JPH04196107A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH04196107A
JPH04196107A JP2321758A JP32175890A JPH04196107A JP H04196107 A JPH04196107 A JP H04196107A JP 2321758 A JP2321758 A JP 2321758A JP 32175890 A JP32175890 A JP 32175890A JP H04196107 A JPH04196107 A JP H04196107A
Authority
JP
Japan
Prior art keywords
ingot
alloy
permanent magnet
cast
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321758A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Seiji Ihara
清二 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2321758A priority Critical patent/JPH04196107A/en
Publication of JPH04196107A publication Critical patent/JPH04196107A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form a permanent magnet, which is high in magnetic characteristics and has a good economical efficiency, by a method wherein when an alloy containing specified elements and the like as its basic components is cast, an alloy ingot is formed while the surface of molten alloy is pressed. CONSTITUTION:When an alloy containing one kind of rare earth elements containing Y, one kind of transition metal elements and boron as its basic components is cast, an alloy ingot is cast while a pressure is applied to the surface of molten alloy in a casting mold. By this pressing, the generation of air gaps in the ingot and the casting mold, which is caused by solidification and shrinkage, is inhibited, the heat transfer of the ingot and the casting mold is improved, an ingot of a fine columunar crystal structure is formed and when this ingot is subjected to hot processing and heat treatment, a permanent magnet, which is high in magnetic characteristics and has no gas defect, is formed at a good economical efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素と遷移金属とボロンを基本成分と
する永久磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a permanent magnet whose basic components are rare earth elements, transition metals, and boron.

[従来の技術] 従来、希土類−遷移金属−ボロン系の永久磁石には次の
4通りの方法による磁石が報告されてぃ(1)粉末冶金
法に基づく焼結法による磁石。
[Prior Art] Conventionally, the following four methods have been reported for rare earth-transition metal-boron based permanent magnets: (1) magnets using a sintering method based on powder metallurgy;

(参考文献1)・ (2)アモルファス合金を製造するのに用いる急冷薄帯
製造装置で厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂で結合する磁石。 (参考文献2) (3)(2)の方法で使用した同じ薄片を、2段階のホ
ットプレス法で機械的配向処理を施した磁石。 (参考
文献3) (4)鋳造インゴットを1段階の熱間加工により、機械
的配向を施し、さらに熱処理を施した磁石。
(Reference Document 1) (2) A magnet in which a quenched thin strip with a thickness of about 30 μm is made using a quenched ribbon production device used to produce an amorphous alloy, and the thin pieces are bonded with resin. (Reference Document 2) (3) A magnet obtained by mechanically aligning the same flakes used in method (2) using a two-step hot press method. (Reference Document 3) (4) A magnet obtained by subjecting a cast ingot to mechanical orientation through one-step hot working and further heat treatment.

(参考文献4) 参考文献 1.特開昭59−46008号公報〃号公報
間昭59−211549号公報/ノ   3.特開昭6
0−100402号公報7/   4、特開昭63−1
51905号公報次に上記の従来方法について説明する
(Reference 4) Reference 1. 3. Japanese Unexamined Patent Publication No. 59-46008 and Publication No. 59-211549/No. Tokukai Showa 6
0-100402 Publication 7/4, JP-A-63-1
No. 51905 Next, the above conventional method will be explained.

先ず(1)の焼結法では、溶解・鋳造により合金インゴ
ットを作製し、粉砕して適当な粒度(数μm)の磁石粉
を得る。磁石粉は成形助材のバインダーと混練され、磁
場中でプレス成形されて成形体ができあがる。成形体は
アルゴン中で110°C前後の温度で1時間焼結され、
その後室温まで急冷される。焼結後、600°C前後の
温度で熱処理することにより保磁力を向上させる。
First, in the sintering method (1), an alloy ingot is produced by melting and casting, and then pulverized to obtain magnet powder with an appropriate particle size (several μm). Magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact was sintered in argon at a temperature of around 110°C for 1 hour.
It is then rapidly cooled to room temperature. After sintering, the coercive force is improved by heat treatment at a temperature of around 600°C.

