JPH06124829A - Circular magnet and its manufacture - Google Patents

Circular magnet and its manufacture

Info

Publication number
JPH06124829A
JPH06124829A JP4274111A JP27411192A JPH06124829A JP H06124829 A JPH06124829 A JP H06124829A JP 4274111 A JP4274111 A JP 4274111A JP 27411192 A JP27411192 A JP 27411192A JP H06124829 A JPH06124829 A JP H06124829A
Authority
JP
Japan
Prior art keywords
magnet
arc
radius
curvature
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4274111A
Other languages
Japanese (ja)
Other versions
JP3128993B2 (en
Inventor
Makoto Shinoda
誠 篠田
Katsunori Iwasaki
克典 岩崎
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP04274111A priority Critical patent/JP3128993B2/en
Publication of JPH06124829A publication Critical patent/JPH06124829A/en
Application granted granted Critical
Publication of JP3128993B2 publication Critical patent/JP3128993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a circular magnet, which is a permanent magnet, made of rare earth, transition metal and boron, and which is also a hot working magnet to which magnetic anisotropy is applied under hot working, with high energy product, improved flatness of magnetic characteristic accompanied. CONSTITUTION:The titled magnet is a circular worm working magnet, chiefly made of a transition metal T and is containing a rare earth element R, containing yttrium, and boron B, and has magnetic anisotropy, with its average grain size between 0.02-1.0mum. Manufacture of a circular magnet which has the maximum energy product of more than 42MGOe, the value obtained by dividing its wall thickness with the length in its axial direction is 0.2 or less, and the degradation amount of maximum energy product at the periphery of the magnet is 20% or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類、遷移金属、ホウ
素から実質的になる永久磁石であって、温間加工によっ
て磁気異方性を付与する温間加工磁石の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a warm-worked magnet which is a permanent magnet consisting essentially of rare earths, transition metals and boron, and which imparts magnetic anisotropy by warm working.

【0002】[0002]

【従来の技術】希土類、遷移金属、ホウ素から実質的に
なるR−T−B系磁石は安価で高磁気特性を有するもの
として注目を集めている。然してこの磁石は特公昭61
−34242号公報記載の焼結磁石と特開昭60−10
0402号公報記載の超急冷磁石に大別される。いずれ
の製造方法を取る場合でも所要の形状に成形することが
必要でありこの成形過程で任意の磁気特性を意図的に制
御することは困難とされている。例えば焼結磁石におい
て磁気異方性を得ようとする場合は、磁場の中で成形す
るというような工程が必須であり成形方向および配向磁
場方向により形状に制約を受ける。配向磁場強度を制御
することによって磁石内での磁気特性も制御することは
可能であるが、技術的に困難であるうえ本系磁石のポテ
ンシャルを生かした方法ではない。したがって円弧形状
の磁石はストレ−ト配向を有するものが主流になってい
た。一方超急冷磁石の場合、R−T−B系合金の溶湯を
超急冷法によって凝固し薄帯または薄片を得て粉砕しホ
ットプレスした後、温間で塑性加工して磁気異方性を付
与した永久磁石(以下『温間加工磁石』)であり、超急
冷法で得られた薄帯および薄片は更にその内部が無数の
微細結晶粒からなっている。したがって超急冷法によっ
て得られる薄帯または薄片は厚さ30μm程度で一辺の
長さが500μm以下の不定形をしているもののその内
部に含まれる結晶粒が焼結磁石の1〜90μmと比べて
0.02〜1.0μmと微細でありこの系の磁石の単磁
区の臨界寸法0.3μmに近く本質的に優れた磁気特性
が得られる。温間加工磁石においては塑性流動とそれに
直角な方向の磁気的配列状態との密接な相関が重要であ
る。つまり所要の形状を有する温間加工磁石を作製する
場合、塑性流動を被加工物全体に効率よくしかも十分に
行わせることによって配向性が向上し、ひいては高い磁
気特性を有する磁石の製造が可能となる。
2. Description of the Related Art RTB-based magnets, which are essentially composed of rare earths, transition metals, and boron, have been attracting attention because they are inexpensive and have high magnetic properties. However, this magnet is
-34242 and the sintered magnet disclosed in JP-A-60-10
It is roughly classified into the ultra-quenching magnet described in JP-A No. 0402. Regardless of which manufacturing method is used, it is necessary to mold into a desired shape, and it is difficult to intentionally control arbitrary magnetic characteristics in this molding process. For example, when trying to obtain magnetic anisotropy in a sintered magnet, a step of molding in a magnetic field is essential, and the shape is restricted by the molding direction and the orientation magnetic field direction. Although it is possible to control the magnetic characteristics in the magnet by controlling the orientation magnetic field strength, it is technically difficult and it is not a method that makes full use of the potential of this system magnet. Therefore, most arc-shaped magnets have a straight orientation. On the other hand, in the case of ultra-quenched magnets, molten metal of RTB-based alloy is solidified by the ultra-quenching method to obtain thin strips or flakes, crushed, hot-pressed, and then subjected to warm plastic working to impart magnetic anisotropy. These are permanent magnets (hereinafter referred to as "warm-worked magnets"), and the ribbons and flakes obtained by the ultra-quenching method further have innumerable fine crystal grains inside. Therefore, although the thin strip or thin piece obtained by the ultra-quenching method has an irregular shape with a thickness of about 30 μm and a side length of 500 μm or less, the crystal grains contained therein are 1 to 90 μm smaller than that of the sintered magnet. It is as fine as 0.02 to 1.0 μm, and it is possible to obtain essentially excellent magnetic characteristics close to the critical dimension of 0.3 μm of the single magnetic domain of the magnet of this system. In warm-working magnets, close correlation between plastic flow and magnetic alignment in the direction perpendicular to it is important. In other words, when producing a warm-worked magnet having a required shape, it is possible to improve the orientation by allowing plastic flow to be carried out efficiently and sufficiently over the entire workpiece, which in turn makes it possible to produce a magnet with high magnetic properties. Become.

【0003】[0003]

【発明が解決しようとする課題】焼結磁石においては前
述したように異方性化の手段が磁場中成形であるため、
材料の持つ磁気特性のポテンシャルは超急冷磁石と同レ
ベルであるにもかかわらず、軸方向に長く厚み方向に薄
い磁石の製造は困難である。即ち、軸方向に長いことに
よって磁場中成形時の圧力伝達の不均一が生じ磁気特性
の不均一を引き起こす。厚み方向に薄い磁石の製造にお
いては、微粉の金型への振込が困難ありマスプロには不
向きであった。以上のような理由で焼結磁石において
は、肉厚を軸方向の長さで除した値が0.2以下である
円弧形状磁石の製造は困難であり、さらに42MGOe
以上の磁気特性を有しかつラジアル異方性を有する円弧
形状磁石の製造は不可能であった。そのため焼結磁石で
はあらかじめ必要寸法形状よりも大きな磁石を成形し機
械加工により切り出していた。当然のことながらこの方
法では材料歩止まりが悪くコスト高を招く。一方、超急
冷磁石においては、上記の問題は解決されるが塑性加工
時のパンチとワークとの摩擦により材料の加工面、特に
外周端部の塑性流動が乱れ、そのため磁気特性の劣化を
余儀なくされる。パンチとワークの潤滑を改良すること
により、ある程度はこの問題を改善できるが、摩擦をな
くすることは不可能であるので充分な対策とはなってい
ない。また、超急冷法により作製した円弧形状磁石の端
部の磁気特性が劣化する要因としては、次のことが考え
られる。従来法によれば上下パンチの曲率は最終形状で
ある円弧形状磁石の厚さを考慮し、下パンチの曲率半径
にその値を加算するという単純な設計に基づいて定めら
れていた。しかし異方性化のために与える加圧力は上下
パンチ面に対して垂直および平行方向の分力となり、曲
率中心からの広がり角度の大きい円弧形状磁石ほどラジ
アル方向に対して垂直に作用する応力が増大し、磁気異
方性が付与されにくい。そこで温間加工磁石の特徴を生
かし、加工方法を改良することによってラジアル方向に
高い磁気特性を有し、かつ磁気特性が実質的に均一な円
弧形状磁石を得ることを目的とする。
As described above, in the sintered magnet, the means for anisotropy is forming in a magnetic field,
Although the potential of the magnetic properties of the material is at the same level as that of the ultra-quench magnet, it is difficult to manufacture a magnet that is long in the axial direction and thin in the thickness direction. That is, since the length is long in the axial direction, non-uniformity of pressure transmission occurs during molding in a magnetic field, resulting in non-uniformity of magnetic characteristics. In the manufacture of a magnet thin in the thickness direction, it was difficult to transfer fine powder into a mold, which was not suitable for mass production. For the above reasons, in the sintered magnet, it is difficult to manufacture an arc-shaped magnet whose value obtained by dividing the wall thickness by the axial length is 0.2 or less.
It was impossible to manufacture an arc-shaped magnet having the above magnetic properties and radial anisotropy. Therefore, in the case of a sintered magnet, a magnet larger than the required size and shape was previously formed and cut out by machining. As a matter of course, in this method, the material yield is poor and the cost increases. On the other hand, in the case of ultra-quenched magnets, the above problems are solved, but the plastic flow at the machined surface of the material, especially the outer peripheral edge, is disturbed by the friction between the punch and the workpiece during plastic working, which inevitably causes deterioration of the magnetic properties. It This problem can be improved to some extent by improving the lubrication of the punch and the work, but since it is impossible to eliminate friction, it is not a sufficient countermeasure. In addition, the following factors can be considered as factors that deteriorate the magnetic characteristics of the end portion of the arc-shaped magnet manufactured by the ultra-quenching method. According to the conventional method, the curvature of the upper and lower punches is determined based on a simple design in which the thickness of the arc-shaped magnet as the final shape is taken into consideration and the value is added to the radius of curvature of the lower punch. However, the pressing force applied for anisotropy is a component force in the vertical and parallel directions to the upper and lower punch surfaces, and the arc-shaped magnet with a larger divergence angle from the center of curvature has a stress acting perpendicular to the radial direction. The magnetic anisotropy increases and magnetic anisotropy is hard to be imparted. Therefore, it is an object of the present invention to obtain an arc-shaped magnet having high magnetic characteristics in the radial direction and substantially uniform magnetic characteristics by improving the processing method by making the best use of the characteristics of the warm-working magnet.

【0004】[0004]

【課題を解決するための手段】本発明は遷移金属Tを主
成分としイットリウムを含む希土類元素Rおよびホウ素
Bを含有し、平均粒径が0.02〜1.0μmの円弧形
状の磁気異方性を有する温間加工磁石であって、42M
GOe以上の最大エネルギ−積を有し肉厚を軸方向の長
さで除した値が0.2mm以下であることを特徴とする
ラジアル異方性円弧形状磁石である。さらに、本発明は
円弧形状磁石にあって製品端部の最大エネルギ−積の劣
化が20%以下であることを特徴とするラジアル異方性
円弧形状磁石である。また、上記磁石を製造することに
おいて、上下パンチにより塑性加工を施して磁気異方性
を付与する温間加工磁石の加工方法において、ち密化し
た成形体の外Rの曲率半径が最終製品形状を与えるパン
チの曲率半径よりも大きいことを特徴とする円弧形状磁
石の製造方法あるいは、ち密化した成形体の内Rの曲率
半径がパンチの曲率半径よりも小さいことを特徴とする
円弧形状磁石の製造方法である。従来法によれば緻密化
した試料の内外の曲率半径は上下パンチの曲率半径と一
致しており、さらに上下パンチの曲率半径は最終製品の
内外の曲率半径と設計していた。この方法により作製さ
れた円弧形状磁石は磁石の外周端部の磁気特性の劣化が
著しい。特に円周方向の端部においては中央部に比べて
磁気特性の劣化は20%以上にも及ぶ。そのことについ
て調査を行った結果、円周方向端部においては容易磁化
方向がラジアル方向から中心部に約15度ずれているこ
とがわかった。その結果、円周方向端部の磁気特性はこ
のズレ角度分の方向余弦となるため劣化していることが
判明した。すなわち、この現象は上パンチとワークとの
間の摩擦力により塑性流動が接線方向より中心へ傾いて
いることを示唆しており、実際に薄片の流動もそのよう
になっていることが確認された。そこで、予め外周端部
の塑性流動の理想的な方向からのズレを見込んでち密化
した試料の内外の曲率半径を請求項のように設計した。
この設計により磁石の外周端部の磁気特性の劣化を低減
することができた。また上記方法で温間加工を施す過程
で、外周部のクラック発生を抑制するために加工を複数
回に分け、さらに各加工率で外周を拘束する方法を取っ
てもよい。また温間加工時に発生するバルジ現象を抑制
するため圧密体を任意の形状に予備成形しておいてもよ
い。さらに保磁力等の磁気特性を低下させない程度に塑
性変形速度を遅くする方法をとってもよい。
DISCLOSURE OF THE INVENTION The present invention contains a transition metal T as a main component, a rare earth element R containing yttrium and boron B, and an arc-shaped magnetic anisotropic having an average particle diameter of 0.02 to 1.0 μm. It is a warm-working magnet with the property of 42M
A radial anisotropic arc-shaped magnet having a maximum energy product of GOe or more and a value obtained by dividing the wall thickness by the length in the axial direction is 0.2 mm or less. Further, the present invention is a radial anisotropic arc-shaped magnet, characterized in that the deterioration of the maximum energy product at the end of the product is 20% or less in the arc-shaped magnet. Further, in manufacturing the magnet, in a method of processing a warm-worked magnet in which plastic working is performed by upper and lower punches to give magnetic anisotropy, the radius of curvature of the outer R of the compacted compact is the final product shape. Method of manufacturing arc-shaped magnet characterized by being larger than radius of curvature of punch given, or manufacture of arc-shaped magnet characterized in that radius of curvature of radius R of a compacted compact is smaller than radius of curvature of punch Is the way. According to the conventional method, the inner and outer radii of curvature of the densified sample match the radii of curvature of the upper and lower punches, and the radius of curvature of the upper and lower punches is designed to be the inner and outer radii of curvature of the final product. In the arc-shaped magnet manufactured by this method, the magnetic characteristics of the outer peripheral end of the magnet are significantly deteriorated. In particular, the magnetic properties at the end portions in the circumferential direction are deteriorated by 20% or more as compared with the central portion. As a result of investigating this, it was found that the easy magnetization direction was deviated from the radial direction by about 15 degrees at the circumferential end. As a result, it was found that the magnetic characteristics at the circumferential end portion were deteriorated because the direction cosine corresponding to this deviation angle was obtained. That is, this phenomenon suggests that the plastic flow is inclined from the tangential direction toward the center due to the frictional force between the upper punch and the work, and it is confirmed that the flow of the flakes is actually that way. It was Therefore, the radius of curvature of the inside and outside of the sample, which has been densified in advance by allowing for a deviation from the ideal direction of the plastic flow at the outer peripheral edge, was designed as claimed.
With this design, it was possible to reduce the deterioration of the magnetic properties of the outer peripheral end of the magnet. Further, in the process of performing the warm working by the above method, the working may be divided into a plurality of times in order to suppress the generation of cracks on the outer peripheral portion, and the outer circumference may be restrained at each working rate. Further, in order to suppress the bulging phenomenon that occurs during warm working, the compact may be preformed into any shape. Further, a method of slowing the plastic deformation speed to the extent that the magnetic properties such as coercive force are not deteriorated may be adopted.

【0005】[0005]

【実施例】【Example】

(実施例1)作製を試みた円弧状磁石は軸方向の長さ4
0mm、内R27.3mm、外R32.3mm、広がり
角90度である。この形状の磁石を焼結法でニアネット
シェイプ成形を試みたが微粉の振込が困難なうえに軸方
向に磁気特性の勾配が生じ、その度合いは20%以上に
も達した。Nd13.5FebalCo7.56Ga1.25なる組
成の合金をア−ク溶解にて作製した。本合金をAr雰囲
気中で20m/秒で回転する単ロ−ル上に射出して不定
形のフレ−ク状薄片を作製した。得られた薄片を500
μm以下に粗粉砕し圧粉体とした後、ホットプレスを行
ない内R27.3mm、外R32.3mmおよび36.
3mmとなるようにち密化した。次いでこの圧密体を7
50℃で最終製品形状の曲率を有する上下パンチ間で温
間塑性加工し円弧形状磁石とした。このようにして得ら
れた円弧形状磁石から中心を0度として円周方向端部に
10度毎の磁気特性をBHトレーサーで測定した。どち
らの試料も中心角−30〜+30度の範囲において最大
エネルギ−積は43MGOe以上であった。測定結果か
ら圧密体の外Rを従来のように最終製品の外Rに一致さ
せると円周方向端部である中心角±40度の位置の磁気
特性は中央部に比べて23%の劣化があった。一方、圧
密体の外Rを36.3mmとした試料ではその円周方向
端部の劣化は15%であった。これにより圧密体の外R
を最終製品の外Rよりも大きくすることにより磁気特性
の均一性が改善されることが判明した。 (実施例2)実施例1と同様にして外R32.3mmで
内Rを27.3mmおよび24.3mmの圧密体を作製
しさらに750度で最終製品形状の曲率半径を有する上
下パンチを用いて温間塑性加工し円弧形状磁石とした。
このようにして得られた円弧形状磁石から中心を0度と
して円周方向端部に10度毎の磁気特性をBHトレーサ
ーで測定した。測定結果から圧密体の内Rを従来のよう
に最終製品の内Rに一致させると円周方向端部である中
心角±40度の位置の磁気特性は中央部に比べて25%
の劣化があった。一方、圧密体の内Rを24.3mmと
した試料ではその円周方向端部の劣化は18%であっ
た。これにより圧密体の内Rを最終製品の内Rよりも大
きくすることにより磁気特性の均一性が改善されること
が判明した。
(Example 1) The arc-shaped magnet that was attempted to be manufactured had an axial length of 4
0 mm, inner R27.3 mm, outer R32.3 mm, divergence angle 90 degrees. An attempt was made to perform near net shape molding of a magnet of this shape by a sintering method, but it was difficult to transfer fine powder, and a gradient of magnetic characteristics was generated in the axial direction, and the degree thereof reached 20% or more. An alloy having a composition of Nd 13.5 Fe bal Co 7.5 B 6 Ga 1.25 was prepared by arc melting. This alloy was injected onto a single roll rotating at 20 m / sec in an Ar atmosphere to produce an irregular flaky flakes. 500 pieces of the obtained flakes
After roughly pulverizing to a particle size of less than or equal to μm to obtain a green compact, hot pressing is performed to obtain inner R27.3 mm, outer R32.3 mm and 36.
It was densified to 3 mm. Next, this compact is
Warm plastic working was performed between the upper and lower punches having the curvature of the final product shape at 50 ° C. to obtain arc-shaped magnets. From the arc-shaped magnet thus obtained, the magnetic characteristics were measured at every 10 degrees at the ends in the circumferential direction with the center at 0 degree by a BH tracer. In both samples, the maximum energy product was 43 MGOe or more in the range of the central angle of -30 to +30 degrees. From the measurement results, when the outer radius R of the compact is made to match the outer radius R of the final product as in the conventional case, the magnetic characteristics at the central angle ± 40 ° position, which is the end portion in the circumferential direction, deteriorates by 23% compared to the central portion. there were. On the other hand, in the sample in which the outer radius R of the compact was 36.3 mm, the deterioration in the circumferential end portion was 15%. As a result, the outside R of the compact
It has been found that the uniformity of the magnetic properties is improved by making the value R larger than the outer radius R of the final product. (Example 2) In the same manner as in Example 1, a consolidated body having an outer radius of 32.3 mm and an inner radius of 27.3 mm and 24.3 mm was prepared, and further, at 750 degrees, upper and lower punches having a radius of curvature of a final product shape were used. Warm plastic working was performed to obtain arc-shaped magnets.
From the arc-shaped magnet thus obtained, the magnetic characteristics were measured at every 10 degrees at the ends in the circumferential direction with the center at 0 degree by a BH tracer. From the measurement results, when the inner radius R of the compact is made to match the inner radius R of the final product as in the conventional case, the magnetic characteristics at the central angle ± 40 degrees, which is the end in the circumferential direction, are 25% compared to the central portion.
There was deterioration. On the other hand, in the sample in which the inner radius R of the compact was 24.3 mm, the deterioration in the circumferential end portion was 18%. As a result, it was found that the uniformity of the magnetic properties was improved by making the inner radius R of the compact body larger than the inner radius R of the final product.

【0006】[0006]

