JPS6144942B2 - - Google Patents

Info

Publication number
JPS6144942B2
JPS6144942B2 JP55049367A JP4936780A JPS6144942B2 JP S6144942 B2 JPS6144942 B2 JP S6144942B2 JP 55049367 A JP55049367 A JP 55049367A JP 4936780 A JP4936780 A JP 4936780A JP S6144942 B2 JPS6144942 B2 JP S6144942B2
Authority
JP
Japan
Prior art keywords
processing
compression
strain
compression processing
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55049367A
Other languages
Japanese (ja)
Other versions
JPS56146868A (en
Inventor
Akihiko Ibata
Yoichi Sakamoto
Shigeru Kojima
Tsuneo Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4936780A priority Critical patent/JPS56146868A/en
Priority to US06/231,625 priority patent/US4404046A/en
Priority to DE8181300510T priority patent/DE3168411D1/en
Priority to EP81300510A priority patent/EP0034058B1/en
Publication of JPS56146868A publication Critical patent/JPS56146868A/en
Publication of JPS6144942B2 publication Critical patent/JPS6144942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高性能な外周着磁用多結晶マンガン
―アルミニウム―炭素(Mn―Al―C)系合金磁
石の製造法に関する。 Mn―Al―C系合金磁石は、主として強磁性相
である面心正方晶(τ相、Llo型規則格子)の組
織に構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。 また、このMn―Al―C系合金磁石の製造法と
しては、鋳造・熱処理によるもの以外に、温間押
出加工等の温間塑性加工工程を含むものが知られ
ている。特に後者は、高い磁気特性、機械的強
度、耐候性、機械加工性等の優れた性質を有する
異方性磁石の製造法として知られている。 外周着磁用Mn―Al―C系合金磁石の製造法と
しては、等方性磁石の他に、圧縮加工によるもの
が知られており、径方向に高い磁気特性が得られ
ている。しかし、比較的大きい加工率が必要であ
ること、不均一変形が起こる場合があること、不
変形帯の存在が避けられないことなどの問題点が
あつた。 本発明者らは、予め温間押出加工等公知の方法
で得た一軸異方性の多結晶Mn―Al―C系合金磁
石に異方性方向への温間自由圧縮加工、特に塑性
加工停止状態を介して、複数回に分割した圧縮加
工を施すことによつて、上記の問題点を解決し得
ることを見出した。 すなわち、公知のMn―Al―C系磁石用合金、
例えば68〜73重量%(以下単に%で表す)のMn
と(1/10Mn―6.6)〜(1/3Mn―22.2)%のCと
残部のAlを530〜830℃の温度域での温間押圧加
工等公知の方法によつて一軸性の均質微細な
〔001〕繊維組縮とした後、軸方向へ、塑性加工停
止状態を介して、複数回に分割した圧縮加工を施
す。換言すれば、巨視的な正の塑性歪を特定の一
方向に与えた後、同一方向に負の塑性歪を複数回
に分割して与えるものである。この圧縮加工で
は、少なくとも対数歪の絶対値(以下単に対数歪
という)で0.1の全ひずみ量の加工率が必要であ
るが、これは、公知のMn―Al―C系合金磁石の
製造法において必要とされている自由圧縮歪に比
して著しく低いものである。また所要加工荷重は
公知の製造法に比して、同一条件で約2〜4割も
低下する。更に極めて高速の加工が可能となり、
高い生産性が得られることも効果の一つである。
また本発明による永久磁石には、不変形帯に起因
する粗大結晶域などが存在せず、機械的強度や機
械加工性などが均質で高い。 本発明では負の塑性歪を与える際、少なくとも
対数歪で0.1までは自由圧縮であることを必須要
件とする。公知技術として、一軸異方性の角柱状
磁石の軸方向へ温間圧縮加工を施した例がある
が、その場合は一対の側面を当初より型によつて
規制しており、自由圧縮ではない。またその目的
も一軸異方性からそれに垂直な一軸への磁化容易
方向の転換である。前記公知技術による磁化容易
方向の一方向への転換には、約60〜70%以上の加
工を要し、これは対数歪として約0.9〜1.2以上と
いう値である。 一方、本発明では、実施例に示す様に対数歪で
0.1以上の自由圧縮加工を施すことにより、圧縮
方向に垂直な全ての方向に高い磁気特性を得るこ
とができる。ここで、全ての方向とは、単に放射
状の全ての径方向と言う意味ではなく、弦方向も
含む平面内の全ての方向である。従つて、得られ
た磁石は、一軸異方性ではない。また磁石内部で
弦方向への磁気特性が優れていることから、外周
多極着磁に対しては、径方向異方性磁石よりも有
利である。 さらに、本発明のように、圧縮加工を塑性加工
停止状態を介して、複数回に分割して施した場
合、全圧縮歪量が等しい連続的な圧縮加工を施し
たものより、径・弦方向を含む一平面内のすべて
の方向のBrが高くなる傾向があり、しかも分割
回数が多くなるほどその傾向が強い。特に、対数
歪で0.1以上の圧縮加工を施した後、塑性加工を
停止して再び圧縮加工を施した場合に、この傾向
が強くあらわれ、全圧縮歪量が等しい連続的な圧
縮加工を施した場合よりBrが約0.2kG高くなる。 この様に連続的な圧縮加工を施したものより塑
性加工停止状態を介して複数回に分割して施した
方がBrが高くなる原因については、まだよく解
明されていないが、多結晶Mn―Al―C系合金磁
石特有の変形機構と回復現象などが関与している
ものと考えられる。すなわち、個々のτ相結晶粒
が本合金磁石特有のマルテンサイト的方位転換を
行つた後、加工温度域で静的回復を経て更に繰り
返して圧縮加工を受けることによりBrが上昇す
るものと考えられる。本発明の合金磁石は多結晶
体であり、上述の効果は、統計的に微少な歪量か
らも表れはじめ、更に大多数の結晶粒について上
記方位転換が進行して巨視的に磁化容易方向の転
換がほぼ完了する0.1の対数歪を経た後の静的回
復の効果が特に著しい。 対数歪で0.1以上の自由圧縮加工を経た後は、
目的に応じては、側面を規制した圧縮加工を施す
ことができる。例えば外周形状を成形することを
目的とした型据込加工、また成形までに至らずと
も外周研削しろを減ずるための部分的規制等であ
る。 以下、本発明を実施例により詳細に説明する。 実施例 1 配合組成で70%のMn、29.5%のAl、及び0.5%
のCを溶解鋳造し、直径40mm、長さ30mmの円柱状
ビレツトを作製した。このビレツトを1100℃で2
時間保持した後、500℃まで風冷し、600℃で20分
間保持する熱処理を行つた。次に潤滑剤を介し
て、720℃の温度で直径15mmまでの温間押出加工
を行つた。この押出棒を長さ20mmに切断した後、
潤滑剤を介して加工温度680℃で圧縮加工を施し
