JPH06188120A - Circular arc-shaped magnet and manufacture thereof - Google Patents

Circular arc-shaped magnet and manufacture thereof

Info

Publication number
JPH06188120A
JPH06188120A JP4336932A JP33693292A JPH06188120A JP H06188120 A JPH06188120 A JP H06188120A JP 4336932 A JP4336932 A JP 4336932A JP 33693292 A JP33693292 A JP 33693292A JP H06188120 A JPH06188120 A JP H06188120A
Authority
JP
Japan
Prior art keywords
magnet
arc
shaped magnet
radius
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4336932A
Other languages
Japanese (ja)
Inventor
Makoto Shinoda
誠 篠田
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4336932A priority Critical patent/JPH06188120A/en
Publication of JPH06188120A publication Critical patent/JPH06188120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a circular arc-shaped magnet having excellent magnetic characteristics in the radial direction and substantially uniform magnetic characteristics. CONSTITUTION:An arcuated hot process magnet containing a transition metal T as the main element, rare earth element R including yttrium and boron B and having magnetic anisotropy with the mean grain size of 0.02 to 1.0mum, and a circular arc-shaped magnet having the maximum energy product of 42 MGOe or higher and a value of 0.2 or less which is obtained by dividing thickness with the length in the axial direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類、遷移金属、ホウ
素から実質的になる永久磁石であって、温間加工によっ
て磁気異方性を付与する温間加工磁石の改良に関し円弧
形状を有し、ラジアル方向の最大エネルギ−積が42M
GOe以上であり端部の最大エネルギ−積の劣化が20
%以下である円弧形状磁石とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet substantially composed of a rare earth element, a transition metal, and boron. , The maximum energy product in the radial direction is 42M
It is more than GOe and the deterioration of the maximum energy product at the end is 20.
% Arc or less and the manufacturing method thereof.

【0002】[0002]

【従来の技術】希土類、遷移金属、ホウ素から実質的に
なるR−T−B系磁石は安価で高磁気特性を有するもの
として注目を集めている。然してこの磁石は特公昭61
−34242号公報記載の焼結磁石と特開昭60−10
0402号公報記載の超急冷磁石に大別される。いずれ
の製造方法を取る場合でも所要の形状に成形することが
必要でありこの成形過程で任意の磁気特性を意図的に制
御することは困難とされている。例えば焼結磁石におい
て磁気異方性を得ようとする場合は、磁場の中で成形す
るというような工程が必須であり成形方向および配向磁
場方向により形状に制約を受ける。配向磁場強度を制御
することによって磁石内での磁気特性も制御することは
可能であるが、技術的に困難であるうえ本系磁石のポテ
ンシャルを生かした方法ではない。したがって円弧形状
の磁石はストレ−ト配向を有するものが主流になってい
た。一方超急冷磁石の場合、R−T−B系合金の溶湯を
超急冷法によって凝固し薄帯または薄片を得て粉砕しホ
ットプレスした後、温間で塑性加工して磁気異方性を付
与した永久磁石(以下『温間加工磁石』)であり、超急
冷法で得られた薄帯および薄片は更にその内部が無数の
微細結晶粒からなっている。したがって超急冷法によっ
て得られる薄帯または薄片は厚さ30μm程度で一辺の
長さが500μm以下の不定形をしているもののその内
部に含まれる結晶粒が焼結磁石の1〜90μmと比べて
0.02〜1.0μmと微細でありこの系の磁石の単磁
区の臨界寸法0.3μmに近く本質的に優れた磁気特性
が得られる。温間加工磁石においては塑性流動とそれに
直角な方向の磁気的配列状態との密接な相関が重要であ
