JPH04352402A - Circular arc-shaped magnet and manufacture thereof - Google Patents

Circular arc-shaped magnet and manufacture thereof

Info

Publication number
JPH04352402A
JPH04352402A JP3127232A JP12723291A JPH04352402A JP H04352402 A JPH04352402 A JP H04352402A JP 3127232 A JP3127232 A JP 3127232A JP 12723291 A JP12723291 A JP 12723291A JP H04352402 A JPH04352402 A JP H04352402A
Authority
JP
Japan
Prior art keywords
arc
magnet
circular arc
curvature
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3127232A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Makoto Shinoda
誠 篠田
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3127232A priority Critical patent/JPH04352402A/en
Publication of JPH04352402A publication Critical patent/JPH04352402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To stably manufacture a circular arc-shaped magnet having high magnetic characteristic in a radial direction. CONSTITUTION:A circular arc-shaped magnet for a circular arc-shaped hot processed magnet formed of an R-T-B series quenched thin piece obtained by quenching and solidifying molten R-T-B series alloy containing transition metal T as a main ingredient, a rare earth element R containing yttrium and boron B, as a material and having magnetic anisotropy and 0.02-1mum of mean particle size by hot processing the material, wherein both ends of the circular arc shape is 120 deg. or less from the center of curvature of the circular arc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は希土類、遷移金属、ホウ
素から実質的になる永久磁石であって温間加工によって
磁気異方性を付与する温間加工磁石の改良に関し、特に
ラジアル方向に強い磁気異方性を有する円弧形状磁石と
その製造方法に関するものである。
[Industrial Application Field] The present invention relates to the improvement of a warm-worked magnet, which is a permanent magnet made essentially of rare earth elements, transition metals, and boron, and which imparts magnetic anisotropy through warm working, and is particularly strong in the radial direction. The present invention relates to an arc-shaped magnet having magnetic anisotropy and a method for manufacturing the same.

