JPH0340922B2 - - Google Patents
Info
- Publication number
- JPH0340922B2 JPH0340922B2 JP57072056A JP7205682A JPH0340922B2 JP H0340922 B2 JPH0340922 B2 JP H0340922B2 JP 57072056 A JP57072056 A JP 57072056A JP 7205682 A JP7205682 A JP 7205682A JP H0340922 B2 JPH0340922 B2 JP H0340922B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- plane
- billet
- magnetization
- anisotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005415 magnetization Effects 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910001339 C alloy Inorganic materials 0.000 claims description 4
- -1 manganese-aluminum-carbon Chemical compound 0.000 claims description 3
- 230000005291 magnetic effect Effects 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 238000000304 warm extrusion Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
- H01F41/028—Radial anisotropy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】
本発明は、永久磁石の製造法に関するものであ
る。さらに詳細には、多結晶マンガン−アルミニ
ウム−炭素系(Mn−Al−C系)合金磁石の製造
法に関し、特に高性能な多極着磁用Mn−Al−C
系合金磁石の製造法を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a permanent magnet. More specifically, it relates to a method for manufacturing polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnets, particularly Mn-Al-C for high-performance multipole magnetization.
The present invention provides a method for manufacturing alloy magnets.
Mn−Al−C系合金磁石は、主として強磁性相
である面心正方晶(τ相、L10型規則格子)の組
織で構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。また、このMn−Al−C系合金磁石の製造
法としては、鋳造・熱処理によるもの以外に、温
間押出加工等の温間塑性加工工程を含むものが知
られている。特に後者は、高い磁気特性、機械的
強度、耐候性、機械加工性等の優れた性質を有す
る異方性磁石の製造法として知られている。 Mn-Al-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, L 10- type regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element. Multi-component alloy magnets are known, including ternary alloy magnets containing no additive elements and quaternary or higher alloy magnets containing a small amount of additive elements. Furthermore, as a manufacturing method for this Mn--Al--C alloy magnet, there is known a method that includes a warm plastic working process such as warm extrusion, in addition to the method of casting and heat treatment. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.
多極着磁用Mn−Al−C系合金磁石の製造法と
しては、等方性磁石、圧縮加工によるもの、及び
あらかじめ温間押出加工等の公知の方法で得た一
軸異方性の多結晶Mn−Al−C系合金磁石に異方
性方向への温間自由圧縮加工によるもの(複合加
工法によるもの)が知られている。 Methods for producing multipolar magnetized Mn-Al-C alloy magnets include isotropic magnets, compression processing, and uniaxially anisotropic polycrystals obtained in advance by known methods such as warm extrusion processing. It is known that Mn--Al--C alloy magnets are subjected to warm free compression processing in an anisotropic direction (combined processing method).
圧縮加工によるものでは、径方向に高い磁気特
性が得られているが、比較的大きい加工率が必要
であること、不均一変形が起る場合があること、
不変形帯の存在が避けられないことなどの問題点
がある。複合加工法によるものでは、小さな圧縮
ひずみで径方向、弦方向を含む平面内の全ての方
向に高い磁気特性が得られている。複合加工法で
得た磁石は、特定の平面に平行に磁化容易方向を
有し、しかも前記平面内では磁気的に等方性であ
り、かつ前記平面の垂線と前記平面に平行な直線
を含む平面内では異方性であるという構造(以下
このような磁石を面異方性磁石という)である。 Compression processing provides high magnetic properties in the radial direction, but requires a relatively large processing rate and may cause non-uniform deformation.
There are problems such as the unavoidable existence of an indeformable zone. With the combined processing method, high magnetic properties are obtained in all directions within the plane, including the radial and chordal directions, with small compressive strain. The magnet obtained by the composite processing method has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and includes a line perpendicular to the plane and a straight line parallel to the plane. It has a structure that is anisotropic in a plane (hereinafter, such a magnet will be referred to as a plane anisotropic magnet).
