JPH056813A - Circular magnet having characteristic distribution and manufacture thereof - Google Patents
Circular magnet having characteristic distribution and manufacture thereofInfo
- Publication number
- JPH056813A JPH056813A JP3156551A JP15655191A JPH056813A JP H056813 A JPH056813 A JP H056813A JP 3156551 A JP3156551 A JP 3156551A JP 15655191 A JP15655191 A JP 15655191A JP H056813 A JPH056813 A JP H056813A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- arc
- warm
- curvature
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は希土類、遷移金属、ホウ
素から実質的になる永久磁石であって、温間加工によっ
て磁気異方性を付与する温間加工磁石の改良に関し円弧
形状を有し、ラジアル方向の最大エネルギ−積が中央部
から端部にかけて次第に高くなる円弧形状磁石とその製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet substantially composed of a rare earth element, a transition metal, and boron, and relates to an improvement of a warm-worked magnet which imparts magnetic anisotropy by warm working and has an arc shape. The present invention relates to an arc-shaped magnet whose maximum energy product in the radial direction gradually increases from the central portion to the end portion, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】希土類、遷移金属、ホウ素から実質的に
なるR−T−B系磁石は安価で高磁気特性を有するもの
として注目を集めている。然してこの磁石は特公昭61
−34242号公報記載の焼結磁石と特開昭60−10
0402号公報記載の超急冷磁石に大別される。いずれ
の製造方法を取る場合でも所要の形状に成形することが
必要でありこの成形過程で任意の磁気特性を意図的に制
御することは困難とされている。例えば焼結磁石におい
て磁気異方性を得ようとする場合は、磁場の中で成形す
るというような工程が必須であり成形方向および配向磁
場方向により形状に制約を受ける。配向磁場強度を制御
することによって磁石内での磁気特性も制御することは
可能であるが、技術的に困難であるうえ本系磁石のポテ
ンシャルを生かした方法ではない。したがって円弧形状
の磁石はストレ−ト配向を有するものが主流になってい
た。一方超急冷磁石の場合、R−T−B系合金の溶湯を
超急冷法によって凝固し薄帯または薄片を得て粉砕しホ
ットプレスした後、温間で塑性加工して磁気異方性を付
与した永久磁石(以下『温間加工磁石』)であり、超急
冷法で得られた薄帯および薄片は更にその内部が無数の
微細結晶粒からなっている。したがって超急冷法によっ
て得られる薄帯または薄片は厚さ30μm程度で一辺の
長さが500μm以下の不定形をしているもののその内
部に含まれる結晶粒が焼結磁石の1〜90μmと比べて
0.02〜1.0μmと微細でありこの系の磁石の単磁
区の臨界寸法0.3μmに近く本質的に優れた磁気特性
が得られる。温間加工磁石においては塑性流動とそれに
直角な方向の磁気的配列状態との密接な相関が重要であ
る。つまり所要の形状を有する温間加工磁石を作製する
場合、塑性流動を被加工物全体に効率よくしかも十分に
行わせることによって配向性が向上し、ひいては高い磁
気特性を有する磁石の製造が可能となる。2. Description of the Related Art RTB-based magnets, which are essentially composed of rare earths, transition metals, and boron, have been attracting attention because they are inexpensive and have high magnetic properties. However, this magnet is
-34242 and the sintered magnet disclosed in JP-A-60-10
It is roughly classified into the ultra-quenching magnet described in JP-A No. 0402. Regardless of which manufacturing method is used, it is necessary to mold into a desired shape, and it is difficult to intentionally control arbitrary magnetic characteristics in this molding process. For example, when trying to obtain magnetic anisotropy in a sintered magnet, a step of molding in a magnetic field is essential, and the shape is restricted by the molding direction and the orientation magnetic field direction. Although it is possible to control the magnetic characteristics in the magnet by controlling the orientation magnetic field strength, it is technically difficult and it is not a method that makes full use of the potential of this system magnet. Therefore, most arc-shaped magnets have a straight orientation. On the other hand, in the case of ultra-quenched magnets, molten metal of RTB-based alloy is solidified by the ultra-quenching method to obtain thin strips or flakes, crushed, hot-pressed, and then subjected to warm plastic working to impart magnetic anisotropy. These are permanent magnets (hereinafter referred to as "warm-worked magnets"), and the ribbons and flakes obtained by the ultra-quenching method further have innumerable fine crystal grains inside. Therefore, although the thin strip or thin piece obtained by the ultra-quenching method has an irregular shape with a thickness of about 30 μm and a side length of 500 μm or less, the crystal grains contained therein are 1 to 90 μm smaller than that of the sintered magnet. It is as fine as 0.02 to 1.0 μm, and it is possible to obtain essentially excellent magnetic characteristics close to the critical dimension of 0.3 μm of the single magnetic domain of the magnet of this system. In warm-working magnets, close correlation between plastic flow and magnetic alignment in the direction perpendicular to it is important. In other words, when producing a warm-worked magnet having a required shape, it is possible to improve the orientation by allowing plastic flow to be carried out efficiently and sufficiently over the entire workpiece, which in turn makes it possible to produce a magnet with high magnetic properties. Become.
【0003】[0003]
【発明が解決しようとする課題】上記超急冷法によるR
−T−B系温間加工磁石においては、磁気異方性を配向
磁場を使用せずに温間加工により付与するという特殊な
工程をとり、しかも磁気異方性は加圧方向に対して平行
に付与されるため平板形状磁石のような単純形状あるい
は押しだし加工によりC軸方向が一様に配向するような
ものに限定されていた。しかしながら永久磁石を用いた
応用品として磁気回路を設計する場合には、例えば磁石
単体で磁化容易軸方向の磁気特性が中央部から端部にか
けて次第に高くなる分布を有する方が効率的な磁気回路
になる場合が多々ある。具体的にはボイスコイルアクチ
ュエ−タ(以下VCM)等に用いられる円弧形状磁石は
軟磁性ヨ−クに組み込まれ使用されるが、その際効率的
な回路として、ギャップ間に発生する磁束強度が高くし
かも均一磁界であることが望まれる。ところが仮に均一
な磁気特性を有する磁石をヨ−ク内にセットしてもヨ−
ク端部で磁束分布が低下する傾向が見られ理想とする均
一磁界が得られない。そのため磁石中央部に意図的に切
り欠きを入れて磁束量を低下させた後ヨ−ク内に組み込
みギャップ磁界を平滑化する処置が取られていた。又、
回転機のステ−タ−として使用される円弧形状磁石にお
いては円弧のラジアル方向に全体が一様に磁化された永
久磁石を使用するより円弧中心から端部にかけてラジア
ル方向の磁気特性が次第に高くなるものを使用したほう
がゴギングトルクも少なく効果的な設計となる。そこで
温間加工磁石の特徴を生かし、加工方法を改良すること
によってラジアル方向に高い磁気特性を有し、かつ中央
部から端部にかけて磁気異方性化度の高くなる円弧形状
磁石を得ることを目的とする。R by the above-mentioned rapid quenching method
In the -T-B warm working magnet, a special process of giving the magnetic anisotropy by warm working without using an orientation magnetic field is taken, and the magnetic anisotropy is parallel to the pressing direction. Therefore, it has been limited to a simple shape such as a flat plate-shaped magnet or one in which the C-axis direction is uniformly oriented by extrusion processing. However, when designing a magnetic circuit as an application using permanent magnets, for example, it is more efficient for the magnetic circuit to have a distribution in which the magnetic characteristics in the easy axis direction of the magnet alone gradually increase from the central portion to the end portion. There are many cases. Specifically, an arc-shaped magnet used in a voice coil actuator (hereinafter referred to as VCM) is used by incorporating it into a soft magnetic yoke, and at that time, the magnetic flux strength generated between the gaps is an efficient circuit. A high and uniform magnetic field is desired. However, even if a magnet having uniform magnetic characteristics is set in the yoke,
The magnetic flux distribution tends to decrease at the end of the groove, and an ideal uniform magnetic field cannot be obtained. Therefore, a measure is taken to intentionally make a notch in the center of the magnet to reduce the amount of magnetic flux and then to smooth the gap magnetic field incorporated in the yoke. or,
In the arc-shaped magnet used as the stator of the rotating machine, the magnetic characteristics in the radial direction gradually increase from the center to the end of the arc, compared with the case where a permanent magnet magnetized uniformly in the radial direction of the arc is used. It is more effective to use the one with less gogging torque. Therefore, by utilizing the characteristics of the warm-worked magnet and improving the processing method, it is possible to obtain an arc-shaped magnet that has high magnetic properties in the radial direction and that has a high degree of magnetic anisotropy from the central part to the end part. To aim.