る。つまり所要の形状を有する温間加工磁石を作製する
場合、塑性流動を被加工物全体に効率よくしかも十分に
行わせることによって配向性が向上し、ひいては高い磁
気特性を有する磁石の製造が可能となる。
2. Description of the Related Art RTB-based magnets, which are essentially composed of rare earths, transition metals, and boron, have been attracting attention because they are inexpensive and have high magnetic properties. However, this magnet is
-34242 and the sintered magnet disclosed in JP-A-60-10
It is roughly classified into the ultra-quenching magnet described in JP-A No. 0402. Regardless of which manufacturing method is used, it is necessary to mold into a desired shape, and it is difficult to intentionally control arbitrary magnetic characteristics in this molding process. For example, when trying to obtain magnetic anisotropy in a sintered magnet, a step of molding in a magnetic field is essential, and the shape is restricted by the molding direction and the orientation magnetic field direction. Although it is possible to control the magnetic characteristics in the magnet by controlling the orientation magnetic field strength, it is technically difficult and it is not a method that makes full use of the potential of this system magnet. Therefore, most arc-shaped magnets have a straight orientation. On the other hand, in the case of ultra-quenched magnets, molten metal of RTB-based alloy is solidified by the ultra-quenching method to obtain thin strips or flakes, crushed, hot-pressed, and then subjected to warm plastic working to impart magnetic anisotropy. These are permanent magnets (hereinafter referred to as "warm-worked magnets"), and the ribbons and flakes obtained by the ultra-quenching method further have innumerable fine crystal grains inside. Therefore, although the thin strip or thin piece obtained by the ultra-quenching method has an irregular shape with a thickness of about 30 μm and a side length of 500 μm or less, the crystal grains contained therein are 1 to 90 μm smaller than that of the sintered magnet. It is as fine as 0.02 to 1.0 μm, and it is possible to obtain essentially excellent magnetic characteristics close to the critical dimension of 0.3 μm of the single magnetic domain of the magnet of this system. In warm-working magnets, close correlation between plastic flow and magnetic alignment in the direction perpendicular to it is important. In other words, when producing a warm-worked magnet having a required shape, it is possible to improve the orientation by allowing plastic flow to be carried out efficiently and sufficiently over the entire workpiece, which in turn makes it possible to produce a magnet with high magnetic properties. Become.