多極着磁用磁石の形状は、一般に円筒体であ
り、主な着磁としては第1図と第2図に示す様な
着磁がある。第1図は、円筒磁石の外周に多極着
磁した場合の磁石内部での磁路(破線で表してい
る)の形状を模式的に示したものである。同様に
第2図は、内周に多極着磁した場合のものであ
る。第1図に示した着磁を本明細書では外周着磁
と称し、第2図に示したものを内周着磁と称す
る。 The shape of a multipolar magnetized magnet is generally a cylindrical body, and the main magnetization methods include those shown in FIGS. 1 and 2. FIG. 1 schematically shows the shape of the magnetic path (represented by broken lines) inside the magnet when the outer periphery of the cylindrical magnet is magnetized with multiple poles. Similarly, FIG. 2 shows the case where the inner periphery is multipole magnetized. In this specification, the magnetization shown in FIG. 1 is referred to as outer circumference magnetization, and the magnetization shown in FIG. 2 is referred to as inner circumference magnetization.
第1図に示した様に、外周着磁では磁石の外周
部では磁路はほぼ径方向に沿つており、内周部で
はほぼ弦方向に沿つている。一方、第2図に示し
た様に内周着磁では、前述の逆になつている。一
方、前述した様に面異方性磁石は、径方向、弦方
向を含む平面内の全ての方向に高い磁気特性を有
しているが、多種の多極着磁を施した場合の磁石
内部での磁路を考えると、必ずしも個々の着磁に
適した異方性構造ではない。 As shown in FIG. 1, in the case of outer periphery magnetization, the magnetic path runs approximately along the radial direction at the outer periphery of the magnet, and approximately along the chord direction at the inner periphery. On the other hand, as shown in FIG. 2, the inner circumferential magnetization is the opposite of the above. On the other hand, as mentioned above, planar anisotropic magnets have high magnetic properties in all directions within the plane, including the radial and chordal directions. Considering the magnetic path at , the anisotropic structure is not necessarily suitable for individual magnetization.
本発明者らは、特定の平面に平行に磁化容易方
向を有し、しかも前記平面内では磁気的に等方性
であり、かつ前記平面の垂線の方向と前記特定の
平面に平行な直線を含む平面内では異方性である
多結晶Mn−Al−C系合金磁石(面異方性磁石)
からなるビレツトに、530〜830℃の温度で、前記
ビレツトの一部分に前記垂線に平行な方向に圧縮
ひずみを与える塑性加工を施すことによつて前記
の問題点を解決し得ることを見出した。 The present inventors have developed a method that has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and has a straight line parallel to the direction perpendicular to the plane and the specific plane. Polycrystalline Mn-Al-C alloy magnet (planar anisotropic magnet) that is anisotropic in the plane containing
It has been found that the above-mentioned problems can be solved by subjecting a billet made of the above-mentioned material to plastic working at a temperature of 530 to 830 DEG C. in which compressive strain is applied to a portion of the billet in a direction parallel to the perpendicular line.
すなわち、公知のMn−Al−C系磁石用合金、
例えば68〜73重量%のMnと(1/10Mn−6.6)〜
(1/3Mn−22.2)重量%のCと残部のAlからなる
合金を530〜830℃の温度域で押出加工等の公知の
方法によつて一軸性の均質微細な〔001〕繊維組
織とした後、さらに前記軸方向に平行な方向に対
数ひずみの絶対値で0.1以上の圧縮ひずみを与え
る自由圧縮加工によつて、前記の面異方性磁石を
得ることができる。 That is, a known Mn-Al-C alloy for magnets,
For example, with 68~73 wt% Mn (1/10Mn−6.6)~
(1/3Mn-22.2) An alloy consisting of C in the weight percent and the balance in Al was made into a uniaxial, homogeneous, fine [001] fiber structure by a known method such as extrusion at a temperature range of 530 to 830℃. After that, the above-mentioned plane anisotropic magnet can be obtained by further free compression processing in which a compressive strain of 0.1 or more is applied in the absolute value of the logarithmic strain in a direction parallel to the axial direction.
