JPH02308512A - R-fe-b permanent magnet having biased anisotropy and manufacture thereof - Google Patents

R-fe-b permanent magnet having biased anisotropy and manufacture thereof

Info

Publication number
JPH02308512A
JPH02308512A JP13034489A JP13034489A JPH02308512A JP H02308512 A JPH02308512 A JP H02308512A JP 13034489 A JP13034489 A JP 13034489A JP 13034489 A JP13034489 A JP 13034489A JP H02308512 A JPH02308512 A JP H02308512A
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
anisotropy
magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13034489A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Yasuto Nozawa
野沢 康人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13034489A priority Critical patent/JPH02308512A/en
Publication of JPH02308512A publication Critical patent/JPH02308512A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain desired biased anisotropic direction by applying magnetic- field-free warm plastic working to a specified alloy based permanent magnet of a specified average crystal grain diameter. CONSTITUTION:Between opposed magnetic pole faces whose average crystal grain diameter is 0.01-1.0mum, if magnetic-field-free warm plastic working is applied to one alloy permanent magnet, which has a vector in the magnetic direction different from the other and high residual magnetic flux density being shown by formula R-Fe-B, the orientation of particles changes. Hereby, the desired biased anisotropic direction can be obtained, and various kinds of magnetic circuits can be made efficient easily. Among the formula, R is one kind or two or more kinds of rare earth elements which include yttrium.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は焼結磁石と比較して耐蝕性に優れ加工劣化、水
素劣化が少なく保磁力の大きい磁気異方性R−Fe−B
系永久磁石に関し、特にその磁気異方性方向の改善と、
その製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses magnetically anisotropic R-Fe-B, which has superior corrosion resistance compared to sintered magnets, has less processing deterioration and hydrogen deterioration, and has a large coercive force.
Regarding permanent magnets, especially improving the direction of magnetic anisotropy,
The present invention relates to a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

資源希少なSmを本質的に必要とせず、かつ最大エネル
ギー積の大きなR−Fe−B系焼結磁石は特公開61−
34242号公報等に記載されている。
An R-Fe-B sintered magnet that essentially does not require Sm, which is a scarce resource, and has a large maximum energy product is disclosed in Japanese Patent Publication No. 61-
It is described in Publication No. 34242 and the like.

しかしながら、これ等従来の磁気異方性焼結永久磁石は
加工劣化及び水素劣化が大きく又耐蝕性にも問題がある
などいろいろな欠点を有する。
However, these conventional magnetically anisotropic sintered permanent magnets have various drawbacks, such as significant processing deterioration and hydrogen deterioration, as well as problems in corrosion resistance.

一方、R−Fe−B系合金の溶融物を104℃/S以上
の冷却速度により超急冷固化させ作製した合金粉末ある
いは薄帯は、平均結晶粒径が0.01〜1.0μmと小
さく焼結磁石とは異なる機構により高い固有保磁力を有
している。この合金粉末あるいは薄帯を温間で圧密、温
間塑性加工により磁気異方性化した板状あるいは円板状
磁石は平均結晶粒径が0.01〜1μmの金属組織(以
下異方性超微細組織という)を有し、保磁力15kGe
、残留磁束密度11kG、最大エネルギー積3QMGO
e以上の高い磁気特性を有しており前記焼結磁石に比較
して耐蝕性に優れ加工劣化、水素劣化も著しく少ない。
On the other hand, alloy powder or ribbon produced by ultra-rapidly solidifying a melt of R-Fe-B alloy at a cooling rate of 104°C/S or more has a small average crystal grain size of 0.01 to 1.0 μm. It has a high intrinsic coercive force due to a mechanism different from that of a magnet. This alloy powder or ribbon is warmly compacted and made magnetically anisotropic by warm plastic working to create a plate-like or disk-like magnet with a metal structure (hereinafter referred to as an anisotropic ultrafine structure) with an average crystal grain size of 0.01 to 1 μm. ) with a coercive force of 15 kGe
, residual magnetic flux density 11kG, maximum energy product 3QMGO
It has high magnetic properties of e or higher, and is superior in corrosion resistance compared to the sintered magnets mentioned above, with significantly less processing deterioration and hydrogen deterioration.