た後、塑性加工を停止して、再び圧縮加工を施し
た。圧縮加工において、最初に与えた圧縮軸方向
の歪を対数歪でεとし、15秒間塑性加工を停止
して再び圧縮加工を行い、その時の歪とεを加
えたものを対数歪でεとした。表に示すように
全歪量が異なる実験を3点行つた。
The present invention relates to a method for manufacturing a high-performance outer circumference magnetized polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet. Mn-Al-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, Llo-type regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element, with no additives other than impurities. Multi-component alloy magnets are known, including ternary alloy magnets containing no elements and quaternary or higher alloy magnets containing a small amount of additional elements. Further, as a manufacturing method of this Mn--Al--C alloy magnet, in addition to the method of casting and heat treatment, methods including a warm plastic working process such as warm extrusion are known. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability. In addition to isotropic magnets, compression processing is known as a method for manufacturing Mn--Al--C alloy magnets for outer periphery magnetization, and high magnetic properties are obtained in the radial direction. However, there are problems such as a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed zones is unavoidable. The present inventors applied warm free compression processing in the anisotropic direction to a uniaxially anisotropic polycrystalline Mn-Al-C alloy magnet obtained in advance by a known method such as warm extrusion processing, in particular by stopping plastic processing. It has been found that the above-mentioned problems can be solved by performing compression processing divided into multiple times depending on the state. That is, known Mn-Al-C alloy for magnets,
For example, 68-73% by weight of Mn (hereinafter simply expressed as %)
(1/10Mn-6.6) to (1/3Mn-22.2)% of C and the balance of Al are processed into uniaxial, homogeneous, fine particles by a known method such as warm pressing in a temperature range of 530 to 830°C. [001] After fiber recombination, compression processing is performed in the axial direction through a state where plastic processing is stopped and divided into multiple times. In other words, after applying a macroscopic positive plastic strain in one specific direction, a negative plastic strain is applied in the same direction in a plurality of divided times. In this compression processing, a processing rate of at least 0.1 in the absolute value of logarithmic strain (hereinafter simply referred to as logarithmic strain) is required, which is different from the known manufacturing method for Mn-Al-C alloy magnets. This is significantly lower than the required free compressive strain. Moreover, the required processing load is reduced by about 20 to 40% under the same conditions compared to known manufacturing methods. Furthermore, extremely high-speed processing is possible,
One of the effects is that high productivity can be obtained.