【0002】0002

【従来の技術】希土類、遷移金属、ホウ素から実質的に
なるR−T−B系磁石は安価で高磁気特性を有するもの
として注目を集めている。然してこの系の磁石は特公昭
61−34242号公報記載の焼結磁石と超急冷磁石に
大別される。いずれの製造方法を取る場合でも所要の形
状に成形することが必要であり成形性が重要である。し
かし焼結磁石において磁気異方性を得ようとする場合は
、磁場の中で成形するというような工程が必須であり成
形方向および配向磁場方向により形状的に制約を受ける
。例えば縦磁場成形(磁場方向とプレス成形方向が平行
)の場合、金型のキャビティー内で均一磁場が得られな
いため粉末の配向が不均一になり磁気特性の均一性が悪
い。また仮に磁場印加による配向が良好であっても成形
により再び配向が乱れる結果を招き全体としての磁気特
性は低く、本系磁石のポテンシャルを十分に生かした成
形法ではない。一方横磁場成形(磁場方向とプレス成形
方向が直角)の場合、配向方向により更に2つに分けら
れる。ひとつはストレ−ト配向で、もうひとつはラジア
ル配向である。ストレ−ト配向の場合、出来上がる焼結
磁石は当然のことながらストレ−ト配向でありラジアル
配向は得られない。ラジアル配向の場合、ニアネットで
しかもラジアル配向を有する円弧状磁石を得ることは可
能であるが、粉末を充填する際にかさ密度が小さいため
最終製品形状に対し約4倍の高さまで金型内に投入する
必要がある。したがってプレス成形が極めて困難でしか
も粉末の配向が悪く、ひいては製品における磁気特性不
均一を招く。一方超急冷磁石はR−T−B系合金の溶湯
を超急冷法によって凝固し、薄帯または薄片を得て粉砕
しホットプレスした後、温間で塑性加工して磁気異方性
を付与した永久磁石(以下『温間加工磁石』)でその詳
細は特開昭60−100402号公報で記載されている
。超急冷法で得られた薄帯または薄片は、更にその内部
が無数の微細結晶粒からなっている。したがって超急冷
法によって得られる薄帯および薄片は厚さ30μm程度
で一辺の長さが500μm以下の不定形をしているもの
の、その内部に含まれる結晶粒が焼結磁石の1〜90μ
mと比べて0.02〜1.0μmと微細でありこの系の
磁石の単磁区の臨界寸法0.3μmに近く本質的に優れ
た磁気特性が得られる。温間加工磁石においては塑性流
動とそれに直角な方向の磁気的配列状態との密接な相関
が重要である。つまり所要の形状を有する温間加工磁石
を作製する場合、塑性流動を被加工物全体に効率よくし
かも十分に行わせることによって配向性が向上し、ひい
ては高い磁気特性を有する磁石の作製が可能となる。
2. Description of the Related Art RTB magnets, which are essentially composed of rare earth elements, transition metals, and boron, are attracting attention as they are inexpensive and have high magnetic properties. However, this type of magnets can be broadly classified into sintered magnets and ultra-quenched magnets as described in Japanese Patent Publication No. 61-34242. No matter which manufacturing method is used, it is necessary to mold it into a desired shape, and moldability is important. However, in order to obtain magnetic anisotropy in a sintered magnet, a process such as molding in a magnetic field is essential, and the shape is constrained by the molding direction and the orientation magnetic field direction. For example, in the case of vertical magnetic field molding (the direction of the magnetic field and the direction of press molding are parallel), a uniform magnetic field cannot be obtained within the mold cavity, resulting in uneven orientation of the powder and poor uniformity of magnetic properties. Further, even if the orientation is good due to the application of a magnetic field, the orientation will be disturbed again by molding, resulting in poor magnetic properties as a whole, and this is not a molding method that takes full advantage of the potential of the present magnet. On the other hand, in the case of transverse magnetic field forming (the magnetic field direction and the press forming direction are perpendicular), it is further divided into two types depending on the orientation direction. One is straight orientation and the other is radial orientation. In the case of straight orientation, the resulting sintered magnet is of course straight oriented and cannot have radial orientation. In the case of radial orientation, it is possible to obtain an arc-shaped magnet with near net radial orientation, but due to the low bulk density when filling the powder, it is necessary to fill the mold with a height that is about four times the height of the final product shape. It is necessary to invest in Therefore, press molding is extremely difficult and the orientation of the powder is poor, leading to non-uniform magnetic properties in the product. On the other hand, ultra-quenched magnets are made by solidifying molten R-T-B alloy by an ultra-quenching method, obtaining ribbons or flakes, pulverizing and hot pressing, and then warm plastic working to impart magnetic anisotropy. Permanent magnets (hereinafter referred to as "warm worked magnets") are described in detail in Japanese Patent Laid-Open No. 100402/1983. The ribbon or flake obtained by the ultra-quenching method further consists of countless fine crystal grains inside. Therefore, although the ribbons and flakes obtained by the ultra-quenching method have an irregular shape with a thickness of about 30 μm and a side length of 500 μm or less, the crystal grains contained inside the ribbons are about 1 to 90 μm thick than those of sintered magnets.
It is as fine as 0.02 to 1.0 .mu.m compared to m, and is close to the critical dimension of 0.3 .mu.m of a single magnetic domain in this type of magnet, so that essentially excellent magnetic properties can be obtained. In warm-worked magnets, a close correlation between plastic flow and magnetic alignment in the direction perpendicular to it is important. In other words, when producing a warm-worked magnet with a desired shape, the orientation is improved by efficiently and sufficiently applying plastic flow to the entire workpiece, which in turn makes it possible to produce a magnet with high magnetic properties. Become.