(発明が解決しようとする問題点〕 上記従来の異方性超微細組織を有するR−Fe−B系永
久磁石においては、磁気異方性礎磁場を使用せずに温間
塑性加工により付与するという特殊な工程を取る為に、
例えば円板状の磁石の磁気異方性方向はC軸が磁石全般
に亘り円板面に垂直な法線方向であり、又円筒状磁石に
おいては押し出し加工により径方向にC軸が一様に配向
するようなものに限定されていた。
(Problems to be Solved by the Invention) In the conventional R-Fe-B permanent magnet having an anisotropic ultrafine structure described above, a special process of imparting magnetic anisotropy by warm plastic working without using a foundation magnetic field is required. In order to take
For example, in the magnetic anisotropy direction of a disc-shaped magnet, the C-axis is the normal direction perpendicular to the disc surface throughout the magnet, and in the case of a cylindrical magnet, the C-axis is uniformly radially aligned by extrusion processing. It was limited to things that could be oriented.

しかしながら、永久磁石を用いた応用品として、永久磁
石を使用して磁気回路を設計する場合には、例えば円板
状磁石においては磁化容易方向がその中心軸方向に偏倚
したような異方性を付与した磁石を用いた方が効率的な
回路設計となる。又ボイスコイルアクチュエーター(以
下VCMという)等に用いられる平板状磁石においては
、軟磁性のヨークと接合される側において容易磁化方向
がボイスコイル移動方向に対して中央部方向に偏倚して
いるような配向を有している磁石を用いる方が効率的で
ある。又回転機のステーターとして使用されるアークセ
グメント状の磁石においては円弧の法線方向に全体が一
様に磁化された永久磁石を使用するよりも円弧中心より
容易磁化方向が偏倚したものを使用する方がコギングト
ルクも少なく効果的な設計となる。
However, when designing a magnetic circuit using a permanent magnet as an applied product using a permanent magnet, for example, a disc-shaped magnet has anisotropy in which the direction of easy magnetization is biased toward its central axis. Using the attached magnet results in a more efficient circuit design. In addition, in flat magnets used in voice coil actuators (hereinafter referred to as VCM), etc., the direction of easy magnetization on the side joined to the soft magnetic yoke is biased toward the center with respect to the direction of voice coil movement. It is more efficient to use oriented magnets. In addition, for arc segment-shaped magnets used as stators of rotating machines, it is better to use magnets whose magnetization direction is easily offset from the center of the arc, rather than using permanent magnets whose entire magnetization is uniformly magnetized in the normal direction of the arc. This results in a more effective design with less cogging torque.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は平均結晶粒径が0.01〜1μmで例えば対向
する2つの磁極面の内、一方の磁極面に比較して大きい
磁気異方性垂直度を有するものであって、その磁気異方
性は温間塑性加工による粒子配向により付与したことを
特徴とするR−Fe−8−系永久磁石およびその製造方
法である。
The present invention has an average crystal grain size of 0.01 to 1 μm and has a magnetic anisotropy perpendicularity greater than that of one of the two opposing magnetic pole surfaces, The present invention relates to an R-Fe-8-based permanent magnet and a method for producing the same, characterized in that the properties are imparted by particle orientation through warm plastic working.

本発明は配向磁場を使用出来ない異方性超微細組織型の
R−Fe−B磁石に偏倚した異方性を付与することによ
り効率的な磁気回路設計を可能としたものである。
The present invention makes it possible to design an efficient magnetic circuit by imparting biased anisotropy to an anisotropic ultrafine structure type R-Fe-B magnet that cannot use an orienting magnetic field.

本発明において平均結晶粒径とは主相となるR2Fel
4B型金属間化合物のC軸方向から見て結晶粒を球状近
似したときの球の直径を30個以上の結晶粒について平
均した値である。平均結晶粒径が0.01μm未満の場
合は保磁力が低く又1μmを越えても同様の保磁力が低
下し満足な永久磁石特性が得られない。
In the present invention, the average grain size refers to R2Fel, which is the main phase.
This is the average diameter of 30 or more crystal grains when the crystal grains are approximated to be spherical when viewed from the C-axis direction of the 4B type intermetallic compound. When the average crystal grain size is less than 0.01 μm, the coercive force is low, and even when it exceeds 1 μm, the coercive force similarly decreases, making it impossible to obtain satisfactory permanent magnetic properties.

本発明において偏倚異方性を付与する手段としては例え
ばアークセグメント状の偏倚異方性磁石の場合は平行な
端面を有する上下パンチの間で、550〜s o o 
’cで圧縮据込み加工により平板状の平板面に垂直な方
向に異方性を付与した粗材をアーク状の上下パンチを有
するダイス中で再び500〜800℃で塑性変形を施す
ことにより異方性方向が円弧に対して連続的に偏倚した
永久磁石を得ることが可能である。(第1図)また例え
ば偏倚した板状磁石の場合には曲率を有する上下パンチ
間で、600〜800℃予め塑性加工した永久磁石を5
00〜800℃で平行な上下パンチを有するダイス内で
再度塑性変形させることにより異方性化方向が板面に対
して傾いた異方性を有する磁石を得ることが出来る。(
第2図)更に板状あるいは円板状磁石において局所的に
磁化容易方向が偏倚したものを得るには圧縮据込み加工
時にダイス側面より300 kg/c1i1以上の側圧
を付加することにより磁石端部において異方性化方向が
局所的に偏倚した永久磁石を得ることが出来る。
In the present invention, as a means for imparting bias anisotropy, for example, in the case of an arc segment-shaped bias anisotropic magnet, between upper and lower punches having parallel end surfaces, 550 to s o o
The rough material, which has been given anisotropy in the direction perpendicular to the flat plate surface by compression upsetting in 'c, is plastically deformed again at 500 to 800°C in a die with arc-shaped upper and lower punches. It is possible to obtain a permanent magnet whose orientation direction is continuously offset with respect to a circular arc. (Fig. 1) For example, in the case of a biased plate magnet, a permanent magnet that has been plastically worked at 600 to 800°C is placed between the upper and lower punches having curvature.
By plastically deforming the magnet again in a die having parallel upper and lower punches at 00 to 800°C, a magnet having anisotropy in which the anisotropy direction is inclined with respect to the plate surface can be obtained. (
Fig. 2) Furthermore, in order to obtain a plate-shaped or disc-shaped magnet in which the direction of easy magnetization is locally shifted, a side pressure of 300 kg/c1i1 or more is applied from the side of the die during compression upsetting to the edge of the magnet. It is possible to obtain a permanent magnet in which the anisotropy direction is locally biased.

〔実施例〕〔Example〕

〔実施例1〕 Nd13.5FebafCO+oGa+B6の組成の合
金を溶融メルトスピニングにより超急冷し、厚さ約30
amで巾5mm、長さ10〜30μmの薄帯を得た。こ
の薄帯はX線回折の結果非晶質と結晶質の混合物であっ
た。
[Example 1] An alloy having a composition of Nd13.5FebafCO+oGa+B6 was ultra-quenched by melt spinning to a thickness of approximately 30 mm.
A thin strip having a width of 5 mm and a length of 10 to 30 μm was obtained using am. As a result of X-ray diffraction, this ribbon was found to be a mixture of amorphous and crystalline materials.

次いで、この薄帯を500μm以下に粗粉砕し冷間で3
トン/C艷の圧力で(15X10X8mmの)圧粉体と
し得られた圧粉体を加熱しながら金型中で1トン/dの
圧力を印加して圧密後、平行なパンチ間で高さが174
(圧縮率75%)になるまで圧縮据込み加工を行ない、
30×20×2InI11の平板状の磁石体を得た。
Next, this ribbon was coarsely ground to 500 μm or less and cold-milled for 3
After compaction by applying a pressure of 1 ton/d in a mold while heating the obtained green compact to a powder compact (15 x 10 x 8 mm) at a pressure of 1 ton/C, the height was adjusted between parallel punches. 174
Perform compression upsetting until the compression ratio reaches 75%.
A flat magnet of 30×20×2 InI11 was obtained.

この平板状の磁石体を再度600℃に加熱し、アーク状
の上下パンチを有するダイス中で塑性変形させ、厚さ2
皿の円弧状の磁石体を得た。
This flat magnet body was heated to 600°C again, and plastically deformed in a die with arc-shaped upper and lower punches.
A disc-shaped arc-shaped magnet body was obtained.

この円弧状磁石体を磁石体が有する曲率と同曲率の磁極
面を有する着磁機内で飽和着磁し偏倚異方性を付与した
。このように着磁した永久磁石を界磁用磁石として組み
込んだ2極ブラシレスモークの界磁波形を第3図に示す
。比較例で示す従来技術においては界磁波形が台形波状
となり大きなコギングトルクがかかる。本発明による偏
倚異方性を有する永久磁石を用いることにより正弧波に
近い界磁波形を得ることが出来、モータのコギングトル
クを低減出来ることが分る。
This arc-shaped magnet body was saturated and magnetized in a magnetizer having a magnetic pole face having the same curvature as the curvature of the magnet body to impart bias anisotropy. FIG. 3 shows a field waveform of a two-pole brushless smoke in which a permanent magnet magnetized in this manner is incorporated as a field magnet. In the conventional technology shown in the comparative example, the field waveform becomes a trapezoidal waveform, and a large cogging torque is applied. It can be seen that by using the permanent magnet having bias anisotropy according to the present invention, a field waveform close to a positive arc wave can be obtained, and the cogging torque of the motor can be reduced.

〔実施例2〕 実施例1と同様に超急薄帯を圧密化して得た20X30
X20tmmの圧密体を750℃でアーク状の上下パン
チを有するダイス空間で圧縮据込み加工し、厚さ10m
mのアーク状の磁石体を得た。この磁石体を再び750
℃に加熱し、平行な上下パンチを有するダイス空間にて
引き続き圧縮据込み加工し、厚さ5皿1の異方性磁石を
得た。この平板状磁石の厚さ方向に平行な磁界を印加し
着磁した。
[Example 2] 20X30 obtained by consolidating an ultra-steep ribbon in the same manner as in Example 1
A compacted body of x20tmm was compressed and upturned at 750°C in a die space with arc-shaped upper and lower punches to form a compact with a thickness of 10m.
An arc-shaped magnet body of m was obtained. This magnet body is 750 again
It was heated to .degree. C. and then compressed and upset in a die space having parallel upper and lower punches to obtain an anisotropic magnet with a thickness of 5 plates and 1. This flat magnet was magnetized by applying a magnetic field parallel to its thickness direction.

この磁石表面の磁束密度を測定した結果を第4図に示す
FIG. 4 shows the results of measuring the magnetic flux density on the surface of this magnet.

第4図から明らかなように本発明によれば磁石の有効長
全域に亘り極めて均一な磁界が得られることが分る。
As is clear from FIG. 4, according to the present invention, an extremely uniform magnetic field can be obtained over the entire effective length of the magnet.

〔発明の効果〕〔Effect of the invention〕

本発明によれば各種磁気回路の効率化が容易に可能であ
る。
According to the present invention, it is possible to easily improve the efficiency of various magnetic circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るアーク状偏倚異方性磁石の異方性
化の方法を模式的に示す図、 第2図は平板状磁石の異方性化の方法を示す模式図、 第3図は第1図に示す偏倚異方性磁石をステータとして
組み込んだモータの界磁波形と、従平の異方性磁石をス
テータとしたモータの界磁波形との比較図、 第4図は偏倚異方性を有する平板状磁束の表面磁束波形
図である。 第1図 第2図
FIG. 1 is a diagram schematically showing a method of anisotropy of an arc-shaped biased anisotropic magnet according to the present invention, FIG. 2 is a schematic diagram showing a method of anisotropy of a flat magnet, and FIG. The figure is a comparison diagram of the field waveform of a motor incorporating a biased anisotropic magnet shown in Figure 1 as a stator and the field waveform of a motor using a Yohira anisotropic magnet as a stator. FIG. 3 is a surface magnetic flux waveform diagram of a flat magnetic flux having anisotropy. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)平均結晶粒径が0.01〜1.0μmであり対向
する磁極面の内、一方の磁極面が他方の磁極面とは相異
する磁気方向ベクトルと高い残留磁束密度を有するR−
Fe−B系永久磁石(ここでRはイットリウムを含む1
種又は2種以上の希土類元素、Bはボロン、Tは遷移金
属)であって前記磁気異方性が無磁場温間塑性加工によ
る粒子配向によるものであることを特徴とする偏倚異方
性方向を有するR−Fe−B系永久磁石。
(1) R- with an average crystal grain size of 0.01 to 1.0 μm and one of the opposing magnetic pole surfaces has a magnetic direction vector different from the other magnetic pole surface and a high residual magnetic flux density.
Fe-B permanent magnet (here R is 1 containing yttrium)
or two or more kinds of rare earth elements, B is boron, and T is a transition metal), and the magnetic anisotropy is due to particle orientation by magnetic field-free warm plastic processing. An R-Fe-B permanent magnet.
(2)上記合金組成が実質的にNdあるいはPrを主体
とする希土類元素11〜18at%、ボロン4〜11a
t%、残部がFeを主体とする遷移金属と不可避不純物
からなる特許請求の範囲第1項の偏倚異方性方向を有す
るR−Fe−B系永久磁石合金。
(2) The above alloy composition consists essentially of Nd or Pr, a rare earth element of 11 to 18 at%, and boron of 4 to 11a.
An R-Fe-B permanent magnet alloy having a biased anisotropic direction according to claim 1, which is composed of a transition metal mainly consisting of Fe and inevitable impurities.
(3)R−Fe−B系合金の溶融物を10^4^℃/S
以上の超急冷により固化させ非晶質あるいは一部又は全
部結晶化した合金を作製した後、粉末状とし圧密化した
形成体を550〜800℃で温間で上下パンチによる加
圧で塑性変形させることで平均粒径が0.01〜1.0
μmで上下パンチ面にほぼ直角な磁気異方性を有する板
状あるいはアーク状磁石部材を得た後、再度500〜8
00℃の温間でアーク状、あるいは板状に塑性加工する
ことにより偏倚異方性を付与することを特徴とするR−
Fe−B系永久磁石の製造方法。
(3) Melt of R-Fe-B alloy at 10^4^℃/S
After producing an amorphous or partially or fully crystallized alloy by solidifying it by ultra-quenching as described above, the compacted powdered body is warmly deformed plastically at 550 to 800°C by applying pressure with upper and lower punches. This results in an average particle size of 0.01 to 1.0.
After obtaining a plate-shaped or arc-shaped magnet member having magnetic anisotropy almost perpendicular to the upper and lower punch surfaces in μm,
R-, which is characterized by imparting bias anisotropy by plastic working into an arc shape or a plate shape at a temperature of 00°C.
Method for manufacturing Fe-B permanent magnet.
JP13034489A 1989-05-24 1989-05-24 R-fe-b permanent magnet having biased anisotropy and manufacture thereof Pending JPH02308512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13034489A JPH02308512A (en) 1989-05-24 1989-05-24 R-fe-b permanent magnet having biased anisotropy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13034489A JPH02308512A (en) 1989-05-24 1989-05-24 R-fe-b permanent magnet having biased anisotropy and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02308512A true JPH02308512A (en) 1990-12-21

Family

ID=15032145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13034489A Pending JPH02308512A (en) 1989-05-24 1989-05-24 R-fe-b permanent magnet having biased anisotropy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02308512A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542521A2 (en) * 1991-11-15 1993-05-19 Daido Tokushuko Kabushiki Kaisha Radial anisotropic ring magnet and producing method thereof
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
JP2016032023A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
JPWO2016152978A1 (en) * 2015-03-24 2018-01-25 日東電工株式会社 Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy axis orientation
EP3276796A4 (en) * 2015-03-24 2019-01-09 Nitto Denko Corporation Rare-earth permanent magnet-forming sintered compact and rotary electric machine including rare-earth permanent magnet
EP3276795A4 (en) * 2015-03-24 2019-01-09 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
JP2020092167A (en) * 2018-12-05 2020-06-11 大同特殊鋼株式会社 Arc-shaped permanent magnet and manufacturing method thereof
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same
DE102016220654B4 (en) 2015-10-30 2023-09-28 GM Global Technology Operations LLC METHOD FOR PRODUCING A NON-PLANAR MAGNET

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542521A2 (en) * 1991-11-15 1993-05-19 Daido Tokushuko Kabushiki Kaisha Radial anisotropic ring magnet and producing method thereof
US5399311A (en) * 1991-11-15 1995-03-21 Daido Tokushuko Kabushiki Kaisha Radial anisotropic ring magnet with a sinusoidal waveform and producing method thereof
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP4622536B2 (en) * 2005-01-20 2011-02-02 パナソニック株式会社 Radial magnetic anisotropic magnet motor
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
JP4622767B2 (en) * 2005-09-20 2011-02-02 パナソニック株式会社 Manufacturing method of radial magnetic anisotropic multipole magnet
JP2016032023A (en) * 2014-07-29 2016-03-07 日東電工株式会社 Permanent magnet, method of manufacturing permanent magnet, dynamo-electric machine and method of manufacturing dynamo-electric machine
US20180130581A1 (en) * 2015-03-24 2018-05-10 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
JPWO2016152978A1 (en) * 2015-03-24 2018-01-25 日東電工株式会社 Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy axis orientation
EP3276796A4 (en) * 2015-03-24 2019-01-09 Nitto Denko Corporation Rare-earth permanent magnet-forming sintered compact and rotary electric machine including rare-earth permanent magnet
EP3276795A4 (en) * 2015-03-24 2019-01-09 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
US10867732B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Sintered body for forming rare-earth permanent magnet and rotary electric machine having rare-earth permanent magnet
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
US11239014B2 (en) 2015-03-24 2022-02-01 Nitto Denko Corporation Rare-earth magnet and linear motor using same
DE102016220654B4 (en) 2015-10-30 2023-09-28 GM Global Technology Operations LLC METHOD FOR PRODUCING A NON-PLANAR MAGNET
JP2020092167A (en) * 2018-12-05 2020-06-11 大同特殊鋼株式会社 Arc-shaped permanent magnet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
EP0274034B1 (en) Anisotropic magnetic powder, magnet thereof and method of producing same
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH02308512A (en) R-fe-b permanent magnet having biased anisotropy and manufacture thereof
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
EP1180772B1 (en) Anisotropic magnet and process of producing the same
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH0353505A (en) Bonded magnet and magnetization thereof
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP2005093731A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP3622550B2 (en) Anisotropic exchange spring magnet powder and method for producing the same
JP3643215B2 (en) Method for producing laminated permanent magnet
JPH1132453A (en) Stepping motor and manufacture of hard magnetic alloy therefor
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JPH0559572B2 (en)
JP2823076B2 (en) Warm magnet
JPH04187722A (en) Production of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH1116715A (en) Manufacturing method of laminated permanent magnet
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPS6271201A (en) Bond magnet
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet