JPH0311527B2 - - Google Patents

Info

Publication number
JPH0311527B2
JPH0311527B2 JP57184025A JP18402582A JPH0311527B2 JP H0311527 B2 JPH0311527 B2 JP H0311527B2 JP 57184025 A JP57184025 A JP 57184025A JP 18402582 A JP18402582 A JP 18402582A JP H0311527 B2 JPH0311527 B2 JP H0311527B2
Authority
JP
Japan
Prior art keywords
billet
extrusion
aluminum
manganese
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57184025A
Other languages
Japanese (ja)
Other versions
JPS5972701A (en
Inventor
Akihiko Ibata
Yoichi Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57184025A priority Critical patent/JPS5972701A/en
Publication of JPS5972701A publication Critical patent/JPS5972701A/en
Publication of JPH0311527B2 publication Critical patent/JPH0311527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に関するものであ
る。さらに詳細には、多結晶マンガン−アルミニ
ウム−炭素(Mn−Al−C)系合金磁石の製造法
に関し、特に高性能な多極着磁用Mn−Al−C系
合金磁石の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a permanent magnet. More specifically, the present invention relates to a method of manufacturing a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet, and particularly to a method of manufacturing a high-performance Mn-Al-C alloy magnet for multipolar magnetization.

従来例の構成とその問題点 Mn−Al−C系合金磁石は、主として強磁性相
である面心正方晶(τ相、Ll0型規則格子)の組
成で構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。
Conventional structure and problems Mn-Al-C alloy magnets are mainly composed of face-centered tetragonal (τ phase, Ll 0 type regular lattice), which is a ferromagnetic phase, and C is an essential constituent element. There are known ternary alloy magnets that contain no additive elements other than impurities, and multi-element alloy magnets that include quaternary or higher alloy magnets that contain small amounts of additive elements, and these are collectively referred to as magnets.

また、このMn−Al−C系合金磁石の製造法と
しては、鋳造・熱処理によるもの以外に、温間押
出加工等の温間塑性加工工程を含むものが知られ
ている。特に後者は高い磁気特性、機械的強度、
耐候性、機械加工性等の優れた性質を有する異方
性磁石の製造法として知られている。
Furthermore, as a manufacturing method for this Mn--Al--C alloy magnet, there is known a method that includes a warm plastic working process such as warm extrusion, in addition to the method of casting and heat treatment. Especially the latter has high magnetic properties, mechanical strength,
It is known as a method for producing anisotropic magnets that have excellent properties such as weather resistance and machinability.

多極着磁用Mn−Al−C系合金磁石の製造法と
しては、等方性磁石、圧縮加工によるもの、及び
あらかじめ温間押出加工等の公知の方法で得た一
軸異方性の多結晶Mn−Al−C系合金磁石に異方
性方向への温間自由圧縮加工によるもの(複合加
工法によるもの)が知られている。
Methods for producing multipolar magnetized Mn-Al-C alloy magnets include isotropic magnets, compression processing, and uniaxially anisotropic polycrystals obtained in advance by known methods such as warm extrusion processing. It is known that Mn--Al--C alloy magnets are subjected to warm free compression processing in an anisotropic direction (combined processing method).

圧縮加工によるものでは、径方向に高い磁気特
性が得られているが、比較的大きい加工率が必要
であること、不均一変形が起こる場合があるこ
と、不変形帯の存在が避けられないことなどの問
題点がある。複合加工法によるものでは、小さな
圧縮ひずみで径方向、弦方向を含む平面内の全て
の方向に高い磁気特性が得られている。複合加工
法で得た磁石は、特定の平面に平行に磁化容易方
向を有し、しかも前記平面内では磁気的に等方性
であり、かつ前記平面の垂線と前記平面に平行な
直線を含む平面内では異方性であるという構造で
ある(以下このような磁石を面異方性磁石とい
う)。
Compression processing provides high magnetic properties in the radial direction, but a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed bands is unavoidable. There are problems such as: With the combined processing method, high magnetic properties are obtained in all directions within the plane, including the radial and chordal directions, with small compressive strain. The magnet obtained by the composite processing method has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and includes a line perpendicular to the plane and a straight line parallel to the plane. It has a structure that is anisotropic in a plane (hereinafter, such a magnet will be referred to as a plane anisotropic magnet).

多極着磁用磁石の形状は、一般には円筒体であ
り、主な着磁としては、第1図および第2図に示
すような着磁がある。第1図は円筒磁石の外周に
多極着磁した場合の磁石内部での磁路(破線で示
す)の形成を模式的に示したものである。同様に
第2図は内周に多極着磁した場合のものである。
第1図に示した着磁を本明細書では外周着磁と称
し、第2図のものを内周着磁と称する。
The shape of a multipolar magnetized magnet is generally a cylindrical body, and the main magnetization methods include magnetization as shown in FIGS. 1 and 2. FIG. 1 schematically shows the formation of a magnetic path (indicated by a broken line) inside the cylindrical magnet when the outer periphery of the cylindrical magnet is magnetized with multiple poles. Similarly, FIG. 2 shows a case where the inner circumference is multipole magnetized.
In this specification, the magnetization shown in FIG. 1 is referred to as outer circumference magnetization, and the magnetization shown in FIG. 2 is referred to as inner circumference magnetization.

第2図に示した様に、内周着磁では、磁路は磁
石の内周部ではほぼ径方向に沿い、外周部ではほ
弦方向に沿つており、前述した面異方性構造が必
ずしも適切ではないといえる 前述したように、多極着磁用磁石の形状は一般
には円筒体、すなわち中空体である。前述した圧
縮加工による方法および複合加工法で得られる磁
石は中実体(例えば円柱体)であり、磁石の製造
工程としてはこのあと穴あけ加工が必要である。
As shown in Figure 2, in internal magnetization, the magnetic path runs along the radial direction at the inner periphery of the magnet, and along the chordal direction at the outer periphery. It can be said that this is not appropriate.As mentioned above, the shape of a multipolar magnetizing magnet is generally a cylindrical body, that is, a hollow body. The magnet obtained by the above-described compression processing method and composite processing method is a solid body (for example, a cylindrical body), and the manufacturing process of the magnet requires drilling after this.

さらに、前述した圧縮加工による方法および複
合加工法では、自由圧縮加工工程を有するため、
被加工材を円柱と仮定した場合、その直径D0
長さL0の比L0/D0をあまり大きくすると座屈に
よる破損という問題が生じる。このことから被加
工材の加工後の直径Dと長さLの比L/Dをあま
り大きくできないという制約が生じる。従つて、
長さの長い(L/Dの大きい)磁石を得ようとす
る場合、数個積み重ねて用いる必要があつた。例
えば、前述した様にMn−Al−C系合金磁石は、
機械的強度、機械加工性等が優れているため、長
さの長い外周着磁用磁石として、磁石単体の一本
の棒として使用することができるが、これまでの
製造法では、長さの長い磁石を得ることができな
かつた為、Mn−Al−C系合金磁石を円筒に加工
して重ね合わせて用いる必要があつた。
Furthermore, since the above-mentioned compression processing method and composite processing method have a free compression processing step,
Assuming that the workpiece is a cylinder, if the ratio L 0 /D 0 between its diameter D 0 and length L 0 is too large, a problem will arise in which it will break due to buckling. This results in a restriction that the ratio L/D between the diameter D and length L of the workpiece after processing cannot be made too large. Therefore,
In order to obtain a long magnet (large L/D), it was necessary to stack several magnets. For example, as mentioned above, Mn-Al-C alloy magnets are
Due to its excellent mechanical strength and machinability, it can be used as a single rod for long outer circumferential magnetization, but with conventional manufacturing methods, Since it was not possible to obtain long magnets, it was necessary to process Mn-Al-C alloy magnets into cylinders and stack them together.

発明の目的 本発明は、前述した様に塑性加工後の磁石の穴
あけ加工の簡略化を可能にし、自由圧縮加工工程
を有する方法より長さの長い磁石を得ることがで
き、面異方性構造以外の構造を有する高性能な多
極着磁用Mn−Al−C系合金磁石の製造法を提供
することを目的とする。
Purpose of the Invention As described above, the present invention makes it possible to simplify the drilling process of a magnet after plastic working, to obtain a magnet with a longer length than a method having a free compression process, and to have a planar anisotropic structure. It is an object of the present invention to provide a method for manufacturing a high-performance multi-pole magnetized Mn-Al-C alloy magnet having a structure other than that described above.

発明の構成 本発明は、あらかじめ異方性化した多結晶Mn
−Al−C系合金磁石からなる中実体状、例えば
円柱体のビレツトに、530〜830℃の温度で、ベア
リング部、すなわち押出加工後のビレツトを収容
する部分の空洞部分の断面形状が中空であり、コ
ンテナ部、すなわち押出加工前のビレツトを収容
する部分の開口面積がベアリング部の開口面積よ
り小さいダイスを用いて、中実体の軸方向と押出
方向を平行にして押出加工を施し、しかも前記の
押出加工によつて前記のビレツトの押出方向に圧
縮ひずみを与えることを特徴とする。また、さら
に前述した押出加工を施したビレツトの一部分に
押出方向に平行な方向に圧縮加工を施すことを特
徴とする。
Structure of the Invention The present invention provides polycrystalline Mn that has been anisotropically made in advance.
- A solid body made of an Al-C alloy magnet, for example a cylindrical billet, is heated at a temperature of 530 to 830°C so that the cross-sectional shape of the hollow part of the bearing part, that is, the part that accommodates the billet after extrusion processing, is hollow. Extrusion processing is performed using a die in which the opening area of the container part, that is, the part that accommodates the billet before extrusion processing is smaller than the opening area of the bearing part, and the extrusion processing is performed with the axial direction of the solid body parallel to the extrusion direction. The method is characterized in that compressive strain is applied to the billet in the extrusion direction by extrusion processing. Furthermore, the present invention is characterized in that a portion of the billet that has been subjected to the extrusion process described above is subjected to a compression process in a direction parallel to the extrusion direction.

ベアリング部の空洞部分の断面形状が中空であ
るため、中実体状のビレツトが押出加工後中空体
状のビレツトになる。
Since the cross-sectional shape of the hollow portion of the bearing portion is hollow, the solid billet becomes a hollow billet after extrusion processing.

本発明は、自由圧縮工程によらずコンテナ部の
開口面積がベアリング部の開口面積より小さいダ
イスを用いる押出加工によつて、多極着磁に適し
た異方性構造への磁石構造を変化させる。
The present invention changes the magnet structure into an anisotropic structure suitable for multipolar magnetization by extrusion processing using a die in which the opening area of the container part is smaller than the opening area of the bearing part, without using a free compression process. .

また、さらに押出加工を施したビレツトの一部
分に押出方向に平行な方向に圧縮加工を施すこと
によつて、外周または内周着磁により適した異方
性構造に変化させる。
Furthermore, by compressing a portion of the extruded billet in a direction parallel to the extrusion direction, it is changed into an anisotropic structure more suitable for outer or inner circumference magnetization.

実施例の説明 公知のMn−Al−C系磁石用合金、例えば68〜
73重量%(以下単に%で示す)のMnと(1/10
Mn−6.6)〜(1/3Mn−22.2)%のCと残部のAl
からなる合金を、530〜830℃の温度域で押出加工
等の塑性加工を施すことによつて異方性化した多
結晶Mn−Al−C系合金磁石を得ることができ
る。前記磁石の代表的なものとしては、前記の塑
性加工を押出加工とした場合に得られる、押出方
向に磁化容易方向を有する一軸異方性磁石と前述
した面異方性磁石などがある。
Description of Examples Known Mn-Al-C alloys for magnets, e.g. 68~
73% by weight (hereinafter simply expressed as %) of Mn and (1/10
Mn−6.6) to (1/3Mn−22.2)% C and balance Al
An anisotropic polycrystalline Mn-Al-C alloy magnet can be obtained by subjecting an alloy consisting of the following to plastic working such as extrusion processing in a temperature range of 530 to 830°C. Typical examples of the magnet include a uniaxially anisotropic magnet having an easy magnetization direction in the extrusion direction, which is obtained when the plastic working is performed by extrusion, and the above-mentioned planar anisotropic magnet.

前記の異方性化した多結晶Mn−Al−C系合金
磁石からなる中実体状のビレツトを、ベアリング
部の空洞部分の断面形状が中空であり、コンテナ
部の開口面積がベアリング部の開口面積より小さ
いダイスを用いて、中実体の軸方向と押出方向を
平行にして押出加工することにより、前記のビレ
ツトに押出方向に圧縮ひずみを与えることによつ
て、外周もしくは内周着磁などの多極着磁におい
て高い磁気特性を有する磁石を得ることができ
る。
The solid billet made of the above-mentioned anisotropic polycrystalline Mn-Al-C alloy magnet has a hollow cross-sectional shape of the bearing part, and the opening area of the container part is the opening area of the bearing part. By using a smaller die and extruding with the axial direction of the solid body parallel to the extrusion direction, compressive strain is applied to the billet in the extrusion direction, thereby making it possible to magnetize the outer or inner circumference. A magnet with high magnetic properties can be obtained by polar magnetization.

ここでコンテナ部とは、押出加工を施す前のビ
レツトを収容する部分をいい、ベアリング部とは
押出加工を施したビレツトを収容する部分であ
る。またコンテナ部の開口面積とは、ダイスをコ
ンテナ部を通り押出方向に垂直に切断した時のコ
ンテナ部の空洞部分の断面積であり、ベアリング
部の開口面積とは、ダイスをベアリング部を通り
押出方向に切断した時のベアリング部の空洞部分
の断面積である。さらに、ベアリング部の空洞部
分の断面形状とは、前記のベアリング部の開口面
積を求めるもとになる形状である。換言すれば、
ベアリング部の開口面積とは、ベアリング部の空
洞部分の断面形状である。ベアリング部の空洞部
分が中空であるということは、押出方向にベアリ
ング部は適当な長さを有するため、ベアリング部
の空洞部分は中空体であるということにある。
Here, the container section refers to a section that accommodates a billet before extrusion processing, and the bearing section refers to a section that accommodates a billet that has undergone extrusion processing. In addition, the opening area of the container section is the cross-sectional area of the hollow part of the container section when the die is cut through the container section perpendicular to the extrusion direction, and the opening area of the bearing section is the cross-sectional area of the hollow section of the container section when the die is cut through the extrusion direction through the bearing section. This is the cross-sectional area of the hollow part of the bearing part when cut in the direction of the bearing part. Further, the cross-sectional shape of the hollow portion of the bearing portion is the shape from which the opening area of the bearing portion is determined. In other words,
The opening area of the bearing portion is the cross-sectional shape of the hollow portion of the bearing portion. The fact that the hollow part of the bearing part is hollow means that the bearing part has an appropriate length in the extrusion direction, so that the hollow part of the bearing part is a hollow body.

前述した様に、コンテナ部の開口面積がベアリ
ング部の開口面積より小さいダイスを用いて、ビ
レツトの押出方向に圧縮ひずみを与えるために
は、後述する様に、押出加工時にはビレツトを押
出方向に平行な二つの向きから加圧する必要があ
る。例えば、ビレツトを押出方向に平行な二つの
向きから加圧して、圧縮荷重が作用した状態でビ
レツトをコンテナ部からベアリング部に移動させ
ることによつて押出方向に圧縮ひずみを与えるこ
とができる。
As mentioned above, in order to apply compressive strain in the extrusion direction of the billet using a die in which the opening area of the container part is smaller than the opening area of the bearing part, it is necessary to move the billet parallel to the extrusion direction during extrusion processing, as described later. It is necessary to apply pressure from two directions. For example, compressive strain can be applied in the extrusion direction by applying pressure to the billet from two directions parallel to the extrusion direction and moving the billet from the container section to the bearing section under compressive load.

前記のビレツトが中実体の軸方向に磁化容易方
向を有する多結晶Mn−Al−C系合金磁石(一軸
異方性磁石)からなる場合には、前記の圧縮ひず
みが対数ひずみの絶対値で0.05以上必要である。
これは実施例で詳述するように、押出加工前のビ
レツトは圧縮方向に異方性化したものであり、多
極着磁において高い磁気特性を有する磁石への構
造の変化に最低0.05の圧縮ひずみが必要であるた
めである。
When the billet is made of a polycrystalline Mn-Al-C alloy magnet (uniaxially anisotropic magnet) having an easy magnetization direction in the axial direction of the solid body, the compressive strain is 0.05 as the absolute value of the logarithmic strain. The above is necessary.
This is because, as detailed in the examples, the billet before extrusion is anisotropic in the compression direction, and a compression of at least 0.05 is required to change the structure to a magnet with high magnetic properties in multipole magnetization. This is because strain is required.

前記のビレツトが中実体の軸方向に垂直な平面
に平行に磁化容易方向を有する多結晶Mn−Al−
C系合金磁石(面異方性磁石)からなる場合に
は、押出加工前のビレツトは、前述したように、
径方向と弦方向を含む平面内のすべての方向に高
い磁気特性を示しているが、前記の押出加工を施
すことによつて、多極着磁において高い磁気特性
を示す磁石を得ることができる。
The billet is a polycrystalline Mn-Al- having an easy magnetization direction parallel to a plane perpendicular to the axial direction of the solid body.
In the case of C-based alloy magnets (planar anisotropic magnets), the billet before extrusion is, as mentioned above,
It exhibits high magnetic properties in all directions within the plane, including the radial direction and chordal direction, but by applying the extrusion process described above, it is possible to obtain a magnet that exhibits high magnetic properties in multipolar magnetization. .

前記のコンテナ部の開口面積がベアリング部の
開口面積より小さいダイスを用いた押出加工を施
したビレツトを、さらにビレツトの一部分に押出
方向に平行な方向に圧縮加工を施すことによつ
て、圧縮加工を施した部分は径方向の磁気特性が
向上する。
The billet, which has been extruded using a die in which the opening area of the container part is smaller than the opening area of the bearing part, is further compressed by compressing a part of the billet in a direction parallel to the extrusion direction. The magnetic properties in the radial direction are improved in the areas treated with .

前述した塑性加工の一例をビレツトの形状を円
柱として説明する。第1の方法は、円柱ビレツト
を円柱の軸方向と押出方向を平行として、ベアリ
ング部の空洞部分の断面形状が中空であり、コン
テナ部分の開口面積がベアリング部の開口面積よ
り小さいダイスを用いて押出加工し、押出方向に
圧縮ひずみを与える方法である。
An example of the above-mentioned plastic working will be explained assuming that the shape of the billet is a cylinder. The first method is to use a cylindrical billet with the axial direction of the cylinder parallel to the extrusion direction, the cross-sectional shape of the hollow part of the bearing part being hollow, and the opening area of the container part being smaller than the opening area of the bearing part. This method involves extrusion processing and applying compressive strain in the extrusion direction.

第3図にダイスの一部分の断面図を示す。第3
図aは押出加工前の状態を示し、第3図bは押出
加工後の状態を示した。1はビレツトである。
2,3はダイス構成部材で、押出加工中は相対的
に移動しない構造であり、しかも固定されてい
る。4,5はポンチで、それぞれ油圧シリンダ等
に取付けられている。
FIG. 3 shows a cross-sectional view of a portion of the die. Third
Figure 3a shows the state before extrusion, and Figure 3b shows the state after extrusion. 1 is billet.
Reference numerals 2 and 3 denote die constituent members, which have a structure that does not move relative to each other during extrusion processing, and are fixed. 4 and 5 are punches, each of which is attached to a hydraulic cylinder or the like.

6の部分がコンテナ部であり、押出加工前のビ
レツトを収容する部分である。7の部分がベアリ
ング部で、押出加工後のビレツトを収容する部分
である。コンテナ部の開口面積とは6の空洞の断
面積(押出方向に垂直)であり、aにおいてビレ
ツトの断面積とほぼ一致し、ベアリング部の開口
面積とは7の空洞の断面積(押出方向に垂直)で
bにおいてビレツトの断面積とほぼ一致する。
The part 6 is a container part, which accommodates the billet before extrusion processing. The part 7 is a bearing part, which accommodates the billet after extrusion processing. The opening area of the container part is the cross-sectional area of the cavity 6 (perpendicular to the extrusion direction), which is almost the same as the cross-sectional area of the billet at a, and the opening area of the bearing part is the cross-sectional area of the cavity 7 (perpendicular to the extrusion direction). vertically) and almost coincides with the cross-sectional area of the billet at b.

第3図では、コンテナ部もベアリング部も押出
軸を中心とする円形であるから、前述したことを
言い換えると、コンテナ部の開口面積とはコンテ
ナ部の直径を直径とする円の面積であり、同様に
ベアリング部の開口面積とはベアリング部の外径
と内径によるリング状の面積であり、中空であ
る。例えば、コンテナ部の直径を20mm、ベアリン
グ部の外径を32mm、内径を15mmとすると、コンテ
ナ部の開口面積は約314mm2、ベアリング部の開口
面積は約627mm2となる。また、ベアリング部の空
洞部分の断面形状は外径32mm、内径15mmとするリ
ング状である。前記のベアリング部の空洞部分が
中空であるということは、言い換えると、第3図
bに示す様にベアリング部にビレツトを収容した
状態で押出方向に垂直に切断した時、中心にダイ
ス(マンドレル)2があり、その外側にビレツト
1があり、さらにその外側にダイス3がある。
In FIG. 3, since both the container part and the bearing part are circular with the extrusion shaft as the center, to paraphrase the above, the opening area of the container part is the area of a circle whose diameter is the diameter of the container part. Similarly, the opening area of the bearing section is a ring-shaped area defined by the outer diameter and inner diameter of the bearing section, and is hollow. For example, if the diameter of the container part is 20 mm, the outer diameter of the bearing part is 32 mm, and the inner diameter is 15 mm, the opening area of the container part is about 314 mm 2 and the opening area of the bearing part is about 627 mm 2 . Further, the cross-sectional shape of the hollow portion of the bearing part is a ring shape with an outer diameter of 32 mm and an inner diameter of 15 mm. In other words, the fact that the hollow part of the bearing part is hollow means that when the billet is housed in the bearing part and cut perpendicularly to the extrusion direction, as shown in FIG. There is a billet 1 on the outside of it, and a die 3 on the outside of it.

押出方法を第4図を用いて説明する。第4図に
示したダイス等の構造は、第3図のものと同じで
ある。まずaに示す様に、ベアリング部に円筒ビ
レツト1′を収容する。ポンチ5を用いてビレツ
トを加圧することによつてbに示す様になる。次
にcに示す様にコンテナ部6にビレツト1を収容
し、ポンチ4と5でビレツトを加圧した状態でコ
ンテナ部からベアリング部へ向かう方向に移動さ
せることにより、dに示す状態になる。ベアリン
グ部に収容されたビレツト1′を取り出し、新た
にコンテナ部6にビレツトを収容するとcに示し
た状態となる。以後この繰り返しによつて押出加
工を行う。
The extrusion method will be explained using FIG. 4. The structure of the dice etc. shown in FIG. 4 is the same as that of FIG. 3. First, as shown in a, the cylindrical billet 1' is housed in the bearing part. By pressurizing the billet using the punch 5, it becomes as shown in b. Next, as shown in c, the billet 1 is accommodated in the container part 6, and the billet is moved in the direction from the container part toward the bearing part while being pressurized by the punches 4 and 5, so that the state shown in d is obtained. When the billet 1' housed in the bearing section is taken out and a new billet is housed in the container section 6, the state shown in c is obtained. Thereafter, extrusion processing is performed by repeating this process.

前記のaからbは本発明の押出加工工程ではな
く、これはコンテナ部の開口面積がベアリング部
の開口面積より小さく、しかも第4図に示すダイ
スではコンテナ部から開口面積が順次増加してベ
アリング部に至るコニカル部8を有するため、こ
のコニカル部の空洞部分を主としてビレツトによ
つて満たした状態にするための工程である。
The above steps a to b are not extrusion processing steps of the present invention, because the opening area of the container part is smaller than the opening area of the bearing part, and in addition, in the die shown in Fig. 4, the opening area increases sequentially from the container part to the bearing part. Since the conical part 8 has a conical part 8 extending to the bottom, this step is to fill the hollow part of the conical part mainly with billet.

前述した様に、ポンチ4と5でビレツトを加圧
した状態で、ビレツトをコンテナ部からベアリン
グ部へ向かう方向に移動させることによつて、ビ
レツトは押出方向に圧縮ひずみをうける。
As described above, by moving the billet from the container section toward the bearing section while pressurizing the billet with the punches 4 and 5, the billet is subjected to compressive strain in the extrusion direction.

第2の方法は、第1の方法で得たビレツト(前
記の押出加工を施したビレツト)を、さらにビレ
ツトの一部分に押出方向に平行な方向に圧縮加工
する方法である。第5図にその一例を示した。第
5図は金型の断面図で、aは加工前の状態を示
し、bは加工後の状態を示す。第5図において
い、ポンチ10は油圧シリンダ等に取付けられて
いて、下型12は定盤等に固定されている。まず
ビレツト9を下型12の上にのせ拘束金型11で
ビレツト9を覆うように(aに示す様に)セツト
する。ポンチ10を拘束型11内に入れ、さらに
ビレツト9に接近させた状態がaである、加工は
ポンチ10によつてビレツト9の内周部のみを加
圧することによつて、bに示す状態となる。この
場合11と12が相対的に移動しないように11
を12に固定しておく必要がある。なお、ビレツ
ト9は前記の押出加工を施したビレツトである。
ビレツトの一部分を前記の例では内周部とした
が、他の主なものとしては外周部とする方法、例
えば前記の例の加工する部分としない部分を逆に
するなどがあり、特殊な用途に対してはそれぞれ
に適した部分にすれば良い。
The second method is a method in which the billet obtained in the first method (the billet subjected to the extrusion process described above) is further compressed into a portion of the billet in a direction parallel to the extrusion direction. An example is shown in FIG. FIG. 5 is a sectional view of the mold, where a shows the state before processing and b shows the state after processing. In FIG. 5, the punch 10 is attached to a hydraulic cylinder or the like, and the lower die 12 is fixed to a surface plate or the like. First, the billet 9 is placed on the lower mold 12, and the restraining mold 11 is set so as to cover the billet 9 (as shown in a). The state shown in a is that the punch 10 is placed in the restraining mold 11 and brought closer to the billet 9. The processing is performed by pressurizing only the inner circumference of the billet 9 with the punch 10, and the state shown in b is obtained. Become. In this case, 11 and 12 should not move relative to each other.
It is necessary to fix it to 12. Note that the billet 9 is a billet subjected to the extrusion process described above.
In the above example, a part of the billet was used as the inner periphery, but other methods include making it the outer periphery, such as reversing the parts to be machined and the parts not to be machined in the above example. For each, you can choose the appropriate part for each.

前述した様な塑性加工の可能な温度範囲につい
ては、530〜830℃の温度領域について行えたが、
780℃を越える温度では磁気特性がかなり低下し
た。より望ましい温度範囲としては560〜760℃で
あつた。
Regarding the possible temperature range of plastic working as mentioned above, it was possible to perform it in the temperature range of 530 to 830℃, but
At temperatures above 780°C, the magnetic properties deteriorated considerably. A more desirable temperature range was 560 to 760°C.

次に本発明の更に具体的な実施例について説明
する。
Next, more specific embodiments of the present invention will be described.

配合組成で69.5%のMn、29.3%のAl、0.5%の
C、及び0.7%のNiを溶解鋳造し、直径60mm、長
さ60mmの円柱ビレツトを作成した。このビレツト
を1100℃で2時間保持した後、室温まで放冷する
熱処理を行つた。次に潤滑剤を介して720℃の温
度で直径35mmまでの押出加工を行つた。さらに潤
滑剤を介して680℃の温度で直径21mmまでの押出
加工を行つた。
A cylindrical billet with a diameter of 60 mm and a length of 60 mm was created by melting and casting a mixture of 69.5% Mn, 29.3% Al, 0.5% C, and 0.7% Ni. This billet was held at 1100° C. for 2 hours, and then heat-treated by allowing it to cool to room temperature. Next, extrusion processing up to a diameter of 35 mm was performed at a temperature of 720°C via a lubricant. Furthermore, extrusion processing up to a diameter of 21 mm was performed at a temperature of 680°C using a lubricant.

この押出棒を長さ40mmに切断し、切削加工して
直径20mm、長さ40mmの円柱ビレツトを数個作製し
た。次に潤滑剤を介して第3図に示したようなダ
イスを用いて680℃の温度で押出加工を行つた。
押出方法は第4図を用いて説明した前述の方法で
ある。なお、ダイスのコンテナ部の直径は20mm、
ベアリング部の外径は30mm、内径は10mmであり、
xは20mmである。押出途中のすなわち第3図にお
いて、コニカル部8の部分に存在するビレツトを
4個作製し、それぞれのビレツトを押出方向に直
角に厚さ1mmに切断し、同一の圧縮ひずみが与え
られたものを重ね合わせ、試料を作製した。
This extruded rod was cut to a length of 40 mm and machined to produce several cylindrical billets with a diameter of 20 mm and a length of 40 mm. Next, extrusion processing was performed at a temperature of 680° C. using a die as shown in FIG. 3 through a lubricant.
The extrusion method is the above-mentioned method explained using FIG. In addition, the diameter of the container part of the die is 20 mm.
The outer diameter of the bearing part is 30mm, the inner diameter is 10mm,
x is 20mm. During extrusion, that is, in Fig. 3, four billets existing in the conical part 8 were prepared, each billet was cut into a thickness of 1 mm perpendicular to the extrusion direction, and the billets were given the same compressive strain. They were superimposed to prepare a sample.

この試料から一辺が約4mmの立方体を切出し、
磁気測定を行つた。なお各辺は、軸方向、径方向
および弦方向に平行になるようにした。圧縮ひず
みεzに対する残留磁束密度Brの値を第6図に示
す。第6図に示す様にεzが0.05で弦方向のBrは軸
方向のBrに比して大きくなり、εzがさらに大き
くなるとさらに弦方向のBrも増加する。この図
からわかるように、軸方向から弦方向への磁化容
易方向の転換がεzが0.05までの範囲で著しく進行
する。
A cube with a side of about 4 mm was cut out from this sample,
We performed magnetic measurements. Note that each side was parallel to the axial direction, radial direction, and chord direction. Figure 6 shows the values of the residual magnetic flux density Br versus the compressive strain εz . As shown in FIG. 6, when ε z is 0.05, Br in the chordal direction becomes larger than Br in the axial direction, and as ε z becomes even larger, Br in the chordal direction further increases. As can be seen from this figure, the change in the direction of easy magnetization from the axial direction to the chordal direction progresses significantly in the range of ε z up to 0.05.

さらに所定の本発明の押出加工を施した加工後
のビレツト(外径30mm、内径10mm、長さ20mm)を
切削加工し、外径28mm、内径14mmの円筒磁石を作
成し、第2図に示した様な内周多極着磁を施し
た。なお極数は4極で、着磁は2000μFのオイル
コンデンサーを用い、1500Vでパルス着磁した。
内周部の表面磁束密度をホール素子で測定した。
Furthermore, the extruded billet (outer diameter 30 mm, inner diameter 10 mm, length 20 mm) after the extrusion process according to the present invention was machined to create a cylindrical magnet with an outer diameter of 28 mm and an inner diameter of 14 mm, as shown in Figure 2. The inner periphery is multi-pole magnetized. The number of poles was 4, and a 2000μF oil capacitor was used for magnetization, and pulse magnetization was performed at 1500V.
The surface magnetic flux density of the inner circumference was measured using a Hall element.

比較のために前記の21mmの押出棒を長さ20mmに
切断し、切削加工して直径20.5mm、長さ20mmの円
柱ビレツトを作製した。これを潤滑剤を介して
680℃の温度で円柱の軸方向に自由圧縮加工を施
した。加工後のビレツトの長さを10mmとした。加
工後のビレツトは、面異方性磁石であり、前記と
同様に円筒に切削加工して、着磁後の表面磁束密
度を測定した。
For comparison, the extruded rod of 21 mm was cut into a length of 20 mm and machined to produce a cylindrical billet with a diameter of 20.5 mm and a length of 20 mm. Apply this via lubricant
Free compression was performed in the axial direction of the cylinder at a temperature of 680°C. The length of the billet after processing was 10 mm. The processed billet was a planar anisotropic magnet, which was cut into a cylinder in the same manner as described above, and the surface magnetic flux density after magnetization was measured.

以上の両者の値を比較すると、本発明の方法で
得た磁石の表面磁束密度の値は、両異方性磁石の
それの約1.2倍であつた。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of both anisotropic magnets.

次に、前記と同様の条件で作製した面異方性磁
石を直径20mmに切削加工し、前記と同様の条件で
押出加工した。押出加工後のビレツトを4個用
い、切削加工して外径28mm、内径14mm、長さ20mm
の円筒磁石を作製し、前記と同様に着磁、測定し
たところ、先ほど得た本発明の方法による磁石と
特性に大きな差はなかつた。
Next, the planar anisotropic magnet produced under the same conditions as above was cut to a diameter of 20 mm, and extruded under the same conditions as above. Using four extruded billets, we cut them into outer diameter 28mm, inner diameter 14mm, and length 20mm.
When a cylindrical magnet was prepared, magnetized and measured in the same manner as described above, there was no significant difference in characteristics from the magnet obtained earlier by the method of the present invention.

次に、前記の本発明の押出加工を施したビレツ
ト(本発明の押出加工前は、軸方向に異方性化し
た磁石のもの。ビレツトの寸法は、外径30mm、内
径10mm、長さ20mm)を切削加工して、外径29mm、
内径11mm、長さ10mmの円筒ビレツトを作製し、こ
のビレツトをさらに第5図に示した様な状態で円
筒の軸方向に680℃の温度で内周部のみ圧縮加工
した。なお第5図に示したポンチ10の直径は18
mmであり、ビレツトの中心とポンチの中心をほぼ
一致させて圧縮加工した。加工後のビレツトの内
周部の長さは8mmであつた。このビレツトを切削
加工して外径28mm、内径14mmの円筒磁石を作製し
た。前記と同様に着磁後の表面磁束密度を測定し
た。
Next, a billet subjected to the extrusion process of the present invention described above (before the extrusion process of the present invention is a magnet made axially anisotropic), the dimensions of the billet are an outer diameter of 30 mm, an inner diameter of 10 mm, and a length of 20 mm. ) was machined to an outer diameter of 29 mm,
A cylindrical billet with an inner diameter of 11 mm and a length of 10 mm was prepared, and only the inner peripheral portion of the billet was compressed in the axial direction of the cylinder at a temperature of 680° C. in the state shown in FIG. The diameter of the punch 10 shown in Figure 5 is 18
mm, and was compressed by aligning the center of the billet with the center of the punch. The length of the inner circumference of the billet after processing was 8 mm. This billet was machined to produce a cylindrical magnet with an outer diameter of 28 mm and an inner diameter of 14 mm. The surface magnetic flux density after magnetization was measured in the same manner as above.

前記の面異方性磁石の値と比較すると、局部的
に圧縮加工した磁石の表面磁束密度の値は面異方
性磁石のそれの約1.4倍であつた。
When compared with the value of the above-mentioned planar anisotropic magnet, the value of the surface magnetic flux density of the locally compressed magnet was about 1.4 times that of the planar anisotropic magnet.

発明の効果 以上のように、本発明によれば、多極着磁にお
いて優れた磁気特性を示す磁石を得ることができ
る。また、本発明の方法では、複合加工法等によ
る場合と比較して、塑性加工後の穴あけ加工の簡
略化を可能にし、しかも長さの長い磁石をも製造
することができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a magnet that exhibits excellent magnetic properties in multipolar magnetization. Furthermore, the method of the present invention makes it possible to simplify the hole-drilling process after plastic working, and also to manufacture a magnet with a long length, compared to the case of using a composite working method or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円筒状磁石の外周部に多極着磁を施し
た場合の磁石内部での磁路の形成を模式的に示す
図、第2図は円筒状磁石の内周部に多極着磁を施
した場合の磁石内部での磁路の形成を模式的に示
す図、第3図は本発明の押出加工の一例を示す金
型の一部の断面図、第4図は押出方法を示す金型
の一部の断面図、第5図は本発明の塑性加工の一
例を示す金型の一部の断面図、第6図は実施例で
の圧縮ひずみεzに対する残留磁束密度Brの変化
を示す図である。 1,1′……ビレツト、4,5……ポンチ、6
……コンテナ部、7……ベアリング部、8……コ
ニカル部、9……ビレツト、10……ポンチ、1
1……拘束金型、12……下型。
Figure 1 is a diagram schematically showing the formation of a magnetic path inside the magnet when the outer circumference of a cylindrical magnet is magnetized with multiple poles. A diagram schematically showing the formation of a magnetic path inside a magnet when magnetized, FIG. 3 is a cross-sectional view of a part of a mold showing an example of the extrusion process of the present invention, and FIG. 4 is a diagram showing the extrusion method. FIG. 5 is a cross-sectional view of a part of the mold showing an example of plastic working of the present invention, and FIG. 6 shows the residual magnetic flux density Br versus compressive strain ε z in the example. It is a figure showing a change. 1, 1'... billet, 4, 5... punch, 6
... Container part, 7 ... Bearing part, 8 ... Conical part, 9 ... Billet, 10 ... Punch, 1
1...Restriction mold, 12...Lower mold.

Claims (1)

【特許請求の範囲】 1 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中実体状の
ビレツトに、530〜830℃の温度で、ベアリング部
の空洞部分の断面形状が中空であり、コンテナ部
の開口面積がベアリング部の開口面積より小さい
ダイスを用いて、中実体の軸方向と押出方向を平
行にして押出加工を施し、しかも前記押出加工に
よつて前記ビレツトの押出方向に圧縮ひずみを与
えることを特徴とするマンガン−アルミニウム−
炭素系合金磁石の製造法。 2 前記ビレツトが、中実体の軸方向に磁化容易
方向を有する多結晶マンガン−アルミニウム−炭
素系合金磁石からなり、しかも前記圧縮ひずみ
が、対数ひずみの絶対値で0.05以上施すものであ
る特許請求の範囲第1項記載のマンガン−アルミ
ニウム−炭素系合金磁石の製造法。 3 前記ビレツトが、中実体の軸方向に垂直な平
面に平行に磁化容易方向を有し、しかも前記平面
内では磁気的に等方性であり、かつ前記平面の垂
線の方向と前記特定の平面に平行な直線を含む平
面内では異方性である多結晶マンガン−アルミニ
ウム−炭素系合金磁石からなる特許請求の範囲第
1項記載のマンガン−アルミニウム−炭素系合金
磁石の製造法。 4 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中実体状の
ビレツトに、530〜830℃の温度で、ベアリング部
の空洞部分の断面形状が中空であり、コンテナ部
の開口面積がベアリング部の開口面積より小さい
ダイスを用いて、中空体の軸方向と押出方向を平
行として押出加工を施し、しかも前記押出加工に
よつて前記ビレツトの押出方向に圧縮ひずみを与
えた後、さらに前記ビレツトの一部分に前記押出
方向に平行な方向に圧縮加工を施すことを特徴と
するマンガン−アルミニウム−炭素系合金磁石の
製造法。 5 前記ビレツトが、中実体の軸方向に磁化容易
方向を有する多結晶マンガン−アルミニウム−炭
素系合金磁石からなり、しかも前記圧縮ひずみ
が、対数ひずみの絶対値で0.05以上施すものであ
る特許請求の範囲第4項記載のマンガン−アルミ
ニウム−炭素系合金磁石の製造法。 6 前記ビレツトが、中実体の軸方向に垂直な平
面に平行に磁化容易方向を有し、しかも前記平面
内では磁気的に等方性であり、かつ前記平面の垂
線の方向と前記特定の平面に平行な直線を含む平
面内では異方性である多結晶マンガン−アルミニ
ウム−炭素系合金磁石からなる特許請求の範囲第
4項記載のマンガン−アルミニウム−炭素系合金
磁石の製造法。
[Claims] 1. A solid billet made of a pre-anisotropic polycrystalline manganese-aluminum-carbon alloy magnet is heated at a temperature of 530 to 830°C so that the cross-sectional shape of the hollow part of the bearing part is hollow. Using a die in which the opening area of the container part is smaller than the opening area of the bearing part, extrusion processing is performed with the axial direction of the solid body parallel to the extrusion direction, and the extrusion direction of the billet is Manganese-aluminum- characterized by imparting compressive strain to
Manufacturing method for carbon-based alloy magnets. 2. The billet is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the solid body, and the compressive strain is applied to an absolute value of logarithmic strain of 0.05 or more. A method for producing a manganese-aluminum-carbon alloy magnet according to scope 1. 3. The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the solid body, is magnetically isotropic within the plane, and has a direction perpendicular to the plane and the specific plane. A method for producing a manganese-aluminum-carbon alloy magnet according to claim 1, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing straight lines parallel to the plane. 4. A solid billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance is heated at a temperature of 530 to 830°C, and the cross-sectional shape of the hollow part of the bearing part is hollow, and the shape of the container part is Using a die whose opening area is smaller than that of the bearing part, extrusion processing is performed with the axial direction of the hollow body parallel to the extrusion direction, and after applying compressive strain in the extrusion direction of the billet by the extrusion processing. A method for producing a manganese-aluminum-carbon alloy magnet, further comprising subjecting a portion of the billet to compression processing in a direction parallel to the extrusion direction. 5. The billet is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the solid body, and the compressive strain is applied to an absolute value of logarithmic strain of 0.05 or more. A method for producing a manganese-aluminum-carbon alloy magnet according to Scope 4. 6. The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the solid body, is magnetically isotropic within the plane, and has a direction perpendicular to the plane and the specific plane. 5. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 4, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing a straight line parallel to .
JP57184025A 1982-10-20 1982-10-20 Manufacture of manganese-aluminum-carbon alloy magnet Granted JPS5972701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184025A JPS5972701A (en) 1982-10-20 1982-10-20 Manufacture of manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184025A JPS5972701A (en) 1982-10-20 1982-10-20 Manufacture of manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS5972701A JPS5972701A (en) 1984-04-24
JPH0311527B2 true JPH0311527B2 (en) 1991-02-18

Family

ID=16146025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184025A Granted JPS5972701A (en) 1982-10-20 1982-10-20 Manufacture of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS5972701A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143406A (en) * 1985-12-18 1987-06-26 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
US5229738A (en) * 1987-06-16 1993-07-20 Kinetron B.V. Multipolar rotor

Also Published As

Publication number Publication date
JPS5972701A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
US4579607A (en) Permanent Mn-Al-C alloy magnets and method for making same
JPH0311522B2 (en)
JPH0311527B2 (en)
JPH037747B2 (en)
JPH0479122B2 (en)
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0434804B2 (en)
JPH037745B2 (en)
JPH0311521B2 (en)
JPH037748B2 (en)
JPH0311523B2 (en)
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210253A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS61166957A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192305A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311524B2 (en)
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS61187213A (en) Manufacture of alloy magnet
JPH0639667B2 (en) Method for producing manganese-aluminum-carbon alloy magnet