(2)メルトスピニング法による急冷薄片を用いた樹脂
結合方法では、先ず急冷薄帯製造装置の最適な回転数で
R−TM−B合金の急冷薄帯をつくる。得られた厚さ3
0μmのリボン状薄帯は、直径が100OA’以下の結
晶の集合体であり、脆くて割れ易く、結晶粒は等方向に
分布しているので、磁気的にも等方性である。この薄帯
を適当な粒度に粉砕して、樹脂と混練してプレス成形す
る。
(2) In the resin bonding method using quenched flakes by melt spinning, first, a quenched ribbon of R-TM-B alloy is produced at an optimal rotation speed of a quenched ribbon manufacturing apparatus. Obtained thickness 3
A ribbon-like thin strip of 0 μm is an aggregate of crystals with a diameter of 100 OA' or less, and is brittle and easily broken. Since the crystal grains are distributed in the same direction, it is also magnetically isotropic. This ribbon is pulverized to an appropriate particle size, kneaded with resin, and press-molded.

(3)の製造方法は、 (2)におけるリボン状急冷薄
帯あるいは薄片を、真空中あるいは不活性雰囲気中で2
段階ホットプレス法と呼ばれる方法で緻密で異方性を有
するR−TM−B磁石を得るものである。
In the manufacturing method (3), the ribbon-like quenched ribbon or flake in (2) is heated in a vacuum or in an inert atmosphere.
A dense and anisotropic R-TM-B magnet is obtained by a method called a stepwise hot pressing method.

このプレス過程では一軸性の圧力が加えられ、磁化容易
軸がプレス方向と平行に配向して、合金は異方化する。
In this pressing process, uniaxial pressure is applied, the axis of easy magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic.

尚、最初のメルトスピニング法で作られるリボン状薄帯
の結晶粒は、それが最大の保磁力を示すときの粒径より
も小さめにしておき、後のホットプレス中に結晶粒の粗
大化が生じて最適の粒径になるようにしておく。
In addition, the crystal grains of the ribbon-like ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit the maximum coercive force, to avoid coarsening of the crystal grains during the subsequent hot pressing. Allow the particles to grow to the optimum particle size.

(4)の製造方法は、 (1)と同様に溶解・鋳造によ
り作製した合金インゴットを、真空中あるいは、不活性
ガス雰囲気中で熱間加工することにより異方性を有し、
かつ熱処理に良好な磁気特性を有するR −T M −
B 磁石を得るものである。
The manufacturing method of (4) is to obtain anisotropy by hot working an alloy ingot produced by melting and casting in the same manner as in (1) in a vacuum or in an inert gas atmosphere,
and has good magnetic properties for heat treatment.
B. Obtains a magnet.

この方法では、異方性方向は(3)と同じく加工方向に
あるが、熱間加工は一段階のみでよく、結晶粒も、加工
によりむしろ小さくなるという違いがある。
In this method, the anisotropy direction is in the processing direction, as in (3), but the difference is that only one step of hot working is required and the crystal grains are also made smaller by the working.

[発明が解決しようとする課題] 前述の従来技術を用いることにより一応R−TM−B系
永久磁石は製造できるが、これらの製造方法には吹のよ
うな欠点を有している。
[Problems to be Solved by the Invention] Although it is possible to manufacture R-TM-B permanent magnets by using the above-mentioned conventional techniques, these manufacturing methods have drawbacks such as blowing.

(1)の焼結法は、合金を粉末にすることが必須である
が、R−T M−B系永久磁石は酸素に対して非常に活
性であり、そのため、粉末にするという工程を経ると表
面積が増え、酸化が激しくなり焼結体中の酸素温度はど
うしても高くなってしまう。また、粉末を成形するとき
に、たとえばステアリン酸亜鉛のような成形助材を使用
しなければならない。これは焼結工程で前もって取り除
かれるのではあるが、数割は磁石の中に炭素の形で残っ
てしまう。この炭素はR−T M−B系永久磁石の磁気
性能を低下させてしまい好ましくない。
In the sintering method (1), it is essential to turn the alloy into powder, but R-T M-B permanent magnets are very active against oxygen, so it is necessary to go through the process of turning the alloy into powder. The surface area increases, oxidation becomes more intense, and the oxygen temperature in the sintered body inevitably rises. Also, shaping aids, such as zinc stearate, must be used when compacting the powder. Although this is removed in advance during the sintering process, several tenths of it remains in the magnet in the form of carbon. This carbon is undesirable because it deteriorates the magnetic performance of the RT M-B permanent magnet.