【0003】0003

【発明が解決しようとする課題】上記の超急冷法による
R−T−B系温間加工磁石においては、磁気異方性を配
向磁場を使用せずに温間塑性加工により付与するという
特殊な工程を取りしかも磁気異方性は加圧方向に対して
平行に付与されるため平板状磁石のような単純形状ある
いは押し出し加工によりC軸方向が放射状に配向するリ
ング形状に限定されていた。したがって円弧形状のよう
な温間加工磁石を作製する場合、加圧力は上下パンチ面
に対し垂直方向と平行方向の分力に分解されることにな
り十分な配向が得られず磁気特性が不均一になる可能性
がある。さらに曲率を有する面で加工するため自ずから
塑性流動方向に優先順位が生じ、前記の単純平板形状と
は根本的に異方性化の傾向が違うためマクロ的にもミク
ロ的にも異方性化には複雑な過程をともなう。したがっ
てやみくもに曲率を有する上下パンチ間で加圧力を与え
る方法は得策とはいえない。そこで、本発明は安定した
磁気特性を有する円弧形状磁石の作製にあたって、目標
とする特性、形状を得るための加工方案を確立すること
を目的とする。
[Problems to be Solved by the Invention] In the above-mentioned R-T-B warm-processed magnet produced by the ultra-quenching method, a special feature is that magnetic anisotropy is imparted by warm plastic working without using an orienting magnetic field. Moreover, since the magnetic anisotropy is imparted parallel to the pressing direction, it has been limited to a simple shape such as a flat magnet or a ring shape in which the C-axis direction is radially oriented by extrusion processing. Therefore, when producing a warm-processed magnet with an arcuate shape, the applied force is decomposed into force components perpendicular and parallel to the upper and lower punch surfaces, resulting in insufficient orientation and uneven magnetic properties. There is a possibility that it will become. Furthermore, since processing is performed on a surface with curvature, priority is naturally given to the direction of plastic flow, and since the tendency of anisotropy is fundamentally different from the simple flat plate shape described above, it becomes anisotropic both macroscopically and microscopically. involves a complex process. Therefore, it is not a good idea to blindly apply pressure between the upper and lower punches having curvature. Therefore, an object of the present invention is to establish a processing method for obtaining target characteristics and shape in producing an arc-shaped magnet having stable magnetic characteristics.

【0004】0004

【課題を解決するための手段】本発明は遷移金属Tを主
成分とし、イットリュウムを含む希土類元素Rおよびホ
ウ素Bを含有するR−T−B系合金の溶湯を急冷凝固し
て得られるR−T−B系急冷薄片を原料とし、本原料を
温間加工により磁気的異方性を有する平均粒径が0.0
2〜1μmの円弧形状温間加工磁石において、その最終
形状である円弧形状の両端が円弧の曲率中心から120
°以下であることを特徴とする円弧形状磁石である。異
方性化のために与える加圧力は上下パンチ面に対して垂
直および平行両方向の分力となるため、円弧形状磁石の
曲率中心からの広がりが120°を越えるものでは最終
的に磁石の端部に加圧応力の内80%以上が結晶粒異方
性化方向(曲率中心から法線方向)に対して垂直に作用
するため異方性化が非常に付きにくい。したがって12
0°以下の角度が望ましい。また本方法により加工した
円弧形状の温間加工磁石はいかなる部分においても円弧
の曲率中心から引いた法線に垂直な方向での残留磁束密
度が6kG以下であることを特徴としている。例えば磁
化容易軸方向がラジアル方向で最大エネルギ−績30M
GOe以上の磁気特性を有する円弧形状磁石を得ようと
する場合、本系磁石では上述の通り円弧の曲率中心から
引いた法線に垂直な方向での残留磁束密度が6kG以下
であることが必要条件である。つまり120°以上の広
がり角度をもつ円弧形状磁石では特に端部で分力の関係
から異方性化が困難となり、その結果ラジアル方向に高
い磁気特性を付与した製品が得られないからである。本
発明は遷移金属Tを主成分とし、イットリュウムを含む
希土類元素Rおよびホウ素Bを含有するR−T−B系合
金の溶湯を急冷凝固して得られるR−T−B系急冷薄片
を原料とし、本原料を500℃から900℃の温度で加
圧してち密化した後、上下パンチにより塑性加工を施し
て磁気異方性を付与する温間加工磁石の製造方法におい
て、前記上下パンチが任意の曲率を有しこの上下パンチ
間の加圧力で塑性加工することを特徴とする円弧形状磁
石の製造方法に関するものである。本発明において上下
パンチは最終形状である円弧形状磁石と同一の曲率を有
することが望ましい。また外周部のクラック発生を抑制
するために加工を複数回に分け、さらに各加工率で外周
を拘束する方法を取ってもよい。また温間加工時に発生
するバルジ現象を抑制するため圧密体を任意の形状に予
備成形しておき最終加工で所定の形状に仕上げてもよい
。さらに保磁力等の磁気特性を著しく低下させない程度
に塑性変形速度を遅くする方法をとってもよい。さらに
本発明は原料薄片をち密化した試料に対し、塑性変形後
の円弧形状磁石の円弧方向の歪が20%以上でかつ12
0%以下であることを特徴とする円弧形状磁石の製造方
法に関するものである。温間塑性加工時に圧密体内の各
微細結晶粒は塑性流動により相対的に位置をずらしなが
ら偏平化して異方性化するため円弧方向への自由度を与
えた方が好ましい。つまり円弧方向への歪を与えない場
合、磁石の長さ方向のみの歪となり理想的な偏平化が阻
害され高い磁気特性が得られない。一方大きな自由度を
与えた場合、各結晶粒の偏平化が極限に近ずくにつれ相
対的に移動困難な状態となりクラックが発生しやすくな
る。したがって円弧形状の円弧方向には、20%以上1
20%以下の歪を付与することが望ましい。
[Means for Solving the Problems] The present invention provides R obtained by rapidly solidifying a molten R-T-B alloy containing a transition metal T as a main component, a rare earth element R including yttrium, and boron B. - Using T-B system quenched flakes as a raw material, this raw material is warm-processed to have an average grain size of 0.0 with magnetic anisotropy.
In a warm-processed magnet with an arc shape of 2 to 1 μm, both ends of the final arc shape are 120 mm from the center of curvature of the arc.
This is an arc-shaped magnet characterized by a diameter of less than . The pressing force applied for anisotropy is a force component both perpendicular and parallel to the upper and lower punch surfaces, so if the arc-shaped magnet extends more than 120 degrees from the center of curvature, the edge of the magnet will eventually Since more than 80% of the applied stress acts perpendicularly to the crystal grain anisotropy direction (the normal direction from the center of curvature), anisotropy is very difficult to form. Therefore 12
An angle of 0° or less is desirable. Further, the arc-shaped warm-processed magnet processed by this method is characterized in that the residual magnetic flux density in the direction perpendicular to the normal line drawn from the center of curvature of the arc is 6 kG or less at any part. For example, if the axis of easy magnetization is the radial direction, the maximum energy is 30M.