Further, the permanent magnet according to the present invention does not have coarse crystal regions caused by indeformation zones, and has uniform and high mechanical strength and machinability. In the present invention, when applying negative plastic strain, it is an essential requirement that there is free compression up to at least 0.1 in logarithmic strain. As a known technique, there is an example of performing warm compression processing in the axial direction of a uniaxially anisotropic prismatic magnet, but in that case, a pair of side surfaces are restricted by a mold from the beginning, and it is not free compression. . The purpose is also to change the direction of easy magnetization from uniaxial anisotropy to uniaxial direction perpendicular to it. Converting the direction of easy magnetization to one direction using the known technique requires processing of about 60 to 70% or more, which is a logarithmic strain of about 0.9 to 1.2 or more. On the other hand, in the present invention, as shown in the example, logarithmic distortion is used.
By applying a free compression process of 0.1 or more, high magnetic properties can be obtained in all directions perpendicular to the compression direction. Here, all directions do not simply mean all radial directions, but all directions within a plane including chordal directions. Therefore, the obtained magnet is not uniaxially anisotropic. Furthermore, since magnetic properties in the string direction inside the magnet are excellent, it is more advantageous than radially anisotropic magnets for outer circumferential multi-pole magnetization. Furthermore, as in the present invention, when the compression process is divided into multiple times while the plastic process is stopped, the radial and chordwise There is a tendency for Br to increase in all directions within one plane including , and this tendency becomes stronger as the number of divisions increases. In particular, this tendency appears strongly when compression processing with a logarithmic strain of 0.1 or more is performed, plastic processing is stopped, and compression processing is performed again. Br will be approximately 0.2kG higher than in the case. The reason why Br is higher when compression is applied in multiple stages through a stopped state of plastic working than when compression is applied continuously in this way is not yet well understood, but polycrystalline Mn-- It is thought that the deformation mechanism and recovery phenomenon peculiar to Al--C alloy magnets are involved. In other words, it is thought that after the individual τ phase crystal grains undergo a martensitic orientation change unique to this alloy magnet, Br increases by undergoing static recovery in the processing temperature range and then being subjected to repeated compression processing. . The alloy magnet of the present invention is a polycrystalline body, and the above-mentioned effect begins to appear even from a statistically minute amount of strain, and the above-mentioned orientation change progresses for the majority of crystal grains, macroscopically changing the direction of easy magnetization. The effect of static recovery after a logarithmic strain of 0.1, when the conversion is almost complete, is especially remarkable. After undergoing free compression processing with logarithmic strain of 0.1 or more,
Depending on the purpose, compression processing with restricted side surfaces can be applied. For example, this includes mold upsetting for the purpose of shaping the outer periphery, and partial regulation to reduce the margin for grinding the outer periphery even before molding. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 Blend composition: 70% Mn, 29.5% Al, and 0.5%
C was melted and cast to produce a cylindrical billet with a diameter of 40 mm and a length of 30 mm. This billet was heated to 1100℃ for 2 hours.