【0004】[0004]
【課題を解決するための手段】本発明は、遷移金属Tを
主成分としイットリウムを含む希土類元素Rおよびホウ
素Bを含有するR−T−B系急冷薄片を原料とし、本原
料を温間加工により磁気異方性を有する平均粒径が0.
02〜1.0μmの円弧形状温間加工磁石においてラジ
アル方向の最大エネルギ−積が端部で高く、中央部に向
けて次第に低下する特性分布を有することを特徴とする
円弧形状磁石である。さらに本発明は前記原料を500
℃から900℃の温度で加圧してち密化した後、上下パ
ンチにより塑性加工を施して磁気異方性を付与する温間
加工磁石の加工方法において上下パンチの曲率を意図的
に変化させることによって円弧形状磁石の端部と中央部
で加圧方向の加工率が異なる塑性加工を施すことを特徴
とする円弧形状磁石の製造方法に関するものである。従
来法によれば上下パンチの曲率は最終形状である円弧形
状磁石の厚さを考慮し、下パンチの曲率半径にその値を
加算した単純な設計であった。しかし異方性化のために
与える加圧力は上下パンチ面に対して垂直および平行方
向の分力となり、曲率中心からの広がり角度の大きい円
弧形状磁石ほどラジアル方向に対して垂直に作用する応
力が増大し、磁気異方性が付与されにくい。そこで通常
の設計に比較して上下パンチの曲率を若干変化させるこ
とにより円弧形状磁石端部で実質的に強い異方性化方向
の分力を作用させるよう設計する。つまり温間加工時に
用いる金型は以下の条件のいずれかまたは双方を満足す
る設計とする。上パンチの曲率についてはRupper≦Rl
ower+tなる式(1)で、下パンチの曲率についてはR
lower≧Rdens.なる式(2)で表される。ここでRuppe
rは上パンチの加工面の曲率半径、Rlowerは下パンチの
加工面の曲率半径、tは円弧形状磁石の厚さ(任意の一
定値)、Rdens.は下パンチ側の圧密体曲率半径であ
る。以上の設計に基づき上下パンチの曲率を変化させる
ことによって意図的に磁気異方性化度を制御した円弧形
状磁石の製造が可能となる。また上記方法で温間加工を
施す過程で、外周部のクラック発生を抑制するために加
工を複数回に分け、さらに各加工率で外周を拘束する方
法を取ってもよい。また温間加工時に発生するバルジ現
象を抑制するため圧密体を任意に形状に予備成形してお
いてもよい。さらに保磁力等の磁気特性を低下させない
程度に塑性変形速度を遅くする方法をとってもよい。The present invention uses an RTB-based quenched thin piece containing a rare earth element R containing yttrium and a transition metal T as a main component and boron B as a raw material, and this raw material is warm worked. The average particle size having magnetic anisotropy is 0.