When trying to obtain an arc-shaped magnet with magnetic properties of GOe or higher, the residual magnetic flux density in the direction perpendicular to the normal line drawn from the center of curvature of the arc must be 6 kG or less for this type of magnet, as described above. It is a condition. In other words, in an arc-shaped magnet with a spread angle of 120° or more, it is difficult to make it anisotropic due to component forces, especially at the ends, and as a result, a product with high magnetic properties in the radial direction cannot be obtained. The present invention uses rapidly solidified R-T-B flakes obtained by rapidly solidifying a molten R-T-B alloy containing transition metal T as a main component, rare earth element R including yttrium, and boron B. In the method for manufacturing a warm-worked magnet, the raw material is pressurized at a temperature of 500° C. to 900° C. to densify it, and then subjected to plastic working with upper and lower punches to impart magnetic anisotropy, wherein the upper and lower punches are optional. The present invention relates to a method for producing an arc-shaped magnet, which has a curvature of In the present invention, it is desirable that the upper and lower punches have the same curvature as the final shape of the arc-shaped magnet. Furthermore, in order to suppress the occurrence of cracks on the outer periphery, a method may be adopted in which processing is divided into multiple steps and the outer periphery is restrained at each processing rate. Further, in order to suppress the bulging phenomenon that occurs during warm working, the compacted body may be preformed into an arbitrary shape and then finished into a predetermined shape in the final working. Furthermore, a method may be used to slow down the plastic deformation rate to an extent that does not significantly reduce magnetic properties such as coercive force. Furthermore, the present invention provides a sample in which the strain in the arc direction of the arc-shaped magnet after plastic deformation is 20% or more and 12%.
The present invention relates to a method for manufacturing an arc-shaped magnet characterized in that it is 0% or less. During warm plastic working, each fine crystal grain in the compacted body is flattened and made anisotropic while shifting its position relative to each other due to plastic flow, so it is preferable to give a degree of freedom in the arc direction. In other words, if no strain is applied in the arc direction, the strain will only occur in the longitudinal direction of the magnet, which will inhibit ideal flattening and make it impossible to obtain high magnetic properties. On the other hand, if a large degree of freedom is given, as the flattening of each crystal grain approaches its limit, it becomes relatively difficult to move and cracks are likely to occur. Therefore, in the arc direction of the arc shape, 20% or more 1
It is desirable to apply a strain of 20% or less.

【0005】[0005]

【実施例】【Example】

〔実施例1〕Nd13.8FebalCo7.5B6G
a1.25なる組成の合金をア−ク溶解にて作製した。 本合金をAr雰囲気中で20m/秒で回転する単ロ−ル
上に噴出して不定形のフレ−ク状薄片を作製した。得ら
れた薄片を500μm以下に粗粉砕し圧粉体とした後ホ
ットプレスで圧密化を行った。次いでこの圧密体を75
0℃で円弧形状を有する上下パンチ間で温間塑性加工し
円弧形状磁石とした。加工率は長さ方向および円弧方向
の歪が圧密体の同方向寸法に対して80%一定とし、な
おかつ円弧方向は磁石の両端が曲率中心より0°から1
60°となるよう圧密体形状および金型寸法を調整して
行った。完成した円弧形状磁石は、曲率中心からの広が
り角度をθとしたとき0°、θ/4、θ/2となるよう
な位置から3.2mm角の試料を切り出した。次いで曲
率中心からの法線方向(ラジアル方向)およびそれに直
角方向の磁気特性をVSMで測定した。実験概略および
磁気特性測定位置を図1に、得られた結果を図2に示す
。曲率中心からの法線方向に垂直な方向の残留磁束密度
は、広がり角θが大きくなるにつれて上昇し、特に12
0°を越える場合のaおよびbでその傾向は顕著である
。一方法線方向(ラジアル方向)の最大エネルギ−績は
反対の傾向を示す。以上の結果より円弧形状磁石の円弧
方向および長さ方向に同一加工率を与えても円弧の広が
り角度が大きくなるにつれラジアル配向しにくくなるこ
とがわかる。 〔実施例2〕実施例1記載と同様の工程で圧密体を作製
した後円弧形状の円弧方向および長さ方向の加工率を変
化させ温間加工を行いそれぞれの歪量と磁気特性の関係
を調べた。なお他の条件として、曲率中心からの広がり
角度が60°で一定となるよう圧密体および金型を調整
して行った。磁気特性の測定にはVSMを用い、測定位
置は図2中のcに対応する磁石端部で行った。結果を図
3に示す。円弧方向(εθ)あるいは長さ方向(εl)
のいずれかを拘束(ε=0)する場合、全体的な磁気特
性のピ−ク値は低い。しかし長さ方向へ自由度を与えか
つ円弧方向の歪が増大するにつれて磁気特性は向上する
。長さ方向のみに120%加工した場合端部に微細クラ
ックを生じ、140%では測定不可能だった。一方円弧
方向でも120%を越える加工率においてクラックが生
じた。
[Example 1] Nd13.8FebalCo7.5B6G
An alloy having a composition of a1.25 was produced by arc melting. This alloy was jetted onto a single roll rotating at 20 m/sec in an Ar atmosphere to produce irregularly shaped flakes. The obtained flakes were coarsely pulverized to 500 μm or less to form a green compact, and then compacted using a hot press. Next, this compacted body was heated to 75
Warm plastic processing was performed between upper and lower arc-shaped punches at 0°C to form an arc-shaped magnet. The processing rate is such that the strain in the length direction and arc direction is constant at 80% for the same direction dimensions of the consolidated body, and in the arc direction, both ends of the magnet are from 0° to 1° from the center of curvature.
The shape of the compact and the dimensions of the mold were adjusted so that the angle was 60°. For the completed arc-shaped magnet, 3.2 mm square samples were cut out from positions where the spread angle from the center of curvature was 0°, θ/4, and θ/2. Next, the magnetic properties in the normal direction (radial direction) from the center of curvature and in the direction perpendicular thereto were measured using a VSM. The experimental outline and magnetic property measurement positions are shown in FIG. 1, and the obtained results are shown in FIG. 2. The residual magnetic flux density in the direction perpendicular to the normal direction from the center of curvature increases as the divergence angle θ increases, especially at 12
This tendency is remarkable for a and b when the angle exceeds 0°. On the other hand, the maximum energy performance in the normal direction (radial direction) shows the opposite tendency. From the above results, it can be seen that even if the same processing rate is given in the arc direction and length direction of the arc-shaped magnet, as the spread angle of the arc increases, it becomes difficult to achieve radial orientation. [Example 2] A compacted body was produced in the same process as described in Example 1, and then warm working was performed by changing the processing rate in the arc direction and length direction of the arc shape, and the relationship between the amount of strain and magnetic properties was determined. Examined. As another condition, the compacted body and the mold were adjusted so that the spread angle from the center of curvature was constant at 60°. A VSM was used to measure the magnetic properties, and the measurement position was at the end of the magnet corresponding to c in FIG. The results are shown in Figure 3. Arc direction (εθ) or length direction (εl)
When any one of them is constrained (ε=0), the overall peak value of the magnetic properties is low. However, as the degree of freedom is given in the length direction and the strain in the arc direction increases, the magnetic properties improve. When processed 120% only in the length direction, microcracks were generated at the ends, and when processed 140%, it was impossible to measure. On the other hand, cracks also occurred in the arc direction when the processing rate exceeded 120%.

【0006】[0006]

【発明の効果】本発明によればラジアル方向に高い磁気
特性を有する円弧形状磁石が安定して製造可能である。
According to the present invention, arc-shaped magnets having high magnetic properties in the radial direction can be stably manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実験概略および磁気特性の測定位置を示す図で
ある。
FIG. 1 is a diagram showing an outline of an experiment and measurement positions of magnetic properties.

【図2】円弧形状磁石の曲率中心からの法線方向および
それに垂直な方向での磁気特性を示す図である。
FIG. 2 is a diagram showing the magnetic characteristics of an arc-shaped magnet in the normal direction from the center of curvature and in the direction perpendicular thereto.

【図3】円弧方向および長さ方向の歪量にともなうラジ
アル方向の最大エネルギ−積の変化を示す図である。
FIG. 3 is a diagram showing changes in the maximum energy product in the radial direction with the amount of strain in the arc direction and length direction.

【符号の説明】[Explanation of symbols]

1  円弧の曲率中心 1 Center of curvature of circular arc

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  遷移金属Tを主成分とし、イットリュ
ウムを含む希土類元素Rおよびホウ素Bを含有するR−
T−B系合金の溶湯を急冷凝固して得られるR−T−B
系急冷薄片を原料とし、本原料を温間加工により磁気的
異方性を有する平均粒径が0.02〜1μmの円弧形状
温間加工磁石において、その円弧形状の両端が円弧の曲
率中心から120°以下であることを特徴とする円弧形
状磁石。
Claim 1: R- containing a transition metal T as a main component, a rare earth element R including yttrium, and boron B.
R-T-B obtained by rapidly solidifying molten T-B alloy
In an arc-shaped warm-processed magnet with an average grain size of 0.02 to 1 μm that has magnetic anisotropy by warm-processing this raw material using quenched thin flakes as a raw material, both ends of the arc-shape are from the center of curvature of the arc. An arc-shaped magnet characterized by an angle of 120° or less.
【請求項2】  請求項1に記載の円弧形状磁石の全部
分においても、円弧形状の曲率中心から引いた法線に垂
直な方向で、残留磁束密度が6kG以下であることを特
徴とする円弧形状磁石。
2. An arc characterized in that the entire portion of the arc-shaped magnet according to claim 1 has a residual magnetic flux density of 6 kG or less in a direction perpendicular to a normal line drawn from the center of curvature of the arc shape. shape magnet.
【請求項3】  遷移金属Tを主成分とし、イットリュ
ウムを含む希土類元素Rおよびホウ素Bを含有するR−
T−B系合金の溶湯を急冷凝固して得られるR−T−B
系急冷薄片を原料とし、本原料を500℃から900℃
の温度で加圧してち密化した後、曲率を有する上下パン
チの加圧力により塑性加工を施して磁気異方性を付与す
る温間加工磁石の製造方法。
3. R- containing a transition metal T as a main component, a rare earth element R including yttrium, and boron B.
R-T-B obtained by rapidly solidifying molten T-B alloy
The raw material is heated from 500°C to 900°C using rapidly quenched flakes.
A method for manufacturing a warm-worked magnet, in which the magnet is densified by pressing at a temperature of 1000, and then subjected to plastic working by applying pressure from upper and lower punches having curvature to impart magnetic anisotropy.
【請求項4】  原料薄片をち密化した試料に対し、塑
性変形後の円弧形状磁石の円弧方向の歪が20%以上で
かつ120%以下であることを特徴とする請求項3に記
載の円弧形状磁石の製造方法。
4. The circular arc according to claim 3, wherein the strain in the circular arc direction of the circular arc-shaped magnet after plastic deformation is 20% or more and 120% or less with respect to a sample obtained by densifying raw material flakes. Method of manufacturing shaped magnets.
JP3127232A 1991-05-30 1991-05-30 Circular arc-shaped magnet and manufacture thereof Pending JPH04352402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3127232A JPH04352402A (en) 1991-05-30 1991-05-30 Circular arc-shaped magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127232A JPH04352402A (en) 1991-05-30 1991-05-30 Circular arc-shaped magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04352402A true JPH04352402A (en) 1992-12-07

Family

ID=14954998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127232A Pending JPH04352402A (en) 1991-05-30 1991-05-30 Circular arc-shaped magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04352402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756010B2 (en) 1999-10-25 2004-06-29 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
CN103996482A (en) * 2013-02-15 2014-08-20 罗伯特·博世有限公司 Magnet having center identification mark, motor and method for making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756010B2 (en) 1999-10-25 2004-06-29 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
CN103996482A (en) * 2013-02-15 2014-08-20 罗伯特·博世有限公司 Magnet having center identification mark, motor and method for making the same

Similar Documents

Publication Publication Date Title
EP0133758B1 (en) Iron-rare earth-boron permanent magnets by hot working
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
US4859410A (en) Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically aligned material
US4844754A (en) Iron-rare earth-boron permanent magnets by hot working
JP6613730B2 (en) Rare earth magnet manufacturing method
EP0392799B2 (en) Method and apparatus for producing anisotropic rare earth magnet
KR102045400B1 (en) Manufacturing method of rare earth sintered magnet
US5536334A (en) Permanent magnet and a manufacturing method thereof
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JP3135120B2 (en) Manufacturing method of warm-worked magnet
EP0392077B1 (en) Magnetically anisotropic hot-worked magnets and composition and method for their production
JPH02138706A (en) Anisotropic permanent magnet
JPH06188120A (en) Circular arc-shaped magnet and manufacture thereof
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH03295202A (en) Hot-worked magnet and manufacture thereof
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPH03141610A (en) Rare-earth magnet and its manufacture
JPH01179305A (en) Manufacture of anisotropic permanent magnet