【発明の効果】本発明によればラジアル方向に中央部か
ら端部にかけて磁気特性の均一性に優れた円弧形状磁石
が安定して製造可能である。
According to the present invention, it is possible to stably manufacture an arc-shaped magnet having an excellent magnetic property uniformity from the central portion to the end portion in the radial direction.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rの一種以上およびホウ素Bを含有し、
平均粒径が0.02〜1.0μmの円弧形状の磁気異方
性を有する温間加工磁石であって、42MGOe以上の
最大エネルギ−積を有し肉厚を軸方向の長さで除した値
が0.2以下であることを特徴とする円弧形状磁石。
1. Containing at least one rare earth element R containing a transition metal T as a main component and containing yttrium and boron B,
A warm-worked magnet having an arc-shaped magnetic anisotropy having an average particle diameter of 0.02 to 1.0 μm, having a maximum energy product of 42 MGOe or more, and having a wall thickness divided by an axial length. An arc-shaped magnet having a value of 0.2 or less.
【請求項2】 請求項1に記載の円弧形状磁石にあって
製品端部の最大エネルギ−積の劣化が20%以下である
ことを特徴とするラジアル異方性円弧形状磁石。
2. The radial anisotropic arc-shaped magnet according to claim 1, wherein deterioration of the maximum energy product at the end of the product is 20% or less.
【請求項3】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rおよびホウ素Bを含有するR−T−B
系合金の溶湯を急冷凝固して得られるR−T−B系急冷
薄片を原料とし、本原料を500℃から900℃の温度
で加圧してち密化した後、上下パンチにより塑性加工を
施して磁気異方性を付与する温間加工磁石の加工方法に
おいて、ち密化した成形体の外Rの曲率半径が最終製品
形状を与えるパンチの曲率半径よりも大きいことを特徴
とする円弧形状磁石の製造方法。
3. A rare earth element R containing a transition metal T as a main component and containing yttrium, and an RTB containing boron B.
The raw material is the RTB-based quenching thin piece obtained by quenching and solidifying the molten alloy of the system alloy. The raw material is pressed at a temperature of 500 ° C to 900 ° C to be densified, and then subjected to plastic working by the upper and lower punches. In the method of processing a warm-worked magnet that imparts magnetic anisotropy, the manufacture of an arc-shaped magnet characterized in that the radius of curvature of the outer R of the compacted compact is larger than the radius of curvature of the punch that gives the final product shape. Method.
【請求項4】 遷移金属Tを主成分としイットリウムを
含む希土類元素Rおよびホウ素Bを含有するR−T−B
系合金の溶湯を急冷凝固して得られるR−T−B系急冷
薄片を原料とし、本原料を500℃から900℃の温度
で加圧してち密化した後、上下パンチにより塑性加工を
施して磁気異方性を付与する温間加工磁石の加工方法に
おいて、ち密化した成形体の内Rの曲率半径がパンチの
曲率半径よりも小さいことを特徴とする円弧形状磁石の
製造方法。
4. An R-T-B containing a transition metal T as a main component and a rare earth element R containing yttrium and boron B.
The raw material is the RTB-based quenching thin piece obtained by quenching and solidifying the molten alloy of the system alloy. The raw material is pressed at a temperature of 500 ° C to 900 ° C to be densified, and then subjected to plastic working by the upper and lower punches. A method for manufacturing an arc-shaped magnet, wherein a radius of curvature of a radius R of a compacted compact is smaller than a radius of curvature of a punch in a method of processing a warm-worked magnet that imparts magnetic anisotropy.
JP04274111A 1992-10-13 1992-10-13 Arc-shaped magnet and method of manufacturing the same Expired - Lifetime JP3128993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04274111A JP3128993B2 (en) 1992-10-13 1992-10-13 Arc-shaped magnet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04274111A JP3128993B2 (en) 1992-10-13 1992-10-13 Arc-shaped magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06124829A true JPH06124829A (en) 1994-05-06
JP3128993B2 JP3128993B2 (en) 2001-01-29

Family

ID=17537167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04274111A Expired - Lifetime JP3128993B2 (en) 1992-10-13 1992-10-13 Arc-shaped magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3128993B2 (en)

Also Published As

Publication number Publication date
JP3128993B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
US5352302A (en) Method of producing a rare-earth permanent magnet
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JPH06188120A (en) Circular arc-shaped magnet and manufacture thereof
JPH06124829A (en) Circular magnet and its manufacture
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JPH04147604A (en) Magnetic anisotropy magnet and manufacture thereof
JP2020092167A (en) Arc-shaped permanent magnet and manufacturing method thereof
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JPH02138706A (en) Anisotropic permanent magnet
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPH02297910A (en) Manufacture of radially oriented magnet
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH07161523A (en) Rare earth permanent magnet and its production
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPS63213322A (en) Rare earth iron permanent magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JPH03253001A (en) Iron-based rare earth magnet and manufacture thereof
JPH027403A (en) Magnetic-anisotropy magnet and its manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

EXPY Cancellation because of completion of term