In the arc-shaped warm-worked magnet of 02 to 1.0 μm, the maximum energy product in the radial direction is high at the end portion and has a characteristic distribution that gradually decreases toward the center portion. Furthermore, the present invention uses 500
By intentionally changing the curvature of the upper and lower punches in the method of processing a warm-worked magnet, in which the upper and lower punches are subjected to plasticizing to give magnetic anisotropy after being pressed and densified at a temperature of ℃ to 900 ℃ The present invention relates to a method of manufacturing an arc-shaped magnet, characterized by performing plastic working with different working rates in the pressing direction at the end portion and the central portion of the arc-shaped magnet. According to the conventional method, the curvature of the upper and lower punches is a simple design in which the value is added to the radius of curvature of the lower punch in consideration of the thickness of the arc-shaped magnet which is the final shape. However, the pressing force applied for anisotropy is a component force in the vertical and parallel directions to the upper and lower punch surfaces, and the arc-shaped magnet with a larger divergence angle from the center of curvature has a stress acting perpendicular to the radial direction. The magnetic anisotropy increases and magnetic anisotropy is hard to be imparted. Therefore, the curvature of the upper and lower punches is slightly changed as compared with the usual design, so that a substantially strong component force in the anisotropy direction is applied at the ends of the arc-shaped magnet. That is, the die used during warm working is designed to satisfy either or both of the following conditions. For the curvature of the upper punch, Rupper ≤ Rl
ower + t (1), the curvature of the lower punch is R
It is represented by the equation (2) where lower ≧ Rdens. Ruppe here
r is the radius of curvature of the machined surface of the upper punch, Rlower is the radius of curvature of the machined surface of the lower punch, t is the thickness of the arc-shaped magnet (arbitrary constant value), and Rdens. is the radius of consolidation of the lower punch. . By changing the curvatures of the upper and lower punches based on the above design, it is possible to manufacture an arc-shaped magnet in which the degree of magnetic anisotropy is intentionally controlled. Further, in the process of performing the warm working by the above method, the working may be divided into a plurality of times in order to suppress the generation of cracks in the outer peripheral portion, and the outer circumference may be restrained at each working rate. Further, in order to suppress the bulging phenomenon that occurs during warm working, the compact may be preformed into any shape. Further, a method of slowing the plastic deformation speed to the extent that the magnetic properties such as coercive force are not deteriorated may be adopted.
【0005】[0005]
【実施例】〔実施例1〕Nd13.8FebalCo7.5B6G
a1.25なる組成の合金をア−ク溶解にて作製した。本合
金をAr雰囲気中で20m/秒で回転する単ロ−ル上に
射出して不定形のフレ−ク状薄片を作製した。得られた
薄片を500μm以下に粗粉砕し圧粉体とした後、ホッ
トプレスで圧密化を行っていた。次いでこの圧粉体を7
50℃で任意の曲率を有する上下パンチ間で温間塑性加
工し円弧形状磁石とした。下パンチ曲率半径はR=65
mmで一定とし、上パンチの曲率半径をR=69,6
5,61の4種類とした。円弧形状磁石の最終広がり角
度は55°で一定とし磁石中心の最大高さがいずれも1
0mmで等しくなるよう圧密体形状を調整して行った。
加工後の試料を磁石端部から5°間隔に切り出し3.2
mm角の磁気特性評価用試料とした。比較材としてスト
レ−ト配向磁場およびラジアル配向磁場中で成形、焼結
した焼結磁石についても同様に切り出した。これらの試
料に対してVSMでラジアル方向の磁気特性を測定し
た。実験概略を図1に、磁気特性測定結果を図2に示
す。この結果ストレ−ト配向磁場による焼結磁石は中央
部から端部に向けて著しい最大エネルギ−積の低下をと
もなう。ラジアル配向による焼結磁石および上パンチ曲
率半径R=75mmの試料については、傾向は同様であ
るがかなり改善されている。また上パンチの曲率半径が
小さくなるにしたがい円弧形状磁石端部での磁気特性が
増大した。
〔実施例2〕実施例1で準備した円弧形状磁石のうちス
トレ−ト配向、ラジアル配向の焼結磁石、上パンチ曲率
半径R=75mmおよび65mmで作製した温間加工磁
石の4種類についてヨ−クに組み込みギャップ間磁界を
調査した。鉄製の簡易的なヨ−クを作製し、それぞれの
磁石を組み込んだ後プロ−ブをθ=0°から55°まで
移動させたときの表面磁束の変化を図3に示す。この結
果、比較材では磁石端部で磁束の立ち上がりが遅く、さ
らに均一磁界の領域が狭い。一方上パンチ曲率半径R=
65mmの磁石においては立ち上がりが素早くかつ平滑
化した磁界分布を有していた。[Example] [Example 1] Nd 13.8 Fe bal Co 7.5 B 6 G
An alloy having a composition of a 1.25 was prepared by arc melting. This alloy was injected onto a single roll rotating at 20 m / sec in an Ar atmosphere to produce an irregular flaky flakes. The obtained flakes were coarsely pulverized to a size of 500 μm or less to obtain a green compact, which was then consolidated by hot pressing. Next, this green compact is
Warm plastic working was performed between upper and lower punches having an arbitrary curvature at 50 ° C. to obtain arc-shaped magnets. Lower punch curvature radius is R = 65
mm is constant and the radius of curvature of the upper punch is R = 69,6
There are four types, 5, 61. The final spreading angle of the arc-shaped magnet is constant at 55 °, and the maximum height of the magnet center is 1 in each case.
The shape of the compact was adjusted so that it was equal at 0 mm.
Cut the processed sample into 5 ° intervals from the end of the magnet 3.2
A mm-square sample for magnetic property evaluation was used. As a comparative material, a sintered magnet molded and sintered in a straight alignment magnetic field and a radial alignment magnetic field was similarly cut out. Radial magnetic properties of these samples were measured by VSM. The outline of the experiment is shown in FIG. 1 and the magnetic characteristic measurement result is shown in FIG. As a result, the sintered magnet due to the straight orientation magnetic field is accompanied by a marked decrease in the maximum energy product from the central portion toward the end portions. For sintered magnets with radial orientation and samples with upper punch radius of curvature R = 75 mm, the trends are similar but much improved. The magnetic properties at the end of the arc-shaped magnet increased as the radius of curvature of the upper punch decreased. [Embodiment 2] Of the arc-shaped magnets prepared in Embodiment 1, four kinds of straight-oriented and radial-oriented sintered magnets and four kinds of warm-working magnets produced with upper punch curvature radii R = 75 mm and 65 mm are yawed. The magnetic field between the gaps incorporated in the magnet was investigated. FIG. 3 shows changes in the surface magnetic flux when a simple iron yoke was manufactured, and after incorporating each magnet, the probe was moved from θ = 0 ° to 55 °. As a result, in the comparative material, the rising of the magnetic flux is slow at the end of the magnet, and the area of the uniform magnetic field is narrow. On the other hand, the radius of curvature of the upper punch R =
The 65 mm magnet had a quick rising and smoothed magnetic field distribution.
【0006】[0006]
【発明の効果】本発明によればラジアル方向に中央部か
ら端部にかけて磁気特性が向上した円弧形状磁石が安定
して製造可能である。According to the present invention, it is possible to stably manufacture an arc-shaped magnet having improved magnetic characteristics from the central portion to the end portion in the radial direction.
【図1】本発明に係る円弧状磁石の成形装置を示す図で
ある。FIG. 1 is a diagram showing an arc-shaped magnet molding apparatus according to the present invention.
【図2】円弧形状磁石の各測定角度におけるラジアル方
向の最大エネルギ−積の変化を示す図である。FIG. 2 is a diagram showing changes in the maximum energy product in the radial direction of each arc-shaped magnet at each measurement angle.
【図3】円弧形状磁石をヨ−クに組み込んだ時のギャッ
プ磁束密度を調べた結果を示す図である。FIG. 3 is a diagram showing a result of examining a gap magnetic flux density when an arc-shaped magnet is incorporated in a yoke.
1 端部 2 中央部 1 end 2 Central part
Claims (2)
含む希土類元素Rおよびホウ素Bを含有し、平均粒径が
0.02〜1.0μmの円弧形状の磁気異方性を有する
温間加工磁石であって、ラジアル方向の最大エネルギ−
積が端部で高く、中央部に向けて次第に低下する特性分
布を有する円弧形状磁石。1. A warm-worked magnet containing a transition metal T as a main component, a rare earth element R containing yttrium and boron B, and having an arc-shaped magnetic anisotropy with an average particle diameter of 0.02 to 1.0 μm. And the maximum energy in the radial direction −
An arc-shaped magnet having a characteristic distribution in which the product is high at the end and gradually decreases toward the center.