面異方性磁石からなるビレツトに、530〜830℃
の温度で、前記ビレツトの一部分に前記垂線に平
行な方向に圧縮ひずみを与える塑性加工を施すこ
とによつて、第1図から第2図に示した各種の多
極着磁において、面異方性磁石より優れた磁気特
性を有する磁石を得ることができる。 Billets made of planar anisotropic magnets are heated to 530 to 830℃.
By applying plastic working to a portion of the billet at a temperature of It is possible to obtain a magnet having magnetic properties superior to those of magnetic magnets.
面異方性磁石からなるビレツトの一部分に前記
垂線に平行な方向に圧縮ひずみを与える塑性加工
の具体例をいくつか説明すると、第1の例として
は、前記ビレツトの形状を円柱とした場合、塑性
加工の一例を第3図に示す。第3図は、金型の断
面図である。第3図は、塑性加工時の状態を示し
たもので、(a)は加工前、(b)は加工後を示す。第3
図において、1はビレツト、2は可動ポンチ、3
は固定用ポンチ、4は下型である。ビレツト1を
固定用ポンチ2と下型4によつて固定及び拘束
し、可動ポンチ2によりビレツトの外周部のみを
圧縮加工することによつて、(b)に示した状態とな
る
第2の例としては、前記ビレツトの形状を円筒
とした場合、塑性加工の一例を第3図と同様に第
4図に示す。第4図の(a)は加工前の状態を示し、
(b)は加工後の状態を示す。第4図において、5は
ポンチ、6は外型、7は下型である。ビレツト1
を外型6と下型7によつて固定及び拘束し、ポン
チ5によつてビレツトの内周部のみを圧縮加工す
ることによつて(b)に示した状態になる。 To explain some specific examples of plastic working that applies compressive strain in a direction parallel to the perpendicular line to a part of a billet made of a planar anisotropic magnet, the first example is when the shape of the billet is cylindrical. An example of plastic working is shown in Fig. 3. FIG. 3 is a sectional view of the mold. Figure 3 shows the state during plastic working, with (a) showing before working and (b) showing after working. Third
In the figure, 1 is a billet, 2 is a movable punch, and 3 is a billet.
is a fixing punch, and 4 is a lower mold. By fixing and restraining the billet 1 with the fixing punch 2 and the lower die 4, and compressing only the outer periphery of the billet with the movable punch 2, the state shown in (b) is achieved.Second example Similarly to FIG. 3, FIG. 4 shows an example of plastic working when the shape of the billet is cylindrical. Figure 4 (a) shows the state before processing,
(b) shows the state after processing. In FIG. 4, 5 is a punch, 6 is an outer mold, and 7 is a lower mold. Billet 1
The billet is fixed and restrained by the outer mold 6 and the lower mold 7, and only the inner circumferential portion of the billet is compressed using the punch 5, so that the state shown in (b) is obtained.
前述した第1の例では、円柱ビレツトの外周部
のみに圧縮加工を施したため、外周部では弦方向
よりも径方向により高い磁気特性を有する磁石に
なり、第1図に示した外周着磁を施した場合に優
れた特性を示す磁石である。第2の例では円筒ビ
レツトの内周部のみに圧縮加工を施したため、内
周部では弦方向よりも径方向により高い磁気特性
を有する磁石になり、第2図に示した内周着磁を
施した場合に優れた特性を示す磁石である。前述
の例では、第1図及び第2図にあわせて塑性加工
する部分も外周部および内周部としたが、特殊な
用途に用いる場合(第1図、第2図以外の着磁を
して用いる場合)にはそれに適した塑性加工を選
ぶことによつて、面異方性磁石の異方性構造が改
良され、それに望ましいものにすることができ
る。 In the first example described above, since compression was applied only to the outer circumference of the cylindrical billet, the outer circumference becomes a magnet that has higher magnetic properties in the radial direction than in the chordal direction, and the outer circumference magnetization shown in Figure 1 is This is a magnet that exhibits excellent properties when applied. In the second example, since compression was applied only to the inner circumference of the cylindrical billet, the inner circumference became a magnet with higher magnetic properties in the radial direction than in the chordal direction, and the inner circumference magnetization shown in Figure 2 was achieved. This is a magnet that exhibits excellent properties when applied. In the above example, the parts to be plastically worked are the outer circumferential part and the inner circumferential part according to Figs. 1 and 2, but when used for special purposes (magnetization other than Figs. By selecting an appropriate plastic working method, the anisotropic structure of the planar anisotropic magnet can be improved and made desirable.