成形助材を加えてプレス成形した後の成形体はグリーン
体と言われる。これはたいへん脆く、ハンドリングが難
しい。従って、焼結炉にきれいに並べて入れるのは相当
の手間がががることも大きな欠点である。
The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle. Therefore, another major drawback is that it takes a considerable amount of time and effort to neatly line up the materials in the sintering furnace.

また、異方性の磁石を得るためには磁場中でプレス成形
しなければならず、磁場電源、コイルなどの大きな装置
が必要となる。
Furthermore, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, which requires large equipment such as a magnetic field power source and a coil.

以上の欠点があるので、−船釣に言ってR−TM−B系
の焼結磁石の製造には高価な設備が必要になるばかりで
はなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう。従って、比較的原料の安いR−TM−B
系磁石の長所を活かすことができるとは言い難い。
Because of the above drawbacks, - For boat fishing, manufacturing R-TM-B sintered magnets not only requires expensive equipment, but also reduces production efficiency and increases the manufacturing cost of magnets. turn into. Therefore, R-TM-B, which uses relatively cheap raw materials,
It is difficult to say that the advantages of magnets can be fully utilized.

吹に、 (2)並びに(3)の方法であるが、これらの
方法は真空メルトスピニング装置を使用するが、この装
置は現在ではたいへん生産性が悪くしかも高価である。
Furthermore, methods (2) and (3) use vacuum melt spinning equipment, which currently has very low productivity and is expensive.

(2)の方法は原理的に等方性であるので、低いエネル
ギー積であり、ビステリシスループの角形性も良くない
ので温度特性に対しても、使用する面においても不利で
ある。
Since the method (2) is isotropic in principle, the energy product is low, and the squareness of the bisteresis loop is not good, so it is disadvantageous in terms of temperature characteristics and usage.

(3)の方法では異方性の磁石が得られるが、ホットプ
レスを2段階に使うので、実際に量産を考えると大変に
非効率になることは否めないであろう。
Although method (3) yields an anisotropic magnet, since hot pressing is used in two stages, it cannot be denied that it will be extremely inefficient when considering mass production.

また、この方法では高温、たとえば800 ’C以上で
は結晶粒の粗大化が著しく、それによって保磁力が極端
に低下し、実用的な永久磁石にはならない。
In addition, in this method, at high temperatures, for example, 800'C or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force, making it impossible to produce a practical permanent magnet.

(4)の方法は、粉末工程を含まず、ホットプレスが一
段階でよい為に、最も製造工程が簡略化されるが、性能
的には(1)(3)に比してやや劣るという問題があっ
た。
Method (4) does not involve a powder process and requires only one step of hot pressing, which simplifies the manufacturing process the most, but the problem is that it is slightly inferior to methods (1) and (3) in terms of performance. was there.

本発明は、以」二の従来技術のうち特に(4)の性能面
での欠点を解決するものであり、その目的とするところ
は、高性能かつ低コストなR−TM−B系永久磁石を提
供するところにある。
The present invention is intended to solve the performance disadvantage (4) in particular of the following two conventional techniques, and its purpose is to provide a high-performance and low-cost R-TM-B permanent magnet. It is in a place where we provide.

[課題を解決するための手段] 本発明は希土類元素(ただしYを含む)と遷移金属とホ
ロンを基本成分とする合金を鋳造した後、熱間加工する
工程と熱処理工程を含む永久磁石の製造方法において、
上記鋳造時に、鋳型内の合金溶湯表面に圧力を加えなが
ら合金インゴットを鋳造することを特徴とする。
[Means for Solving the Problems] The present invention involves the production of a permanent magnet, which includes a step of hot working and a heat treatment step after casting an alloy whose basic components are a rare earth element (including Y), a transition metal, and a holon. In the method,
The method is characterized in that during the above casting, the alloy ingot is cast while applying pressure to the surface of the molten alloy in the mold.

[作用] 本発明者らは、数多くのR−Fe−B系鋳造合金を評価
し、Pr−Fe−B系合金に適当な熱処理を加えれば高
い保磁力が得られることを知見し、更に、この合金を基
に熱間加工による機械的配向処理、添加元素による磁気
特性の改善効果を研究し、高性能の永久磁石の製造法を
知見した。しかし上記の方法に於て、鋳造時に通常の金
を中に鋳込んだ場合、金型とインゴット間にエアーギャ
ップが生じ、インゴットから金型への熱移動■が急激に
低下し、柱状晶の発達を妨げるとともに粒径の粗大化を
招く。このような因子は、熱間加工工程及び熱処理工程
を経て得られる磁気性能の低下を招く。
[Function] The present inventors evaluated a number of R-Fe-B based cast alloys and found that a high coercive force can be obtained by applying appropriate heat treatment to the Pr-Fe-B based alloy, and further, Based on this alloy, we studied mechanical orientation treatment through hot working and the effect of additive elements on improving magnetic properties, and found a method for manufacturing high-performance permanent magnets. However, in the above method, if ordinary gold is poured into the mold during casting, an air gap will occur between the mold and the ingot, and the heat transfer from the ingot to the mold will rapidly decrease, resulting in the formation of columnar crystals. This impedes development and causes coarsening of grain size. Such factors lead to a decrease in magnetic performance obtained through hot working and heat treatment steps.

そこで本発明者らは、鋳造時に、鋳型内の合金溶湯表面
に圧力を加えながら凝固させて合金インゴットを1%る
ことにより、ン疑固収糸宿によるインゴットと鋳型間の
エアーギャップの発生を抑制して熱伝達を良好にし、微
細な柱状晶組織からなるインゴットを得た。この様にし
て得られた鋳造インボッ)・に対し、熱間加工工程及び
熱処理工程を施すことにより高性能な永久磁石が得られ
る。また、この様な加圧凝固させたインゴットは通常イ
ンゴットに比べ、ガス欠陥が少ないため機械的強度に優
れ、表面状態も非常にきれいなインゴットが得られる。
Therefore, the inventors of the present invention solved the problem of air gap between the ingot and the mold due to solidification by solidifying the alloy ingot by applying pressure to the surface of the molten alloy in the mold during casting to make the alloy ingot 1%. The heat transfer was suppressed to improve heat transfer, and an ingot consisting of a fine columnar crystal structure was obtained. A high-performance permanent magnet can be obtained by subjecting the thus obtained cast ingot to a hot working step and a heat treatment step. In addition, such an ingot solidified under pressure has fewer gas defects than a normal ingot, so an ingot with excellent mechanical strength and a very clean surface can be obtained.

以下実施例について述べる。Examples will be described below.

[実施例] 第1図に本発明における製造工程図を示す。[Example] FIG. 1 shows a manufacturing process diagram in the present invention.

第2図に本発明による鋳造法の概要と得られるインゴッ
トの概略図を示した。金型内に鋳込まれた溶湯表面に、
予熱されたセラミックス製パンヂによって50MPaの
圧力を加えながら凝固させ、所望のインゴットを得るも
のである。また第3図に比較例として通常の鋳造法の概
要と得られるインゴットの概略図を示す。
FIG. 2 shows an overview of the casting method according to the present invention and a schematic diagram of the obtained ingot. On the surface of the molten metal poured into the mold,
The desired ingot is obtained by solidifying while applying a pressure of 50 MPa using a preheated ceramic punch. Further, FIG. 3 shows an outline of a conventional casting method and a schematic diagram of an obtained ingot as a comparative example.

(実施例1) 本実施例において使用した合金の組成は、Pr17原子
%、Fe76.5原子%、B5原子%、Cu1.5原子
%である。この合金を本発明による」二足第1図のよう
な鋳造法により作成したインゴット(A種とする)と通
常鋳造によるインゴット(B種とする)について、それ
ぞれのインボットから試料片を切り出し、その密度を測
定した。
(Example 1) The composition of the alloy used in this example is 17 atomic % Pr, 76.5 atomic % Fe, 5 atomic % B, and 1.5 atomic % Cu. Ingots made using this alloy according to the present invention by the casting method shown in Figure 1 (specified as type A) and ingots made by conventional casting (specified as type B) were cut out from each ingot. The density was measured.

また組織観察の結果得られたインゴット組織の平均粒径
を測定した。さらにインゴット内部欠陥(ガス欠陥、引
は巣)の発生状況を調べた。この結果を第1表に示す。
Furthermore, the average grain size of the ingot structure obtained as a result of the structure observation was measured. Furthermore, the occurrence of internal defects in the ingot (gas defects, shrinkage cavities) was investigated. The results are shown in Table 1.

第1表 この様に本発明によるインゴットAは、粒径が微細化さ
れており、良好なインゴット組織が得られた。またイン
ゴット内部の欠陥が少なく、このため密度も高くなって
いる。このことから本発明による鋳造法を採用すること
によって良好なインゴツトが得られることが分かった。
Table 1 As shown, the ingot A according to the present invention had a fine grain size and a good ingot structure. In addition, there are fewer defects inside the ingot, which results in a higher density. This indicates that good ingots can be obtained by employing the casting method according to the present invention.

(実施例2) 上記実施例1と同様な各インゴットから試料片を切り出
し、アルゴン雰囲気中に於て1000°C24時間のア
ニール処理を施した後、更にアルゴン雲囲気中475°
C2時間の熱処理を施した後、得られる磁気性能を測定
した。この結果を第2表に示す。
(Example 2) A sample piece was cut out from each ingot similar to Example 1, and after annealing at 1000°C for 24 hours in an argon atmosphere, it was further annealed at 475°C in an argon atmosphere.
After heat treatment for C2 hours, the resulting magnetic performance was measured. The results are shown in Table 2.

第2表 この様に本発明によるインゴットでは熱処理後の磁気性
能において、通常インゴットに比較して優れた磁気性能
が得られることが明かとなった。
Table 2 As shown in Table 2, it has become clear that the ingot according to the present invention has superior magnetic performance after heat treatment compared to the normal ingot.

(実施例3) 上記実施例1と同様な各インゴットから試料片を切り出
し、アルゴン雰囲気中1000°Cに於て熱間プレスを
施した。プレス時にはインゴット試料片に鉄製リングを
つけてプレスした。プレス後上記実施例2と同様な二段
熱処理を施した。この結果得られた磁気性能を第3表に
示す。
(Example 3) Sample pieces were cut out from each ingot similar to that of Example 1, and hot pressed at 1000°C in an argon atmosphere. During pressing, an iron ring was attached to the ingot sample piece. After pressing, the same two-stage heat treatment as in Example 2 was performed. The magnetic performance obtained as a result is shown in Table 3.

第3表 以上のことから、熱間プレス後の磁気性能においても、
本発明によるインゴットの方が高い磁気性能を示すこと
があきらかとなった。
From the above in Table 3, it can be seen that the magnetic performance after hot pressing is
It has become clear that the ingot according to the present invention exhibits higher magnetic performance.

(実施例4) 上記実施例1と同様な各インゴットを金属シース中に封
入し、950°Cに於て加工度75%の熱間圧延を施し
た。熱間圧延後950°06時間の熱処理を施し、さら
に475°C2時間の熱処理を施した。この結果得られ
た磁気性能の結果を第4表に示す。また圧延後の各試料
について3点曲げ試験を行ない、曲げ強度を測定した。
(Example 4) Ingots similar to those in Example 1 were encapsulated in a metal sheath and hot rolled at 950°C with a workability of 75%. After hot rolling, heat treatment was performed at 950°C for 6 hours, and further heat treatment was performed at 475°C for 2 hours. The magnetic performance results obtained are shown in Table 4. Further, a three-point bending test was conducted on each sample after rolling to measure the bending strength.

この結果も併せて第4表に示す。The results are also shown in Table 4.

第4表 以上のように本発明によるインゴットは、熱間圧延後の
磁気性能においても良好な値を得ることができ、機械的
性質にも優れた製品が得られる。
As shown in Table 4 and above, the ingot according to the present invention can obtain good values in magnetic performance after hot rolling, and products with excellent mechanical properties can also be obtained.

(実施例5) 下記第5表に示すような組成の各合金について、上記実
施例と同様に本発明による鋳造法(A種)と通常鋳造法
(B種)による2種類のインゴットを鋳造した。これら
の各インゴットについて実施例3と同様な熱間プレス工
程、および熱処理工程を施した結果得られた磁気性能を
第6表に示す。
(Example 5) For each alloy having the composition shown in Table 5 below, two types of ingots were cast by the casting method according to the present invention (Type A) and the normal casting method (Type B) in the same manner as in the above Examples. . Each of these ingots was subjected to the same hot pressing process and heat treatment process as in Example 3, and the magnetic performance obtained as a result is shown in Table 6.

第5表 第6表 以上のことから、いずれの組成においても本発明の鋳造
法により作成したインゴットの方が優れた磁気性能が得
られることが分かった。
From the results shown in Tables 5 and 6, it was found that in any composition, the ingot produced by the casting method of the present invention had better magnetic performance.

[発明の効果] 以上のように本発明によれば、鋳造時に鋳型内の合金溶
湯表面に圧力を加えて合金インゴットを鋳造することに
よって、従来の鋳造法の欠点であった磁気特性の改善が
なされ、焼結による磁石と同等、もしくはそれ以上の性
能を得ることができる。そのため、製造工程の短縮とい
った鋳造法の長所がさらに助長される。
[Effects of the Invention] As described above, according to the present invention, by casting an alloy ingot by applying pressure to the surface of the molten alloy in the mold during casting, it is possible to improve the magnetic properties, which was a drawback of the conventional casting method. It is possible to achieve performance equivalent to or better than sintered magnets. Therefore, the advantages of the casting method, such as shortening the manufacturing process, are further promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のR−Fe−B系磁石の製造工程図、第
2図は本発明での鋳造法の概要と得られるインゴットの
概略図、第3図は通常鋳造法の概要と得られるインゴッ
トの概略図である。 201.301・・・鋳造金型 202.302・・・合金溶湯 203.303・・・合金インゴット 204    ・・・セラミックス製パンチ以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木喜三部 他1名
Fig. 1 is a manufacturing process diagram of the R-Fe-B magnet of the present invention, Fig. 2 is an outline of the casting method of the invention and a schematic diagram of the obtained ingot, and Fig. 3 is an outline of the ordinary casting method and the obtained ingot. FIG. 201.301... Casting mold 202.302... Molten alloy 203.303... Alloy ingot 204... Ceramic punch or more Applicant: Seiko Epson Co., Ltd. Agent Patent attorney Kizobe Suzuki and others 1 given name

Claims (1)

【特許請求の範囲】[Claims] 希土類元素(ただしYを含む)と遷移金属とボロンを基
本成分とする合金を鋳造した後、熱間加工する工程と熱
処理工程を含む永久磁石の製造方法において、上記鋳造
時に、鋳型内の合金溶湯表面に圧力を加えながら合金イ
ンゴットを鋳造することを特徴とする永久磁石の製造方
法。
In a permanent magnet manufacturing method that includes a step of hot working and a heat treatment step after casting an alloy whose basic components are rare earth elements (including Y), transition metals, and boron, the molten alloy in the mold is A method for producing a permanent magnet, which comprises casting an alloy ingot while applying pressure to the surface.
JP2321758A 1990-11-26 1990-11-26 Manufacture of permanent magnet Pending JPH04196107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321758A JPH04196107A (en) 1990-11-26 1990-11-26 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321758A JPH04196107A (en) 1990-11-26 1990-11-26 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH04196107A true JPH04196107A (en) 1992-07-15

Family

ID=18136119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321758A Pending JPH04196107A (en) 1990-11-26 1990-11-26 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH04196107A (en)

Similar Documents

Publication Publication Date Title
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH04196107A (en) Manufacture of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH0418706A (en) Manufacture of permanent magnet
JPH0418704A (en) Manufacture of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPS63286515A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH04134802A (en) Manufacture of permanent magnet
JPH0422106A (en) Method of manufacturing permanent magnet
JP2631513B2 (en) Manufacturing method of magnetic alloy
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPS63213317A (en) Rare earth iron permanent magnet
KR0122333B1 (en) Al-ni-co permanent magnet alloy producing method
JPH0418705A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63286516A (en) Manufacture of permanent magnet
JPH06244012A (en) Manufacture of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet