリーブパンチ
およびコアパンチを有する複動パンチと対向パンチとの
間で成形空間が形成される成形型を用い、希土類磁石の
母材合金溶湯を超急冷して薄帯とし、該薄帯を粉砕した
粉末を冷間圧粉成形した予備成形体を前記成形空間内で
650〜900℃に予熱された状態にして前記複動パンチを構
成するスリーブパンチおよびコアパンチと対向パンチと
の間で前記予備成形体の密度が理論密度の99%以上とな
るまで該予備成形体を一様に加圧圧縮した後、前記複動
パンチのうちスリーブパンチによる加圧を停止してコア
パンチと対向パンチとの間で加圧圧縮すると共にダイス
の内周面とコアパンチの外周面との間で押出し成形する
ことにより横断面環状の異方性希土類磁石を1ヒート加
熱で製造することを特徴とする異方性希土類磁石の製造
方法。
1. A die having openings at both ends, a sleeve punch having an outer peripheral surface slidable along an inner peripheral surface of the die at one opening of the die, and an inner peripheral surface of the sleeve punch. A double-acting punch having a core punch whose outer peripheral surface is slidable, and a counter-acting member which is opposed to the double-acting punch and whose outer peripheral surface is slidable along an inner peripheral surface of the die at an opening on the other side of the die. Equipped with a punch, using a molding die in which a molding space is formed between a double-acting punch having the die, a sleeve punch, and a core punch and an opposing punch, ultra-quenching the base metal alloy of the rare-earth magnet into a thin ribbon, A pre-compacted body obtained by cold compacting the powder obtained by pulverizing the ribbon is formed in the molding space.
The pre-formed body is preheated to 650 to 900 ° C., and the pre-formed body is formed between the sleeve punch and the core punch constituting the double-acting punch and the opposing punch until the density of the pre-formed body becomes 99% or more of the theoretical density. After uniformly pressing and compressing, the pressing by the sleeve punch of the double-acting punch is stopped to press and compress between the core punch and the opposing punch, and at the same time, between the inner peripheral surface of the die and the outer peripheral surface of the core punch. A method for producing an anisotropic rare-earth magnet, comprising producing an anisotropic rare-earth magnet having a circular cross section by one heat heating by extrusion molding.
【請求項2】請求項第(1)項に記載の方法において、
冷間圧粉成形した予備成形体を用いる代わりに、素材粉
末のまま成形空間内で650〜900℃に予熱された状態にし
て複動パンチを構成するスリーブパンチおよびコアパン
チと対向パンチとの間で一様に加圧圧縮することを特徴
とする異方性希土類磁石の製造方法。
2. The method according to claim 1, wherein
Instead of using a pre-compacted body formed by cold compaction, the raw material powder is preheated to 650 to 900 ° C. in the molding space to form a double-acting punch. A method for producing an anisotropic rare earth magnet, comprising uniformly compressing and compressing.
【請求項3】請求項第(1)項または第(2)項に記載
の方法において、スリーブパンチによる加圧を停止する
代わりに、スリーブパンチで前記加圧圧縮力よりも低い
加圧力を加工素材端面に付与した状態にしてコアパンチ
と対向パンチとの間で加圧圧縮すると共にダイスの内周
面とコアパンチの外周面との間で押出し成形することを
特徴とする異方性希土類磁石の製造方法。
3. The method according to claim 1, wherein the pressing force by the sleeve punch is lower than the pressing force, instead of stopping the pressing by the sleeve punch. Manufacture of anisotropic rare-earth magnets characterized by applying pressure to a core punch and an opposing punch in a state applied to an end face of a material and extruding between an inner peripheral surface of a die and an outer peripheral surface of a core punch. Method.
【請求項4】請求項第(1)項,第(2)項または第
(3)項に記載の方法において、加圧圧縮および押出し
成形を1Torrよりも低圧の真空下または不活性ガス雰囲
気下で行うことを特徴とする異方性希土類磁石の製造方
法。
4. The method according to claim 1, wherein the compression and the extrusion are carried out under a vacuum or an inert gas atmosphere at a pressure lower than 1 Torr. A method for producing an anisotropic rare earth magnet.
【請求項5】請求項第(1)項,第(3)項または第
(4)項に記載の方法において、素材粉末を冷間圧粉成
形して予備成形体とするにあたり、成形用型および粉末
粒相互の潤滑能を向上させるためにステアリン酸リチウ
ムなどの潤滑剤を2重量%以下混合することによってそ
の圧粉密度を向上させた予備成形体とすることを特徴と
する異方性希土類磁石の製造方法。
5. The method according to claim 1, wherein the material powder is cold-compacted into a preform to form a molding die. Anisotropic rare earth characterized in that a green compact such as lithium stearate is mixed in an amount of 2% by weight or less in order to improve the lubricating ability between powder grains, and the green compact density is improved. Manufacturing method of magnet.
JP1198172A 1989-04-14 1989-07-31 Manufacturing method of anisotropic rare earth magnet Expired - Lifetime JP2830125B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1198172A JP2830125B2 (en) 1989-07-31 1989-07-31 Manufacturing method of anisotropic rare earth magnet
EP90303835A EP0392799B2 (en) 1989-04-14 1990-04-10 Method and apparatus for producing anisotropic rare earth magnet
AT90303835T ATE95627T1 (en) 1989-04-14 1990-04-10 METHOD AND APPARATUS FOR THE MANUFACTURE OF AN ANISOTROPIC RARE EARTH MAGNET.
DE69003720T DE69003720T3 (en) 1989-04-14 1990-04-10 Method and device for manufacturing an anisotropic rare earth magnet.
US07/507,438 US4963320A (en) 1989-04-14 1990-04-11 Method and apparatus for producing anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198172A JP2830125B2 (en) 1989-07-31 1989-07-31 Manufacturing method of anisotropic rare earth magnet

Publications (2)

Publication Number Publication Date
JPH0362507A JPH0362507A (en) 1991-03-18
JP2830125B2 true JP2830125B2 (en) 1998-12-02

Family

ID=16386670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198172A Expired - Lifetime JP2830125B2 (en) 1989-04-14 1989-07-31 Manufacturing method of anisotropic rare earth magnet

Country Status (1)

Country Link
JP (1) JP2830125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894607B (en) * 2014-04-23 2015-12-30 上海交通大学 The forming method of anisotropy toroidal magnet and mould thereof

Also Published As

Publication number Publication date
JPH0362507A (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
DE2810498A1 (en) PROCESS FOR PRODUCING THIN, CURVED PERMANENT MAGNETS FROM A POWDER OF METAL AND RARE EARTH
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JP2819748B2 (en) Forming method of thin long ring-shaped magnet molded body
US4076561A (en) Method of making a laminated rare earth metal-cobalt permanent magnet body
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH09129465A (en) Manufacture of nd-fe-b magnet
JP2870883B2 (en) Method for producing radially anisotropic NdFeB magnet
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
JP2643267B2 (en) Method for producing R-Fe-B anisotropic magnet
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
EP0565363B1 (en) Method for producing anisotropic rare earth magnet
US5342574A (en) Method for producing anisotropic rare earth magnet
JPH03290906A (en) Warm-worked magnet and its manufacture
JP2689445B2 (en) Rare earth magnet manufacturing method
JP2583113B2 (en) Rare earth magnet manufacturing method
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP4127599B2 (en) Sintered body manufacturing method and sintered body and magnetostrictive material manufactured thereby
KR20240092866A (en) Manufacturing Method Of Anisotropic Rare Earth Bulk Magnet
JP6424754B2 (en) Method of manufacturing molded body
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
JPH07169618A (en) Large-sized radial anisotropic ring-shaped permanent magnet, and its manufacture
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

EXPY Cancellation because of completion of term