前記の圧縮加工には、連続的に圧縮加工を行う
方法と複数回に分割して圧縮加工を行う方法など
がある。 The above-mentioned compression processing includes a method of performing compression processing continuously and a method of performing compression processing in multiple steps.
前述したような塑性加工の可能な温度範囲につ
いては、530〜830℃のお温度領域においては、塑
性加工を行うことができたが、780℃を越える温
度では、塑性加工前の磁石特性と加工後の磁石特
性を比較すると、塑性加工によつて磁石特性がか
なり低下した。また、530℃以下では塑性加工性
がまつたくなく破壊した。しかも560℃以下では
塑性加工時に割れが多く発生し、望ましい温度範
囲としては560〜760℃であつた。 Regarding the temperature range in which plastic working is possible as mentioned above, plastic working was possible in the temperature range of 530 to 830°C, but at temperatures exceeding 780°C, the magnetic properties before plastic working and the processing Comparing the subsequent magnet properties, the plastic working significantly reduced the magnet properties. Furthermore, at temperatures below 530°C, the plastic workability was not good and the steel broke. Moreover, at temperatures below 560°C, many cracks occur during plastic working, and the desirable temperature range is 560 to 760°C.
以下、本発明を実施例によつて詳細に説明す
る。 Hereinafter, the present invention will be explained in detail with reference to Examples.
配合組成で69.5重量%のMn、29.3重量%のAl、
0.5重量%のCおよび0.7重量%のNiを溶解鋳造
し、直径60mm、長さ50mmの円柱ビレツトを作製し
た。このビレツトを1100℃で2時間保持した後、
室温まで放冷する熱処理を行つた。次に潤滑剤を
介して720℃の温度で直径35mmまでの押出加工を
行つた。さらに潤滑剤を介して680℃の温度で直
径24mmまでの押出加工を行つた。この押出棒を長
さ20mmに切断した後、潤滑剤を介して680℃の温
度で長さ10mmまで自由圧縮加工を施した。加工
後、ビレツトを直径32mm、長さ10mmに切削加工
し、円柱磁石(面異方性磁石)を作製した。 In the blended composition, 69.5% by weight of Mn, 29.3% by weight of Al,
A cylindrical billet with a diameter of 60 mm and a length of 50 mm was prepared by melting and casting 0.5% by weight of C and 0.7% by weight of Ni. After holding this billet at 1100℃ for 2 hours,
Heat treatment was performed by allowing the sample to cool to room temperature. Next, extrusion processing up to a diameter of 35 mm was performed at a temperature of 720° C. using a lubricant. Furthermore, extrusion processing up to a diameter of 24 mm was performed at a temperature of 680°C using a lubricant. After cutting this extruded rod to a length of 20 mm, it was subjected to free compression processing to a length of 10 mm at a temperature of 680°C via a lubricant. After processing, the billet was cut to a diameter of 32 mm and a length of 10 mm to produce a cylindrical magnet (planar anisotropic magnet).
この磁石をさらに第3図に示す金型を用いて、
680℃の温度で、外周部のみ圧縮加工した。第3
図において可動ポンチ2の内径(固定用ポンチ3
の外径)は25mmである。加工後の磁石の外周部の
長さは、8mmであつた。加工後の磁石を外径32
mm、内径10mmの円筒状に切削加工し、24極の外周
着磁を施した。着磁は2000μFのオイルコンデン
サーを用いて1500Vでパルス着磁した。外周部の
表面磁束密度をホール素子で測定した。比較のた
めに前記と同様の方法で作製した面異方性磁石を
外径32mm、内径10mmの円筒状に切削加工し、前記
と同様の着磁を施した。以上の両者の値を比較す
ると、本発明の方法で得た磁石の表面磁束密度の
値は、面異方性磁石のそれの約1.2倍であつた。 This magnet was further molded using the mold shown in Figure 3.
Only the outer periphery was compressed at a temperature of 680℃. Third
In the figure, the inner diameter of the movable punch 2 (fixed punch 3
outer diameter) is 25 mm. The length of the outer periphery of the magnet after processing was 8 mm. The outer diameter of the magnet after processing is 32
It was cut into a cylindrical shape with an inner diameter of 10 mm and magnetized on the outer periphery with 24 poles. The magnetization was pulsed at 1500V using a 2000μF oil capacitor. The surface magnetic flux density at the outer periphery was measured using a Hall element. For comparison, a planar anisotropic magnet produced in the same manner as above was cut into a cylindrical shape with an outer diameter of 32 mm and an inner diameter of 10 mm, and magnetized in the same manner as above. Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the planar anisotropic magnet.
次に、前記と同様の方法で面異方性磁石を2個
作製し、切削加工して外径32mm、内径16mm、長さ
10mmの円筒磁石を得た。一方の円筒磁石をさらに
第4図に示した金型を用いて、680℃の温度で内
周部のみ圧縮加工した。加工後の内周部の長さは
8mmであつた。なお第4図においてポンチ5の直
径は23mmであつた。加工後の磁石を切削加工し
て、外径32mm、内径16cmの円筒状にした。さらに
内周部のみ圧縮加工した。本発明の磁石と面異方
性磁石との2個に18極の内周着磁を施した。着磁
条件、測定方法は、前述と同様である。両者の値
を比較すると、本発明の方法で得た磁石の表面磁
束密度の値は、面異方性磁石のそれの約1.2倍で
あつた。 Next, we fabricated two planar anisotropic magnets using the same method as above, and cut them into pieces with an outer diameter of 32 mm, an inner diameter of 16 mm, and a length of
A 10mm cylindrical magnet was obtained. One of the cylindrical magnets was further compressed at a temperature of 680 DEG C. using the mold shown in FIG. 4. The length of the inner circumference after processing was 8 mm. In addition, in FIG. 4, the diameter of the punch 5 was 23 mm. The processed magnet was cut into a cylindrical shape with an outer diameter of 32 mm and an inner diameter of 16 cm. Furthermore, only the inner circumference was compressed. Two magnets, the magnet of the present invention and the planar anisotropic magnet, were magnetized with 18 internal poles. The magnetization conditions and measurement method are the same as described above. Comparing both values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the plane anisotropic magnet.
本発明は実施例によつて述べた様に、特定の平
面に平行に磁化容易方向を有し、しかも前記平面
内では磁気的に等方性であり、かつ前記平面の垂
線の方向と前記特定の平面に平行な直線を含む平
面内では異方性である多結晶Mn−Al−C系合金
磁石(面異方性磁石)からなるビレツトに、前記
ビレツトの一部分に前記垂線に平行な方向に圧縮
ひずみを与える塑性加工を施すことによつて、多
種の多極着磁を施した時に面異方性磁石より優れ
た磁気特性を有する磁石を得るものである。 As described in the embodiments, the present invention has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and has a direction perpendicular to the plane and the specific direction. A billet made of a polycrystalline Mn-Al-C alloy magnet (planar anisotropic magnet) which is anisotropic in a plane including a straight line parallel to the plane of By performing plastic working that applies compressive strain, it is possible to obtain a magnet that has magnetic properties superior to planar anisotropic magnets when subjected to various types of multipolar magnetization.
本発明で得られた永久磁石は、高性能な多極着
磁に適する磁石であり、モータ、ジエネレータ、
メータ類など多方面への応用が可能である。 The permanent magnet obtained by the present invention is a magnet suitable for high-performance multipolar magnetization, and is suitable for motors, generators,
It can be applied to many fields such as meters.
第1図は円筒状磁石の外周に多極着磁を施した
場合の磁石内部での磁路の形成を模式的に示す
図、第2図は円筒状磁石の内周に多極着磁を施し
た場合の磁石内部での磁路の形成を模式的に示す
図、第3図及び第4図は本発明の塑性加工の一例
を示す金型の一部の断面図である。
1……ビレツト、2……可動ポンチ、3……固
定用ポンチ、4……下型、5……ポンチ、6……
外型、7……下型。
Figure 1 is a diagram schematically showing the formation of a magnetic path inside the magnet when the outer periphery of a cylindrical magnet is magnetized with multiple poles, and Figure 2 is a diagram showing the formation of a magnetic path inside the magnet when the outer periphery of the cylindrical magnet is magnetized with multiple poles. FIGS. 3 and 4 are cross-sectional views of a part of a mold showing an example of the plastic working of the present invention. 1... Billet, 2... Movable punch, 3... Fixed punch, 4... Lower mold, 5... Punch, 6...
Outer mold, 7...lower mold.
Claims (1)
かも前記平面内では磁気的に等方性であり、かつ
前記平面の垂線の方向と前記特定の平面に平行な
直線を含む平面内では異方性である多結晶マンガ
ン−アルミニウム−炭素系合金磁石からなるビレ
ツトに、530〜830℃の温度で、前記ビレツトの一
部分に前記垂線に平行な方向に圧縮ひずみを与え
る塑性加工を施すことを特徴とするマンガン−ア
ルミニウム−炭素系合金磁石の製造法。1. It has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and is different in a plane containing a perpendicular line to the plane and a straight line parallel to the specific plane. A billet made of an orthotropic polycrystalline manganese-aluminum-carbon alloy magnet is subjected to plastic working at a temperature of 530 to 830°C to impart compressive strain to a portion of the billet in a direction parallel to the perpendicular line. A method for manufacturing a manganese-aluminum-carbon alloy magnet.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57072056A JPS58188103A (en) | 1982-04-27 | 1982-04-27 | Preparation of mn-al-c family alloy magnet |
US06/486,242 US4579607A (en) | 1982-04-19 | 1983-04-18 | Permanent Mn-Al-C alloy magnets and method for making same |
DE8383302204T DE3365406D1 (en) | 1982-04-19 | 1983-04-19 | Permanent mn-al-c alloy magnets and method for making same |
EP83302204A EP0092422B1 (en) | 1982-04-19 | 1983-04-19 | Permanent mn-al-c alloy magnets and method for making same |
US06/784,661 US4648915A (en) | 1982-04-19 | 1985-09-30 | Permanent Mn-Al-C alloy magnets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57072056A JPS58188103A (en) | 1982-04-27 | 1982-04-27 | Preparation of mn-al-c family alloy magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58188103A JPS58188103A (en) | 1983-11-02 |
JPH0340922B2 true JPH0340922B2 (en) | 1991-06-20 |
Family
ID=13478340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57072056A Granted JPS58188103A (en) | 1982-04-19 | 1982-04-27 | Preparation of mn-al-c family alloy magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58188103A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50110921A (en) * | 1974-11-20 | 1975-09-01 | ||
JPS56111203A (en) * | 1980-02-07 | 1981-09-02 | Matsushita Electric Ind Co Ltd | Permanent magnet |
-
1982
- 1982-04-27 JP JP57072056A patent/JPS58188103A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50110921A (en) * | 1974-11-20 | 1975-09-01 | ||
JPS56111203A (en) * | 1980-02-07 | 1981-09-02 | Matsushita Electric Ind Co Ltd | Permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPS58188103A (en) | 1983-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4579607A (en) | Permanent Mn-Al-C alloy magnets and method for making same | |
JPH0311522B2 (en) | ||
JPH0340922B2 (en) | ||
JPH0479122B2 (en) | ||
JPH0311521B2 (en) | ||
JPS58192306A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0434804B2 (en) | ||
JPH0639675B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS58192303A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0311523B2 (en) | ||
JPH037748B2 (en) | ||
JPS62247057A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0680607B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0311527B2 (en) | ||
JPH0311524B2 (en) | ||
JPH0680606B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0639670B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0639672B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0642408B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0673328B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS62247052A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS62112765A (en) | Production of manganese-aluminum-carbon alloy magnet | |
JPS58192305A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0434807B2 (en) | ||
JPS62112764A (en) | Production of manganese-aluminum-carbon alloy magnet |