【0003】[0003]

【発明が解決しようとする課題】焼結磁石においては前
述したように異方性化の手段が磁場中成形であるため、
材料の持つ磁気特性のポテンシャルは超急冷磁石と同レ
ベルであるにもかかわらず、軸方向に長く厚み方向に薄
い磁石の製造は困難である。即ち、軸方向に長いことに
よって磁場中成形時の圧力伝達の不均一が生じ磁気特性
の不均一を引き起こす。厚み方向に薄い磁石の製造にお
いては、微粉の金型への振込が困難ありマスプロには不
向きであった。以上のような理由で焼結磁石において
は、肉厚を軸方向の長さで除した値が0.2以下である
円弧形状磁石の製造は困難であり、さらに42MGOe
以上の磁気特性を有しかつラジアル異方性を有する円弧
形状磁石の製造は不可能であった。そのため焼結磁石で
はあらかじめ必要寸法形状よりも大きな磁石を成形し機
械加工により切り出していた。当然のことながらこの方
法では材料歩止まりが悪くコスト高を招く。一方、超急
冷磁石においては、上記の問題は解決されるが塑性加工
時のパンチとワークとの摩擦により材料の加工面、特に
外周端部の塑性流動が乱れ、そのため磁気特性の劣化を
余儀なくされる。パンチとワークの潤滑を改良すること
により、ある程度はこの問題を改善できるが、摩擦をな
くすることは不可能であるので充分な対策とはなってい
ない。また、超急冷法により作製した円弧形状磁石の端
部の磁気特性が劣化する要因としては、次のことが考え
られる。従来法によれば上下パンチの曲率は最終形状で
ある円弧形状磁石の厚さを考慮し、上パンチの曲率半径
は下パンチの曲率半径にその値を加算した単純な設計で
あった。しかし異方性化のために与える加圧力は上下パ
ンチ面に対して垂直および平行方向の分力となり、曲率
中心からの広がり角度の大きい円弧形状磁石ほどラジア
ル方向に対して垂直に作用する応力が増大し、磁気異方
性が付与されにくい。そこで温間加工磁石の特徴を生か
し、加工方法を改良することによってラジアル方向に高
い磁気特性を有し、かつ磁気特性が実質的に均一な円弧
形状磁石を得ることを目的とする。
As described above, in the sintered magnet, the means for anisotropy is forming in a magnetic field,
Although the potential of the magnetic properties of the material is at the same level as that of the ultra-quench magnet, it is difficult to manufacture a magnet that is long in the axial direction and thin in the thickness direction. That is, since the length is long in the axial direction, non-uniformity of pressure transmission occurs during molding in a magnetic field, resulting in non-uniformity of magnetic characteristics. In the manufacture of a magnet thin in the thickness direction, it was difficult to transfer fine powder into a mold, which was not suitable for mass production. For the above reasons, in the sintered magnet, it is difficult to manufacture an arc-shaped magnet whose value obtained by dividing the wall thickness by the axial length is 0.2 or less.
It was impossible to manufacture an arc-shaped magnet having the above magnetic properties and radial anisotropy. Therefore, in the case of a sintered magnet, a magnet larger than the required size and shape was previously formed and cut out by machining. As a matter of course, in this method, the material yield is poor and the cost increases. On the other hand, in the case of ultra-quenched magnets, the above problems are solved, but the plastic flow at the machined surface of the material, especially the outer peripheral edge, is disturbed by the friction between the punch and the workpiece during plastic working, which inevitably causes deterioration of the magnetic properties. It This problem can be improved to some extent by improving the lubrication of the punch and the work, but since it is impossible to eliminate friction, it is not a sufficient countermeasure. In addition, the following factors can be considered as factors that deteriorate the magnetic characteristics of the end portion of the arc-shaped magnet manufactured by the ultra-quenching method. According to the conventional method, the curvature of the upper and lower punches takes into consideration the thickness of the arc-shaped magnet which is the final shape, and the radius of curvature of the upper punch is a simple design in which the value is added to the radius of curvature of the lower punch. However, the pressing force applied for anisotropy is a component force in the vertical and parallel directions to the upper and lower punch surfaces, and the arc-shaped magnet with a larger divergence angle from the center of curvature has a stress acting perpendicular to the radial direction. The magnetic anisotropy increases and magnetic anisotropy is hard to be imparted. Therefore, it is an object of the present invention to obtain an arc-shaped magnet having high magnetic characteristics in the radial direction and substantially uniform magnetic characteristics by improving the processing method by making the best use of the characteristics of the warm-working magnet.

