JPH07161523A - Rare earth permanent magnet and its production - Google Patents

Rare earth permanent magnet and its production

Info

Publication number
JPH07161523A
JPH07161523A JP5304287A JP30428793A JPH07161523A JP H07161523 A JPH07161523 A JP H07161523A JP 5304287 A JP5304287 A JP 5304287A JP 30428793 A JP30428793 A JP 30428793A JP H07161523 A JPH07161523 A JP H07161523A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
permanent magnet
arc
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304287A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5304287A priority Critical patent/JPH07161523A/en
Publication of JPH07161523A publication Critical patent/JPH07161523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain an ideal sinusoidal surface flux density waveform without requiring strict management of magnetizing field in an AC servo motor or a DC brushless motor. CONSTITUTION:The rare earth permanent magnet is an arcuate magnet principally comprising R(at least one kind of rare earth element including Y), Fe, and B and exhibiting radial anisotropy highest in the peripheral center and decreasing continuously toward the end part. The magnet is produced by pressing a powder principally comprising R, Fe, and B at 700-1000 deg.C in a nonoxidative atmosphere to produce a columnar isotropic compact body having circular or elliptical cross-section and the extruding the compact body into arcuate shape at 700-1000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類−Fe−B系永
久磁石、特にラジアル異方性を有する円弧状永久磁石お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-Fe-B system permanent magnet, particularly an arcuate permanent magnet having radial anisotropy, and a method for producing the same.

【0002】[0002]

【従来の技術】現在使用されている永久磁石のうち代表
的なものはアルニコ系鋳造磁石、フェライト磁石及び希
土類−遷移金属系磁石である。特に、希土類(R)−F
e−B系永久磁石は、極めて高い保磁力とエネルギー積
を持つ永久磁石として、従来から多くの研究開発がなさ
れている。その製造方法としては、以下のようなものが
ある。
2. Description of the Related Art Typical permanent magnets currently in use are alnico type cast magnets, ferrite magnets and rare earth-transition metal type magnets. In particular, rare earth (R) -F
The e-B system permanent magnet has been extensively researched and developed as a permanent magnet having an extremely high coercive force and energy product. The manufacturing method includes the following.

【0003】(1)焼結法(特開昭59−46008号
公報) (2)急冷・温間加工法(特開昭60−100402号
公報) (3)鋳造・熱間加工法(特開平62−276803号
公報) 近年R−Fe−B系磁石を用いたACサーボモータやD
Cブラシレスモータといった高性能モータの分野が注目
されている。従来、このようなモータには(1)の焼結
法によってつくられたR−FeーB系の円弧状磁石を1
極に着磁してロータに複数張り合わせ多極にしたものが
用いられていた。このような磁石を用いた場合、磁石の
表面磁束密度波形は台形状になりコギングトルクが大き
いという問題があった。これを避けるため、外周と内周
の曲率を変えることによって磁束密度波形を正弦波形に
近づける等の工夫がされていた。
(1) Sintering method (Japanese Unexamined Patent Publication No. 59-46008) (2) Quenching / warm working method (Japanese Unexamined Patent Publication No. 60-100402) (3) Casting / hot working method (Japanese Unexamined Patent Publication No. No. 62-276803) Recently, an AC servomotor using an R-Fe-B magnet and a D
The field of high-performance motors such as C brushless motors is drawing attention. Conventionally, an R-Fe-B system arc magnet manufactured by the sintering method (1) is used for such a motor.
A magnet was used which was magnetized to have multiple poles and laminated to a rotor. When such a magnet is used, there is a problem that the surface magnetic flux density waveform of the magnet is trapezoidal and the cogging torque is large. In order to avoid this, various measures have been taken to make the magnetic flux density waveform closer to a sine waveform by changing the curvatures of the outer circumference and the inner circumference.

【0004】また、R−Fe−B系ラジアル異方性リン
グ状磁石の製造も上記(1)〜(3)の方法でそれぞれ
試みられている。(1)の焼結法は反発磁場を使い、ラ
ジアル方向に磁場配向させた後、焼結するものである。
(2)は急冷薄帯をホットプレスした後、前方および後
方押し出しで機械的に配向させるものである。(3)の
鋳造・熱間加工法は鋳造合金を熱間圧延し板厚方向に異
方化した磁石材を型曲げ加工によって円弧状に成形し、
得られた円弧状セグメントを融着させることにより、リ
ング状にするものである。これら3つの製造方法によっ
てつくられる磁石は、均一なラジアル異方性を有するも
のであり、着磁磁界をコントロールすることによりさま
ざまな多極着磁パターンを得ることができる。
The production of R-Fe-B system radial anisotropic ring-shaped magnets has also been attempted by the above methods (1) to (3). The sintering method (1) uses a repulsive magnetic field to orient the magnetic field in the radial direction and then sinters it.
In (2), the quenched ribbon is hot-pressed and then mechanically oriented by forward and backward extrusion. In the casting / hot working method of (3), a cast alloy is hot-rolled to form an anisotropic magnet material in the plate thickness direction into a circular arc shape by bending,
The arc-shaped segments obtained are fused to form a ring. The magnets produced by these three manufacturing methods have uniform radial anisotropy, and various multipole magnetized patterns can be obtained by controlling the magnetizing magnetic field.

【0005】逆に、各種モータの特性に応じて異方化の
状態が均一でない円弧状またはリング状磁石を用いる方
法がいくつか開示されている。特開平5−6813号公
報には、円弧状温間成形磁石のラジアル方向の磁気特性
が端部で高く、中央部にむけて次第に低下するというも
の、特開昭63−185007号公報および特開平2−
276210号公報には、異方性が内周側と外周側で異
なるリング状磁石およびその製造方法が開示されてい
る。
On the contrary, there have been disclosed some methods of using an arcuate or ring-shaped magnet whose anisotropic state is not uniform according to the characteristics of various motors. Japanese Unexamined Patent Publication (Kokai) No. 5-6813 discloses that the magnetic characteristics in the radial direction of an arc-shaped warm formed magnet are high at the end portion and gradually decrease toward the central portion. 2-
Japanese Patent No. 276210 discloses a ring-shaped magnet whose anisotropy is different between the inner circumference side and the outer circumference side, and a manufacturing method thereof.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、いずれ
の製造方法も磁石形状の面でかなりの制約があること
や、製造コストが高い等の問題を有していた。特に、焼
結法、急冷・温間加工法はリングの径に対して長さの長
いものは製造できないこと、また機械的強度が低いとい
う問題があった。
However, each of the manufacturing methods has problems that there are considerable restrictions on the shape of the magnet and that the manufacturing cost is high. In particular, the sintering method and the rapid cooling / warm working method have a problem that a product having a length longer than the diameter of the ring cannot be manufactured and the mechanical strength is low.

【0007】さらに、(1)や(3)の方法でつくられ
るR−Fe−B系磁石はニュークリエイションタイプと
呼ばれ、初磁化曲線の立ち上がりが急峻である。一方、
温間成形磁石はニュークリエイションとピニングが複合
したS字型の複雑な初磁化曲線を示し、両者とも着磁磁
界によって磁化をコントロールすることは難しい。した
がって、専用の着磁コイルが必要となり、複雑なものは
その設計のために有限要素法による磁場解析を行なう必
要があるという問題があった。また、このような方法で
多極着磁された磁石は極の境界付近にばらつきが大き
く、温度上昇や反磁界により減磁しやすいため、表面磁
束密度波形に歪が生じるという問題があった。
Further, the R-Fe-B system magnet produced by the method (1) or (3) is called a creation type, and the initial magnetization curve has a steep rise. on the other hand,
The warm formed magnet exhibits a complicated S-shaped initial magnetization curve in which the creation and pinning are combined, and it is difficult to control the magnetization by the magnetizing magnetic field in both of them. Therefore, there is a problem that a dedicated magnetizing coil is required, and a complicated one needs a magnetic field analysis by the finite element method for its design. In addition, a magnet magnetized in multiple poles by such a method has a large variation in the vicinity of the boundary between the poles and is easily demagnetized due to a temperature rise or a demagnetizing field, which causes a problem that the surface magnetic flux density waveform is distorted.

【0008】[0008]

【課題を解決するための手段】本発明は、従来よりも形
状において広範囲にわたるラジアル異方性磁石に対応
し、さらに理想的な着磁パターンを得るために、均一に
異方化したラジアル異方性ではなく周方向に異方化の度
合を変化させるというものである。
DISCLOSURE OF THE INVENTION The present invention is applicable to a radial anisotropic magnet having a wider range of shapes than ever before, and in order to obtain an ideal magnetizing pattern, a radial anisotropic anisotropic magnet is used. The degree of anisotropy is changed in the circumferential direction rather than the sex.

【0009】具体的には、R(ただしRはYを含む希土
類元素のうち少なくとも1種),Fe,Bを原料基本成
分とする円弧状磁石で、周方向の中央部で最も高いラジ
アル異方性を有し、端部へ向かって異方性が連続的に減
少していることを特徴とする希土類永久磁石および、そ
のような磁石の製造方法として、R(ただしRはYを含
む希土類元素のうち少なくとも1種),Fe,Bを原料
基本成分とする粉末を、非酸化性雰囲気中において70
0〜1000℃の温度で加圧し断面形状が円形または楕
円形の円柱状等方性圧密体とし、さらに700〜100
0℃の温度で円弧状に押出成形するというものである。
Specifically, an arc magnet having R (where R is at least one of rare earth elements including Y), Fe and B as basic raw material components, and having the highest radial anisotropic shape in the central portion in the circumferential direction. And a rare earth permanent magnet characterized by continuously decreasing anisotropy toward the end, and a method for producing such a magnet, wherein R (where R is a rare earth element containing Y) is used. Powder containing at least one of Fe, B and Fe, B as a raw material basic component in a non-oxidizing atmosphere.
It is pressed at a temperature of 0 to 1000 ° C. to form a cylindrical isotropic consolidated body having a circular or elliptical cross section, and 700 to 100
It is an extrusion molding in an arc shape at a temperature of 0 ° C.

【0010】ここでR−Fe−B系粉末は、インゴット
を粉砕する方法、液体急冷法、メカニカルアロイング
法、ガスアトマイズ法などによって得られる。これを圧
縮することによって圧密化し、その後塑性変形を与える
ことによって異方化する。圧密化の方法としては、ホッ
トプレス、HIP、押出し、パック圧延などがある。温
度は700〜1000℃の範囲内であればよいが、粒径
の粗大化を防ぐためには700〜800℃が望ましい。
押出成形の温度も700〜1000℃の範囲内であれば
よいが、粒径の粗大化と配向とのバランスから、液体急
冷法やメカニカルアロイング法によって得られた粉末を
用いる場合は700〜800℃、インゴットの粉砕やガ
スアトマイズ法によって得られた粉末を用いる場合は9
00〜1000℃が望ましい。このように塑性変形によ
って異方化する方法では、Cu、Ga、Ag、Au、P
d、Al等を添加することにより粒径が微細化、組織の
均一化がおこり、保磁力や最大エネルギー積が向上す
る。
The R-Fe-B type powder is obtained by a method of crushing an ingot, a liquid quenching method, a mechanical alloying method, a gas atomizing method or the like. It is made compact by compressing it and then anisotropically made by applying plastic deformation. Examples of the method of consolidation include hot pressing, HIP, extrusion and pack rolling. The temperature may be in the range of 700 to 1000 ° C, but is preferably 700 to 800 ° C in order to prevent coarsening of the particle size.
The temperature of the extrusion molding may be in the range of 700 to 1000 ° C., but 700 to 800 when the powder obtained by the liquid quenching method or the mechanical alloying method is used in view of the balance between the coarsening of the particle size and the orientation. ℃, 9 when using powder obtained by crushing ingot or gas atomizing method
The temperature is preferably 00 to 1000 ° C. As described above, in the method of making anisotropic by plastic deformation, Cu, Ga, Ag, Au, P
By adding d, Al, etc., the grain size becomes finer, the structure becomes uniform, and the coercive force and the maximum energy product are improved.

【0011】円柱状の圧密体を押出して円の直径にほぼ
等しい幅を有する円弧状磁石を成形する場合、ラジアル
方向の塑性歪が最も大きく、この方向に異方化する。た
だしこの歪量は周方向に沿って一定ではない。中心部で
ラジアル方向に圧縮歪量が最も大きく異方化の度合が大
きいため同方向の残留磁束密度も高くなる。周方向の端
部に近づくにつれ連続的に歪量は減少し、端部付近はほ
とんど面内異方性になっている。
When a cylindrical compact is extruded to form an arc-shaped magnet having a width substantially equal to the diameter of the circle, the plastic strain in the radial direction is the largest and anisotropic in this direction. However, this strain amount is not constant along the circumferential direction. Since the amount of compressive strain is largest in the radial direction at the central portion and the degree of anisotropy is large, the residual magnetic flux density in the same direction is also high. The amount of strain decreases continuously as it approaches the edge in the circumferential direction, and almost in-plane anisotropy occurs near the edge.

【0012】したがって、こうして得られた円弧状磁石
のラジアル方向の残留磁束密度は、周方向に沿ってゆる
やかに変化しているため、厳密に着磁磁界を管理するこ
となくほぼ正弦波状の磁束密度波形が得られる。また、
極の境界部分もモータ内の温度変化や反磁界の影響を受
けにくく非常に安定である。
Therefore, since the residual magnetic flux density in the radial direction of the arc-shaped magnet thus obtained changes gently along the circumferential direction, the magnetic flux density is almost sinusoidal without strictly controlling the magnetizing magnetic field. The waveform is obtained. Also,
The boundary between the poles is also extremely stable, unlikely to be affected by temperature changes in the motor and demagnetizing fields.

【0013】また、押出しによってつくられるため、長
尺の磁石にも対応でき生産効率が高い。押出し断面に相
当する円弧形状も広い範囲にわたって対応が可能で、平
板状でも、外周と内周の曲率を変えたものでも製造可能
である。さらに、押出しビレットの断面形状を円形でな
く楕円形にすることで、歪量を調整し希望の表面磁束密
度波形を得ることができる。
Further, since it is produced by extrusion, it can be used for a long magnet and the production efficiency is high. A circular arc shape corresponding to the extruded cross section can also be applied over a wide range, and it can be manufactured in a flat plate shape or one having different outer and inner curvatures. Furthermore, by making the cross-sectional shape of the extruded billet oval rather than circular, the amount of strain can be adjusted and a desired surface magnetic flux density waveform can be obtained.

【0014】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0015】[0015]

【実施例】(実施例1)アルゴン雰囲気中で誘導加熱炉
を用いて、Pr16Fe77.45.1Cu1.5なる組成の合金
を溶解し、ガスアトマイズ法によって平均粉末粒径10
0μmの粉末を得た。この粉末を低炭素鋼製φ32mm
の円柱状カプセルに入れ、脱気し密封して700℃でホ
ットプレスにより圧密化した。次に950℃に加熱し、
外径φ60mm、厚さ5mm、中心角60度の円弧状に
押し出し成形を行なった。得られた押出し磁石をアルゴ
ンガス中で1000℃で20時間、500℃で2時間熱
処理した後、カプセルを研削によって取り除き、長さ4
0mmに切断することによって、希望とする円弧状磁石
が得られた。
Example 1 An alloy having a composition of Pr 16 Fe 77.4 B 5.1 Cu 1.5 was melted in an argon atmosphere using an induction heating furnace, and an average powder particle size of 10 was obtained by a gas atomizing method.
A powder of 0 μm was obtained. This powder is made of low carbon steel φ32mm
The mixture was placed in a columnar capsule (1), degassed, sealed, and consolidated by hot pressing at 700 ° C. Then heat to 950 ° C,
Extrusion molding was performed in an arc shape having an outer diameter of 60 mm, a thickness of 5 mm, and a central angle of 60 degrees. The extruded magnet thus obtained was heat-treated in argon gas at 1000 ° C. for 20 hours and 500 ° C. for 2 hours, and then the capsule was removed by grinding to give a length of 4
The desired arcuate magnet was obtained by cutting to 0 mm.

【0016】次にこの円弧状磁石から周方向に沿って多
数の3mm角の立方体サンプルを切り出し、VSMによ
りラジアル方向(r)、周方向(θ)および押出し方向
(z)の残留磁束密度を測定した。その測定結果を図1
に示す。
Next, a large number of 3 mm square cube samples were cut out from this arc-shaped magnet along the circumferential direction, and the residual magnetic flux densities in the radial direction (r), circumferential direction (θ) and extrusion direction (z) were measured by VSM. did. Figure 1 shows the measurement results.
Shown in.

【0017】図1から明らかなように、ラジアル方向の
残留磁束密度は周方向の中央で最も高く端部へ近づくに
つれて低くなっており、歪量に対応した磁気特性が得ら
れている。周方向の残留磁束密度は、ラジアル方向とは
反対の傾向を示している。このような変化は歪量の違い
により異方化の度合に差が生じたもので、中央部は明ら
かにラジアル方向に1軸異方性を示しているが、端部は
押出し軸方向に垂直な面内に異方性を有していることが
わかる。
As is clear from FIG. 1, the residual magnetic flux density in the radial direction is highest at the center in the circumferential direction and becomes lower toward the end, and magnetic characteristics corresponding to the strain amount are obtained. The residual magnetic flux density in the circumferential direction shows a tendency opposite to that in the radial direction. Such changes are caused by differences in the degree of anisotropy due to the difference in strain amount. The central part clearly shows uniaxial anisotropy in the radial direction, but the end parts are perpendicular to the extrusion axis direction. It can be seen that the surface has anisotropy.

【0018】(実施例2)アルゴン雰囲気中で誘導加熱
炉を用いて、Nd10Pr6Fe77.85.2Ga1.0なる組
成の合金を溶解し、ガスアトマイズ法によって平均粉末
粒径100μmの粉末を得た。この粉末を低炭素鋼製φ
32mmの円柱状カプセルに入れ、脱気し密封して70
0℃でホットプレスにより圧密化した。次に950℃に
加熱し、外径φ60mm、厚さ5mm、中心角60度の
円弧状に押出し成形を行なった。得られた押出し磁石を
アルゴンガス中で1000℃で20時間熱処理した後、
カプセルを研削によって取り除き、長さ40mmに切断
することによって、希望とする円弧状磁石が得られた。
この円弧状磁石を1個づつ空芯コイル中で板厚方向(1
極)のパルス着磁をした後、ロータに接着した。また、
比較のため従来のように焼結法で得られたNd−Fe−
B系磁石のブロックから同形状の円弧状磁石を切り出
し、同じ方法でロータを作製した。異方性の方向は円弧
中央部の板厚方向に一致させた。 図2はこれら2つの
ロータについて表面磁束密度の周方向分布を測定した結
果である。
Example 2 An alloy having a composition of Nd 10 Pr 6 Fe 77.8 B 5.2 Ga 1.0 was melted using an induction heating furnace in an argon atmosphere, and a powder having an average particle diameter of 100 μm was obtained by a gas atomizing method. . This powder is made of low carbon steel φ
Place in a 32 mm cylindrical capsule, degas and seal to 70
It was consolidated by hot pressing at 0 ° C. Next, it was heated to 950 ° C. and extruded into an arc shape having an outer diameter of φ60 mm, a thickness of 5 mm and a central angle of 60 °. After heat-treating the obtained extruded magnet in argon gas at 1000 ° C. for 20 hours,
The capsule was removed by grinding and cut into a length of 40 mm to obtain the desired arc-shaped magnet.
Each of these arc-shaped magnets in the air-core coil in the plate thickness direction (1
Pole) and then bonded to the rotor. Also,
For comparison, Nd-Fe-obtained by a conventional sintering method was used for comparison.
An arcuate magnet having the same shape was cut out from the block of the B system magnet, and a rotor was manufactured by the same method. The anisotropic direction was made to coincide with the plate thickness direction at the center of the arc. FIG. 2 shows the results of measuring the circumferential magnetic flux density distribution of these two rotors.

【0019】従来の焼結磁石を用いたものは表面磁束密
度が台形状であるが、本発明の方法を用いた場合、ほぼ
正弦波に近い波形が得られている。このようにの専用着
磁コイルを用いなくとも理想的な表面磁束密度波形が得
られ、これによってモータのコギングトルクは著しく低
減される。
Although the surface magnetic flux density of the conventional sintered magnet is trapezoidal, a waveform close to a sine wave is obtained when the method of the present invention is used. An ideal surface magnetic flux density waveform can be obtained without using such a dedicated magnetizing coil, whereby the cogging torque of the motor is significantly reduced.

【0020】[0020]

【発明の効果】叙上のごとく本発明の希土類永久磁石
は、円弧状磁石の周方向に異方化の度合を変化させるこ
とによって厳密に着磁磁界を管理することなく、ほぼ正
弦波状の表面磁束密度波形が得られる。これによって、
モータのコギングトルクが低減し、温度や反磁界に対す
る安定性が向上する。
As described above, the rare earth permanent magnet of the present invention has a substantially sinusoidal surface without strictly controlling the magnetizing magnetic field by changing the degree of anisotropy in the circumferential direction of the arc-shaped magnet. A magnetic flux density waveform is obtained. by this,
The cogging torque of the motor is reduced, and the stability against temperature and demagnetizing field is improved.

【0021】また、押し出しによってつくられるため、
長尺の磁石にも対応でき製造コストが安い。円弧形状も
広い範囲にわたって対応が可能となる。
Also, since it is made by extrusion,
It can be used for long magnets and the manufacturing cost is low. A wide range of arc shapes can be accommodated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1において、得られた円弧状
磁石の周方向の位置と3方向の残留磁束密度の関係図。
FIG. 1 is a diagram showing the relationship between the circumferential position of an arc-shaped magnet and the residual magnetic flux density in three directions obtained in Example 1 of the present invention.

【図2】 本発明の実施例2において、従来法と本発明
による磁石を用いたロータの周方向の位置と表面磁束密
度の関係図。
FIG. 2 is a diagram showing the relationship between the circumferential position and the surface magnetic flux density of a rotor using the magnet according to the conventional method and the magnet according to the present invention in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 41/02 G 8123−5E (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01F 1/08 41/02 G 8123-5E (72) Inventor Koji Akioka 3 Yamato, Suwa City, Nagano Prefecture No. 3-5 Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とする円
弧状磁石で、周方向の中央部で最も高いラジアル異方性
を有し、端部へ向かって異方性が連続的に減少している
こと特徴とする希土類永久磁石。
1. An arc-shaped magnet containing R (wherein R is at least one of rare earth elements including Y), Fe and B as basic raw materials and having the highest radial anisotropy in the central portion in the circumferential direction. However, the rare earth permanent magnet is characterized in that the anisotropy continuously decreases toward the edges.
【請求項2】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とする粉
末を、非酸化性雰囲気中において700〜1000℃の
温度で加圧し断面形状が円形または楕円形の円柱状等方
性圧密体とした後、700〜1000℃の温度で円弧状
に押出成形することを特徴とする希土類永久磁石の製造
方法。
2. A cross section obtained by pressurizing a powder containing R (where R is at least one of rare earth elements including Y), Fe, and B as raw material basic components at a temperature of 700 to 1000 ° C. in a non-oxidizing atmosphere. A process for producing a rare earth permanent magnet, which comprises forming a circular columnar or elliptical columnar isotropic compact and then extruding it into an arc at a temperature of 700 to 1000 ° C.
JP5304287A 1993-12-03 1993-12-03 Rare earth permanent magnet and its production Pending JPH07161523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304287A JPH07161523A (en) 1993-12-03 1993-12-03 Rare earth permanent magnet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304287A JPH07161523A (en) 1993-12-03 1993-12-03 Rare earth permanent magnet and its production

Publications (1)

Publication Number Publication Date
JPH07161523A true JPH07161523A (en) 1995-06-23

Family

ID=17931224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304287A Pending JPH07161523A (en) 1993-12-03 1993-12-03 Rare earth permanent magnet and its production

Country Status (1)

Country Link
JP (1) JPH07161523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345619A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Manufacturing method for radial anisotropic magnet motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345619A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Manufacturing method for radial anisotropic magnet motor

Similar Documents

Publication Publication Date Title
EP1308970B1 (en) Radial anisotropic sintered magnet production method
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
JP2004120892A (en) Ring magnet, its manufacturing method, and rotor and motor using this ring magnet
CA1244322A (en) Hot pressed permanent magnet having high and low coercivity regions
JPH02308512A (en) R-fe-b permanent magnet having biased anisotropy and manufacture thereof
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH07161523A (en) Rare earth permanent magnet and its production
CN213519585U (en) Pole anisotropic orientation magnet, mold for manufacturing same, ring magnet, motor rotor, and motor
JP4320710B2 (en) Polar anisotropic ring magnet and molding die
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JPS62224916A (en) Manufacture of rare-earth magnet
JPH06188120A (en) Circular arc-shaped magnet and manufacture thereof
JPH02297910A (en) Manufacture of radially oriented magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH027403A (en) Magnetic-anisotropy magnet and its manufacture
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JPH03198632A (en) Magnet rotor for ac servo-motor
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPS62224915A (en) Manufacture of rare-earth magnet
JPH06124829A (en) Circular magnet and its manufacture