After holding for an hour, heat treatment was performed by cooling with air to 500°C and holding at 600°C for 20 minutes. Next, warm extrusion processing was performed using a lubricant at a temperature of 720°C to a diameter of up to 15 mm. After cutting this extruded rod to a length of 20 mm,
After compression processing was performed at a processing temperature of 680°C via a lubricant, plastic working was stopped and compression processing was performed again. In compression processing, the initially applied strain in the compression axial direction is defined as a logarithmic strain of ε 1 , the plastic processing is stopped for 15 seconds, compression processing is performed again, and the resulting strain plus ε 1 is defined as a logarithmic strain of ε. It was set as 2 . As shown in the table, three experiments were conducted with different amounts of total strain.

【表】 なお、加工速度は平均歪速度で0.4(sec-1)と
した。ここで平均歪速度とは、圧縮加工によつて
付与された圧縮軸方向の対数歪の絶対値をその加
工に実質的に要した時間で除したものである。 加工後の試料の外周に近い部分から、一片が約
6mmの立方体を各辺が圧縮軸方向,径方向および
弦方向に平行になるように切り出し、磁気測定を
行つた。圧縮歪に対する残留磁束密度(Br)の
変化を第1図の実線及び破線で示す。比較の為
に、前述と同一の押出棒を長さ20mmに切断し、潤
滑剤を介して、加工温度を680℃、平均歪速度0.4
(sec-1)として所定の圧縮歪まで連続加工した試
料のBrの圧縮歪に対する変化を第1図の一点鎖
線と二点鎖線で示す。横軸は、対数歪で表した。 このように温間圧縮加工を塑性加工停止状態を
介して複数回に分割して施すことにより、連続的
に圧縮加工を施すよりも、Brが大きいものが得
られる。また、磁気特性は、径方向および弦方向
にほぼ等しく、径,弦方向のみならず径,弦方向
を含む平面内の全ての方向に同等の磁気特性が得
られることが詳細な実験の結果判明した。これは
外周多極着磁には極めて有利な特徴といえる。 実施例 2 配合組成で69.5%のMn,29.3%のAl,0.5%の
C,0.7%のNiを溶解鋳造し、直径40mm、長さ40
mmの円柱状ビレツトを作製した。このビレツトを
1100℃で2時間保持した後、常温まで放冷した。
次に潤滑剤を介して720℃の温度で直径18mmまで
の温間押出加工を行つた。押出棒を長さ25mmに切
断し、潤滑剤を介し、加工温度680℃で第2図に
示す圧縮加工を施した。この図でxとは変位量
(mm)であり、圧縮加工前のビレツトの高さから
圧縮加工中のある任意の時間のビレツトの高さを
差し引いた値である。 この磁石の外周部に近い部分から一辺が約6mm
の立方体を各辺が圧縮軸方向,径方向及び弦方向
に平行になるように切り出し、磁気測定を行つ
た。磁気特性は径方向及び弦方向にほぼ等しく、
Br≒4.7kG、Hc≒2.4kOe、(BH)max≒4.0MG・
Oeであつた。 実施例 3 実施例1と同一の押出棒を長さ20mmに切断し、
潤滑剤を介し、加工温度680℃で第3図に示す圧
縮加工を施した。この磁石の外周部に近い部分か
ら一辺が約6mmの立方体を各辺が圧縮軸方向,径
方向及び弦方向に平行になるように切り出し、磁
気測定を行つた。磁気特性は径方向及び弦方向に
ほぼ等しく、Br≒4.8kG,Hc≒2.6kOe,(BH)
max≒4.2MG・Oeであつた。 実施例 4 配合組成で69.5%のMn、29.3%のAl、0.5%の
C、0.7%のNi及び0.1%のTiを溶解鋳造し、直径
40mm、長さ40mmの円柱状のビレツトを作製した。
このビレツトを1100℃で2時間保持した後600℃
まで風冷し、600℃で30分間保持する熱処理を行
つた。次に、潤滑剤を介して720℃の温度で直径
18mmまでの温間押出加工を行つた。押出棒を長さ
25mmに切断した。潤滑剤を介し、加工温度660℃
で第4図に示す圧縮加工を施した。 この磁石の外周部に近い部分から一辺が約6mm
の立方体を各辺が圧縮軸方向,径方向及び弦方向
に平行になるように切り出し磁気測定を行つた。
径,弦方向では、Br≒4.7kG,Hc≒2.6kOe,
(BH)max≒3.9MG・Oeであつた。 実施例 5 実施例4と同一押出棒を長さ20mmに切断し、潤
滑剤を介して660℃で第5図に示す圧縮加工を施
した。同様に磁気特性を測定したところ、Br≒
4.6kG,Hc≒2.4kOe,(BH)max≒3.7MG・Oe
であつた。 本発明は、実施例によつて述べた様に、予め温
間押出加工等の公知の方法によつて作製された特
定の一方向に磁化容易方向を有する多結晶マンガ
ン―アルミニウム―炭素系合金磁石に、前記特定
方向への温間自由圧縮加工を少なくとも対数歪で
0.1以上施し、しかも塑性加工停止状態を介して
複数回に分割して施すことを特徴とする。 また、この圧縮加工の可能な温度範囲について
は、550〜830℃の温度領域において加工が行えた
が、780℃を超える温度では磁気特性がかなり低
下した。より望ましい温度範囲としては600〜750
℃であつた。更に、本発明の製造法は低速から高
速まで幅広い加工速度範囲にわたつて適用され
る。 また、圧縮加工を塑性加工停止状態を介して複
数回に分割して施すことにより、全圧縮歪量が等
しい連続的な圧縮加工に比してBrが高くなる傾
向があり、特に、対数歪で0.1以上の圧縮加工を
施した後、塑性加工を停止して再び圧縮加工を施
した場合にこの傾向が著しい。 本発明で得られた永久磁石は、平面状に等しく
優れた磁気特性を有し、外周着磁用、特に外周多
極着磁用磁石として有用であり、モータ、ジエネ
レータ、メータ類など多方面への応用が可能であ
る。
[Table] The processing speed was an average strain rate of 0.4 (sec -1 ). Here, the average strain rate is the absolute value of the logarithmic strain in the compression axial direction imparted by compression processing divided by the time substantially required for the processing. A cube approximately 6 mm in length was cut out from a portion near the outer circumference of the sample after processing, with each side parallel to the compression axis direction, radial direction, and chord direction, and magnetic measurements were performed. Changes in residual magnetic flux density (Br) with respect to compressive strain are shown by solid and broken lines in FIG. For comparison, the same extruded rod as above was cut to a length of 20 mm, and processed using lubricant at a processing temperature of 680°C and an average strain rate of 0.4.
The change in Br with respect to the compressive strain of the sample that was continuously processed to a predetermined compressive strain as (sec -1 ) is shown by the dashed-dotted line and the dashed-double-dotted line in Figure 1. The horizontal axis represents logarithmic strain. In this way, by dividing the warm compression working into a plurality of times while stopping the plastic working, a product with a larger Br can be obtained than by performing the compression working continuously. In addition, detailed experiments revealed that the magnetic properties are almost equal in the radial and chordal directions, and that the same magnetic properties can be obtained not only in the radial and chordal directions but also in all directions within the plane including the radial and chordal directions. did. This can be said to be an extremely advantageous feature for outer periphery multi-pole magnetization. Example 2 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C, and 0.7% Ni, with a diameter of 40 mm and a length of 40 mm.
A cylindrical billet of mm was fabricated. This billet
After being held at 1100°C for 2 hours, it was allowed to cool to room temperature.
Next, warm extrusion processing to a diameter of 18 mm was performed at a temperature of 720°C via a lubricant. The extruded rod was cut to a length of 25 mm, and compressed using a lubricant at a processing temperature of 680°C as shown in FIG. 2. In this figure, x is the amount of displacement (mm), which is the value obtained by subtracting the height of the billet at an arbitrary time during compression from the height of the billet before compression. Approximately 6mm on one side from the part near the outer periphery of this magnet
A cube was cut out so that each side was parallel to the compression axis direction, radial direction, and chord direction, and magnetic measurements were performed. The magnetic properties are almost equal in the radial and chordal directions,
Br≒4.7kG, Hc≒2.4kOe, (BH)max≒4.0MG・
It was Oe. Example 3 The same extruded rod as in Example 1 was cut into a length of 20 mm,
Compression processing as shown in Fig. 3 was performed at a processing temperature of 680°C using a lubricant. A cube with a side of about 6 mm was cut out from a portion near the outer periphery of this magnet so that each side was parallel to the compression axis direction, the radial direction, and the chord direction, and magnetic measurements were performed. The magnetic properties are almost equal in the radial and chordal directions, Br≒4.8kG, Hc≒2.6kOe, (BH)
The max was 4.2MG・Oe. Example 4 A mixture of 69.5% Mn, 29.3% Al, 0.5% C, 0.7% Ni and 0.1% Ti was melted and cast, and the diameter
A cylindrical billet with a diameter of 40 mm and a length of 40 mm was prepared.
This billet was held at 1100℃ for 2 hours and then heated to 600℃.
Heat treatment was carried out by air-cooling the sample to 600°C and holding it for 30 minutes. Then the diameter at a temperature of 720℃ through lubricant
Warm extrusion processing up to 18mm was performed. extruded rod length
Cut to 25mm. Through lubricant, processing temperature 660℃
Then, the compression process shown in FIG. 4 was performed. Approximately 6mm on one side from the part near the outer periphery of this magnet
A cube was cut out so that each side was parallel to the compression axis direction, radial direction, and chord direction, and magnetic measurements were performed.
In the radial and chordal directions, Br≒4.7kG, Hc≒2.6kOe,
(BH)max≒3.9MG・Oe. Example 5 The same extruded rod as in Example 4 was cut to a length of 20 mm, and compressed as shown in FIG. 5 at 660° C. using a lubricant. When we measured the magnetic properties in the same way, we found that Br≒
4.6kG, Hc≒2.4kOe, (BH)max≒3.7MG・Oe
It was hot. As described in the examples, the present invention provides a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in one specific direction, which is manufactured in advance by a known method such as warm extrusion. The warm free compression process in the specific direction is performed with at least logarithmic strain.
It is characterized in that it is applied by 0.1 or more, and that it is applied in multiple times while the plastic working is stopped. Further, regarding the temperature range in which this compression processing is possible, processing was possible in the temperature range of 550 to 830°C, but the magnetic properties were considerably degraded at temperatures exceeding 780°C. A more desirable temperature range is 600-750
It was warm at ℃. Furthermore, the manufacturing method of the present invention can be applied over a wide processing speed range from low speed to high speed. In addition, by performing compression processing in multiple stages with the plastic processing stopped, Br tends to increase compared to continuous compression processing where the total amount of compressive strain is equal. This tendency is remarkable when compression processing of 0.1 or more is performed, then plastic processing is stopped and compression processing is performed again. The permanent magnet obtained by the present invention has equally excellent magnetic properties in planar form, and is useful as a magnet for outer periphery magnetization, especially for outer periphery multipolar magnetization, and is used in many fields such as motors, generators, and meters. can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1での対数歪で表した圧縮率に
対する残留磁束密度(Br)の変化を示す図、第
2図は実施例2での圧縮加工の変位と時間の関係
を示す図、第3図は実施例3での圧縮加工の変位
と時間の関係を示す図、第4図は実施例4での圧
縮加工の変位と時間の関係を示す図、第5図は実
施例5での圧縮加工の変位と時間の関係を示す。
FIG. 1 is a diagram showing the change in residual magnetic flux density (Br) with respect to the compressibility expressed by logarithmic strain in Example 1, and FIG. 2 is a diagram showing the relationship between displacement and time during compression processing in Example 2. FIG. 3 is a diagram showing the relationship between displacement and time during compression processing in Example 3, FIG. 4 is a diagram showing the relationship between displacement and time during compression processing in Example 4, and FIG. 5 is a diagram showing the relationship between displacement and time during compression processing in Example 5. The relationship between displacement and time during compression processing is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 特定の一方向に磁化容易方向を有する多結晶
マンガン―アルミニウム―炭素系合金磁石に、
550〜780℃の温度において前記特定方向への圧縮
加工を対数歪の絶対値で0.1以上施し、かつ、少
なくとも対数歪の絶対値で0.1までは自由圧縮で
あり、同時に前記圧縮加工工程は塑性加工停止状
態を介して複数回に分割して施すことを特徴とす
るマンガン―アルミニウム―炭素系合金磁石の製
造法。
1 A polycrystalline manganese-aluminum-carbon alloy magnet with easy magnetization direction in one specific direction,
Compression processing in the specific direction is performed at a temperature of 550 to 780°C with an absolute value of logarithmic strain of 0.1 or more, and at least up to 0.1 in absolute value of logarithmic strain is free compression, and at the same time, the compression processing process is plastic processing. A method for manufacturing a manganese-aluminum-carbon alloy magnet, which is characterized in that the application is performed in multiple steps in a stopped state.
JP4936780A 1980-02-07 1980-04-14 Manufacture of manganese-aluminum-carbon alloy magnet Granted JPS56146868A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4936780A JPS56146868A (en) 1980-04-14 1980-04-14 Manufacture of manganese-aluminum-carbon alloy magnet
US06/231,625 US4404046A (en) 1980-02-07 1981-02-05 Method of making permanent magnet of Mn-Al-C alloy
DE8181300510T DE3168411D1 (en) 1980-02-07 1981-02-06 Method of making permanent magnet of mn-al-c alloy
EP81300510A EP0034058B1 (en) 1980-02-07 1981-02-06 Method of making permanent magnet of mn-al-c alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4936780A JPS56146868A (en) 1980-04-14 1980-04-14 Manufacture of manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS56146868A JPS56146868A (en) 1981-11-14
JPS6144942B2 true JPS6144942B2 (en) 1986-10-06

Family

ID=12829041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4936780A Granted JPS56146868A (en) 1980-02-07 1980-04-14 Manufacture of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS56146868A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206105A (en) * 1982-05-26 1983-12-01 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192303A (en) * 1982-05-06 1983-11-09 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS6059721A (en) * 1983-09-13 1985-04-06 Matsushita Electric Ind Co Ltd Preparation of manganese-aluminium-carbon alloy magnet
JPS6059720A (en) * 1983-09-13 1985-04-06 Matsushita Electric Ind Co Ltd Preparation of manganese-aluminium-carbon alloy magnet
JPS6059055A (en) * 1983-09-13 1985-04-05 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS6059722A (en) * 1983-09-13 1985-04-06 Matsushita Electric Ind Co Ltd Preparation of manganese-aluminium-carbon alloy magnet

Also Published As

Publication number Publication date
JPS56146868A (en) 1981-11-14

Similar Documents

Publication Publication Date Title
JPS6144942B2 (en)
EP0034058B1 (en) Method of making permanent magnet of mn-al-c alloy
JPS6144941B2 (en)
JPS61276303A (en) Manufacture of rare earths permanent magnet
JPH0479122B2 (en)
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
US4021273A (en) Hysteresis alloy
JPS63196014A (en) Magnetically anisotropic magnet and manufacture thereof
JPS63119204A (en) High-performance rare earth magnet
JPH0311521B2 (en)
JPH037745B2 (en)
JPH04246103A (en) Production of r2co17 type bond magnet powder
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0680606B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH03253001A (en) Iron-based rare earth magnet and manufacture thereof
JPH056813A (en) Circular magnet having characteristic distribution and manufacture thereof
JPS58182208A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet
JPH01171217A (en) Manufacture of cylindrical rare earth-fe-b magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0340922B2 (en)
JPS62262404A (en) Manufacture of rare earth-iron permanent magnet
JPH0418704A (en) Manufacture of permanent magnet
JPH04196107A (en) Manufacture of permanent magnet