【0004】[0004]

【課題を解決するための手段】本発明は遷移金属Tを主
成分としイットリウムを含む希土類元素Rおよびホウ素
Bを含有し、平均粒径が0.02〜1.0μmの円弧形
状の磁気異方性を有する温間加工磁石であって、42M
GOe以上の最大エネルギ−積を有し肉厚を軸方向の長
さで除した値が0.2mm以下であることを特徴とする
ラジアル異方性円弧形状磁石である。さらに、本発明は
円弧形状磁石にあって製品端部の最大エネルギ−積の劣
化が20%以下であることを特徴とするラジアル異方性
円弧形状磁石である。また、上記磁石を製造することに
おいて、上下パンチにより塑性加工を施して磁気異方性
を付与する温間加工磁石の加工方法において、下パンチ
の曲率半径+最終製品の厚みよりも小さな曲率半径を有
する上パンチを用いることを特徴とする円弧形状磁石の
製造方法あるいは上パンチの曲率半径−最終製品の厚み
よりも大きな下パンチを用いることを特徴とする円弧形
状磁石の製造方法である。従来法によれば上下パンチの
曲率半径は最終形状である円弧形状磁石の厚さを考慮
し、上パンチの曲率半径は下パンチの曲率半径にその値
を加算した単純な設計であった。この方法により作製さ
れた円弧形状磁石は磁石の外周端部の磁気特性の劣化が
著しい。特に円周方向の端部においては中央部に比べて
最大エネルギ−積の劣化は20%にも及ぶ。そのことに
ついて調査を行った結果、円周方向端部においては容易
磁化方向がラジアル方向から中心部に約15度ずれてい
ることがわかった。その結果、円周方向端部の磁気特性
はこのズレ角度分の方向余弦となるため劣化しているこ
とが判明した。すなわち、この現象は上パンチとワーク
との間の摩擦力により塑性流動が接線方向より中心へ傾
いていることを示唆しており、実際に薄片の流動もその
ようになっていることが確認された。そこで、予め外周
端部の塑性流動の理想的な方向からのズレを見込んで上
下パンチの曲率半径を請求項のように設計した。この設
計により磁石の外周端部の磁気特性の劣化を低減するこ
とができた。また上記方法で温間加工を施す過程で、外
周部のクラック発生を抑制するために加工を複数回に分
け、さらに各加工率で外周を拘束する方法を取ってもよ
い。また温間加工時に発生するバルジ現象を抑制するた
め圧密体を任意の形状に予備成形しておいてもよい。さ
らに保磁力等の磁気特性を低下させない程度に塑性変形
速度を遅くする方法をとってもよい。
DISCLOSURE OF THE INVENTION The present invention contains a transition metal T as a main component, a rare earth element R containing yttrium and boron B, and an arc-shaped magnetic anisotropic having an average particle diameter of 0.02 to 1.0 μm. It is a warm-working magnet with the property of 42M
A radial anisotropic arc-shaped magnet having a maximum energy product of GOe or more and a value obtained by dividing the wall thickness by the length in the axial direction is 0.2 mm or less. Further, the present invention is a radial anisotropic arc-shaped magnet, characterized in that the deterioration of the maximum energy product at the end of the product is 20% or less in the arc-shaped magnet. Further, in manufacturing the above magnet, in a method of processing a warm-worked magnet in which plastic working is performed by upper and lower punches to impart magnetic anisotropy, a radius of curvature smaller than the radius of curvature of the lower punch + the thickness of the final product is set. A method for manufacturing an arc-shaped magnet, characterized by using the upper punch, or a method for manufacturing an arc-shaped magnet, characterized by using a lower punch having a radius of curvature of the upper punch-thickness of a final product. According to the conventional method, the radius of curvature of the upper and lower punches takes into consideration the thickness of the arc-shaped magnet which is the final shape, and the radius of curvature of the upper punch is a simple design in which the value is added to the radius of curvature of the lower punch. In the arc-shaped magnet manufactured by this method, the magnetic characteristics of the outer peripheral end of the magnet are significantly deteriorated. In particular, the deterioration of the maximum energy product reaches as much as 20% at the ends in the circumferential direction as compared with the central part. As a result of investigating this, it was found that the easy magnetization direction was deviated from the radial direction by about 15 degrees at the circumferential end. As a result, it was found that the magnetic characteristics at the circumferential end portion were deteriorated because the direction cosine corresponding to this deviation angle was obtained. That is, this phenomenon suggests that the plastic flow is inclined from the tangential direction toward the center due to the frictional force between the upper punch and the work, and it is confirmed that the flow of the flakes is actually that way. It was Therefore, the curvature radii of the upper and lower punches are designed in advance in consideration of a deviation from the ideal direction of the plastic flow of the outer peripheral end portion. With this design, it was possible to reduce the deterioration of the magnetic properties of the outer peripheral end of the magnet. Further, in the process of performing the warm working by the above method, the working may be divided into a plurality of times in order to suppress the generation of cracks on the outer peripheral portion, and the outer circumference may be restrained at each working rate. Further, in order to suppress the bulging phenomenon that occurs during warm working, the compact may be preformed into any shape. Further, a method of slowing the plastic deformation speed to the extent that the magnetic properties such as coercive force are not deteriorated may be adopted.

【0005】[0005]

【実施例】(実施例1)作製を試みた円弧状磁石は軸方
向の長さ40mm、内アール27.3mm、外アール3
2.3mm、広がり角90度である。この形状の磁石を
焼結法でニアネットシェイプ成形を試みたが微粉の振込
が困難なうえに圧力伝達の不均一のため軸方向に磁気特
性の勾配が生じ、その度合いは20%以上にも達した。
Nd13.5FebalCo7.5B6Ga1.25なる組成の合金を
ア−ク溶解にて作製した。本合金をAr雰囲気中で20
m/秒で回転する単ロ−ル上に射出して不定形のフレ−
ク状薄片を作製した。得られた薄片を500μm以下に
粗粉砕し圧粉体とした後、ホットプレスで圧密化を行っ
ていた。次いでこの圧粉体を750℃で任意の曲率半径
を有する上下パンチ間で温間塑性加工し円弧形状磁石と
した。下パンチ曲率半径はR=27.3mmで一定と
し、上パンチの曲率半径をR=27.3、32.3mm
と変化させた。このようにして得られた円弧形状磁石か
ら中心を0度として円周方向端部に10度毎の磁気特性
をBHトレーサーで測定した。上パンチR27.3m
m、および32.3mmでの磁気特性の中心角依存性を
図1および図2にそれぞれ示す。上パンチR32.3m
mを使用した試料では±40度の位置でのエネルギ−積
は中央部のそれに比べて約23%低下している。一方、
上パンチR27.3mmを使用した試料ではその低下は
約15%となっており磁気特性の均一性に優れている。
(Example 1) The arc-shaped magnet attempted to be manufactured has an axial length of 40 mm, an inner radius of 27.3 mm, and an outer radius of 3.
It is 2.3 mm and the spread angle is 90 degrees. We attempted near-net-shape molding of a magnet of this shape by a sintering method, but because the transfer of fine powder was difficult and the pressure transmission was uneven, there was a gradient in the magnetic characteristics in the axial direction, and the degree was 20% or more. Reached
An alloy having a composition of Nd13.5FebalCo7.5B6Ga1.25 was prepared by arc melting. This alloy in an Ar atmosphere 20
Injects onto a single roll rotating at m / sec to produce an amorphous frame
A flaky thin piece was prepared. The obtained flakes were coarsely pulverized to a size of 500 μm or less to obtain a green compact, which was then consolidated by hot pressing. Next, the green compact was subjected to warm plastic working between upper and lower punches having an arbitrary radius of curvature at 750 ° C. to obtain an arc-shaped magnet. The radius of curvature of the lower punch is constant at R = 27.3 mm, and the radius of curvature of the upper punch is R = 27.3, 32.3 mm.
I changed it. From the arc-shaped magnet thus obtained, the magnetic characteristics were measured at every 10 degrees at the ends in the circumferential direction with the center at 0 degree by a BH tracer. Upper punch R27.3m
The central angle dependence of the magnetic properties at m and 32.3 mm are shown in FIGS. 1 and 2, respectively. Upper punch R32.3m
In the sample using m, the energy product at the position of ± 40 ° is about 23% lower than that at the center. on the other hand,
In the sample using the upper punch R27.3 mm, the decrease is about 15%, and the uniformity of the magnetic properties is excellent.

【0006】[0006]

【発明の効果】本発明によればラジアル方向に中央部か
ら端部にかけて磁気特性の均一性に優れた円弧形状磁石
が安定して製造可能である。
According to the present invention, it is possible to stably manufacture an arc-shaped magnet having an excellent magnetic property uniformity from the central portion to the end portion in the radial direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る円弧状磁石の磁気特性の分布の様
子。
FIG. 1 is a state of distribution of magnetic characteristics of an arc-shaped magnet according to the present invention.

【図2】本発明の比較例の磁気特性の分布の様子。FIG. 2 shows the distribution of magnetic characteristics of a comparative example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/08 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rおよびホウ素Bを含有し、平均粒径が
0.02〜1.0μmの円弧形状の磁気異方性を有する
温間加工磁石であって、42MGOe以上の最大エネル
ギ−積を有し肉厚を軸方向の長さで除した値が0.2以
下であることを特徴とする円弧形状磁石。
1. A warm-worked magnet containing a transition metal T as a main component, a rare earth element R containing yttrium and boron B, and having an arc-shaped magnetic anisotropy with an average particle diameter of 0.02 to 1.0 μm. And an arc-shaped magnet having a maximum energy product of 42 MGOe or more and a value obtained by dividing the wall thickness by the length in the axial direction is 0.2 or less.
【請求項2】 請求項1に記載の円弧形状磁石にあって
製品端部の最大エネルギ−積の劣化が20%以下である
ことを特徴とするラジアル異方性円弧形状磁石。
2. The radial anisotropic arc-shaped magnet according to claim 1, wherein deterioration of the maximum energy product at the end of the product is 20% or less.
【請求項3】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rおよびホウ素Bを含有するR−T−B
系合金の溶湯を急冷凝固して得られるR−T−B系急冷
薄片を原料とし、本原料を500℃から900℃の温度
で加圧してち密化した後、上下パンチにより塑性加工を
施して磁気異方性を付与する温間加工磁石の加工方法に
おいて、下パンチの曲率半径+最終製品の厚みよりも小
さな曲率半径を有する上パンチを用いることを特徴とす
る円弧形状磁石の製造方法。
3. A rare earth element R containing a transition metal T as a main component and containing yttrium, and an RTB containing boron B.
The raw material is the RTB-based quenching thin piece obtained by quenching and solidifying the molten alloy of the system alloy. The raw material is pressed at a temperature of 500 ° C to 900 ° C to be densified, and then subjected to plastic working by the upper and lower punches. A method for manufacturing an arc-shaped magnet, comprising using an upper punch having a radius of curvature smaller than a radius of curvature of a lower punch + a thickness of a final product in a method of processing a warm-worked magnet that imparts magnetic anisotropy.
【請求項4】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rおよびホウ素Bを含有するR−T−B
系合金の溶湯を急冷凝固して得られるR−T−B系急冷
薄片を原料とし、本原料を500℃から900℃の温度
で加圧してち密化した後、上下パンチにより塑性加工を
施して磁気異方性を付与する温間加工磁石の加工方法に
おいて、上パンチの曲率半径−最終製品の厚みよりも大
きな曲率半径を有する下パンチを用いることを特徴とす
る円弧形状磁石の製造方法。
4. An R-T-B containing a transition metal T as a main component and a rare earth element R containing yttrium and boron B.
The raw material is the RTB-based quenching thin piece obtained by quenching and solidifying the molten alloy of the system alloy. The raw material is pressed at a temperature of 500 ° C to 900 ° C to be densified, and then subjected to plastic working by the upper and lower punches. A method for manufacturing an arc-shaped magnet, comprising using a lower punch having a radius of curvature larger than a curvature radius of an upper punch minus a thickness of a final product in a method of processing a warm-worked magnet that imparts magnetic anisotropy.
JP4336932A 1992-12-17 1992-12-17 Circular arc-shaped magnet and manufacture thereof Pending JPH06188120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336932A JPH06188120A (en) 1992-12-17 1992-12-17 Circular arc-shaped magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336932A JPH06188120A (en) 1992-12-17 1992-12-17 Circular arc-shaped magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06188120A true JPH06188120A (en) 1994-07-08

Family

ID=18303967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336932A Pending JPH06188120A (en) 1992-12-17 1992-12-17 Circular arc-shaped magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06188120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884089A (en) * 1985-08-29 1989-11-28 Minolta Camera Kabushiki Kaisha Pseudo format camera
WO1997039320A1 (en) * 1996-04-13 1997-10-23 Robert Bosch Gmbh Pressure sensor
JP2020092167A (en) * 2018-12-05 2020-06-11 大同特殊鋼株式会社 Arc-shaped permanent magnet and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884089A (en) * 1985-08-29 1989-11-28 Minolta Camera Kabushiki Kaisha Pseudo format camera
WO1997039320A1 (en) * 1996-04-13 1997-10-23 Robert Bosch Gmbh Pressure sensor
US6062088A (en) * 1996-04-13 2000-05-16 Robert Bosch Gmbh Pressure sensor
JP2020092167A (en) * 2018-12-05 2020-06-11 大同特殊鋼株式会社 Arc-shaped permanent magnet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4710239A (en) Hot pressed permanent magnet having high and low coercivity regions
CA1244322A (en) Hot pressed permanent magnet having high and low coercivity regions
JP6613730B2 (en) Rare earth magnet manufacturing method
US5352302A (en) Method of producing a rare-earth permanent magnet
JPH06188120A (en) Circular arc-shaped magnet and manufacture thereof
JPH03241705A (en) Magnetically anisotropic magnet and manufacture thereof
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JPH04147604A (en) Magnetic anisotropy magnet and manufacture thereof
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JP2020092167A (en) Arc-shaped permanent magnet and manufacturing method thereof
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JPH02138706A (en) Anisotropic permanent magnet
JPH02297910A (en) Manufacture of radially oriented magnet
JPH07161523A (en) Rare earth permanent magnet and its production
KR920005184B1 (en) Making method of permanent magnet
JPH01251703A (en) Magnetic anisotropic permanent magnet
JPH04162503A (en) Magnetically anisotropic magnet and its manufacture
JPH01175207A (en) Manufacture of permanent magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH03295202A (en) Hot-worked magnet and manufacture thereof