含む希土類元素Rおよびホウ素Bを含有するR−T−B
系合金の溶湯を急冷凝固して得られるR−T−B系急冷
薄片を原料とし、本原料を500℃から900℃の温度
で加圧してち密化した後、上下パンチにより塑性加工を
施して磁気異方性を付与する温間加工磁石の加工方法に
おいて上下パンチの曲率を意図的に変化させることによ
って円弧形状磁石の端部と中央部で加圧方向の加工率が
異なる塑性加工を施すことを特徴とする円弧形状の特性
分布を有する円弧形状磁石の製造方法。2. An R-T-B containing a transition metal T as a main component and a rare earth element R containing yttrium and boron B.
A raw material is an RTB-based quenched thin piece obtained by quenching and solidifying a molten alloy of a system alloy. This raw material is pressed at a temperature of 500 ° C to 900 ° C to be densified, and then subjected to plastic working by upper and lower punches. In the warm working magnet processing method that imparts magnetic anisotropy, the plastic working with different working rates in the pressing direction at the end and center of the arc-shaped magnet is performed by intentionally changing the curvature of the upper and lower punches. And a method of manufacturing an arc-shaped magnet having an arc-shaped characteristic distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3156551A JPH056813A (en) | 1991-06-27 | 1991-06-27 | Circular magnet having characteristic distribution and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3156551A JPH056813A (en) | 1991-06-27 | 1991-06-27 | Circular magnet having characteristic distribution and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH056813A true JPH056813A (en) | 1993-01-14 |
Family
ID=15630274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3156551A Pending JPH056813A (en) | 1991-06-27 | 1991-06-27 | Circular magnet having characteristic distribution and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH056813A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011003662A (en) * | 2009-06-17 | 2011-01-06 | Toyota Motor Corp | Permanent magnet and method of manufacturing the same |
CN103996482A (en) * | 2013-02-15 | 2014-08-20 | 罗伯特·博世有限公司 | Magnet having center identification mark, motor and method for making the same |
-
1991
- 1991-06-27 JP JP3156551A patent/JPH056813A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011003662A (en) * | 2009-06-17 | 2011-01-06 | Toyota Motor Corp | Permanent magnet and method of manufacturing the same |
CN103996482A (en) * | 2013-02-15 | 2014-08-20 | 罗伯特·博世有限公司 | Magnet having center identification mark, motor and method for making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60100402A (en) | Iron-rare earth element-boron permanent magnet by high temperature heat treatment | |
US4710239A (en) | Hot pressed permanent magnet having high and low coercivity regions | |
JPS6174305A (en) | Hot pressed permanent magnet having high and low coercive areas | |
JP6596061B2 (en) | Rare earth permanent magnet material and manufacturing method thereof | |
JPH056813A (en) | Circular magnet having characteristic distribution and manufacture thereof | |
JPH04147604A (en) | Magnetic anisotropy magnet and manufacture thereof | |
JP2020092167A (en) | Arc-shaped permanent magnet and manufacturing method thereof | |
JPH06188120A (en) | Circular arc-shaped magnet and manufacture thereof | |
JPH06140224A (en) | Circular arc-shaped magnet and manufacture thereof | |
JPS6144942B2 (en) | ||
JP4698779B2 (en) | Magnetic sputtering target and manufacturing method thereof | |
JPH06124829A (en) | Circular magnet and its manufacture | |
JPH02138706A (en) | Anisotropic permanent magnet | |
JPH04352402A (en) | Circular arc-shaped magnet and manufacture thereof | |
JPH08260112A (en) | Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet | |
JPH02297910A (en) | Manufacture of radially oriented magnet | |
JPS63211705A (en) | Anisotropic permanent magnet and manufacture thereof | |
JP2002239688A (en) | Thin sheet-shaped magnet alloy and production method therefor | |
JPH03253001A (en) | Iron-based rare earth magnet and manufacture thereof | |
JPH03295202A (en) | Hot-worked magnet and manufacture thereof | |
JPS60208817A (en) | Manufacture of anisotropic resin magnet | |
RU2082551C1 (en) | Method for manufacture of permanent magnets from rare-earth metals | |
JPH02222108A (en) | Magnet roll | |
JPH07161523A (en) | Rare earth permanent magnet and its production | |
JPH01171207A (en) | Manufacture of parmanent magnet |