JPH0434804B2 - - Google Patents

Info

Publication number
JPH0434804B2
JPH0434804B2 JP58168635A JP16863583A JPH0434804B2 JP H0434804 B2 JPH0434804 B2 JP H0434804B2 JP 58168635 A JP58168635 A JP 58168635A JP 16863583 A JP16863583 A JP 16863583A JP H0434804 B2 JPH0434804 B2 JP H0434804B2
Authority
JP
Japan
Prior art keywords
billet
aluminum
alloy magnet
carbon alloy
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168635A
Other languages
Japanese (ja)
Other versions
JPS6059720A (en
Inventor
Akihiko Ibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58168635A priority Critical patent/JPS6059720A/en
Publication of JPS6059720A publication Critical patent/JPS6059720A/en
Publication of JPH0434804B2 publication Critical patent/JPH0434804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に関するものであ
る。さらに詳細には、多結晶マンガン−アルミニ
ウム−炭素(Mn−Al−C)系合金磁石の製造法
に関し、特に高性能な多極着磁用Mn−Al−C系
合金磁石の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a permanent magnet. More specifically, the present invention relates to a method of manufacturing a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet, and particularly to a method of manufacturing a high-performance Mn-Al-C alloy magnet for multipolar magnetization.

従来例の構成とその問題点 Mn−Al−C系合金磁石は、主として強磁性相
である面心正方晶(τ相、L10型規則格子)の組
織で構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。
Structure of conventional examples and their problems Mn-Al-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, L 10 type regular lattice) structure, which is a ferromagnetic phase, and C is an essential constituent element. There are known ternary alloy magnets that contain no additive elements other than impurities, and multi-element alloy magnets that include quaternary or higher alloy magnets that contain small amounts of additive elements, and these are collectively referred to as magnets.

また、このMn−Al−C系合金磁石の製造法と
しては、鋳造・熱処理によるもの以外に、押出加
工等の塑性加工工程を含むものが知られている。
特に後者は、高い磁気特性、機械的強度、耐候
性、機械加工性等の優れた性質を有する異方性磁
石の製造法として知られている。
Furthermore, as a manufacturing method for this Mn--Al--C alloy magnet, there are known methods that include a plastic working process such as extrusion in addition to casting and heat treatment.
In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

多極着磁用のMn−Al−C系合金磁石の製造法
としては、等方性磁石、圧縮加工によるもの、及
びあらかじめ押出加工等の公知の方法で得た一軸
異方性の多結晶Mn−Al−C系合金磁石に異方性
方向への自由圧縮加工(複合加工法)によるもの
が知られている。
Manufacturing methods for Mn-Al-C alloy magnets for multipolar magnetization include isotropic magnets, compression processing, and uniaxially anisotropic polycrystalline Mn obtained in advance by known methods such as extrusion processing. -Al-C alloy magnets subjected to free compression processing in an anisotropic direction (composite processing method) are known.

圧縮加工によるものでは、径方向に高い磁気特
性が得られているが、比較的大きい加工率が必要
であること、不均一変形が起こる場合があるこ
と、不変形帯の存在が避けられないことなどの問
題点がある。複合加工法によるものでは、小さな
圧縮ひずみで径方向、弦方向を含む平面内の全て
の方向に高い磁気特性が得られている。複合加工
法で得た磁石は、特定の平面に平行に磁化容易方
向を有し、しかも前記平面内では磁気的に等方性
であり、かつ前記平面の垂線と前記平面に平行な
直線を含む平面内では異方性であるという構造で
ある(以下このような磁石を面異方性磁石とい
う)。
Compression processing provides high magnetic properties in the radial direction, but a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed bands is unavoidable. There are problems such as: With the combined processing method, high magnetic properties are obtained in all directions within the plane, including the radial and chordal directions, with small compressive strain. The magnet obtained by the composite processing method has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and includes a line perpendicular to the plane and a straight line parallel to the plane. It has a structure that is anisotropic in a plane (hereinafter, such a magnet will be referred to as a plane anisotropic magnet).

一方、多極着磁の分野で用いられる磁石の形状
は、一般には軸対称の形状であり、一例として円
筒体がある。円筒体の磁石の内周に多極着磁した
場合の磁石内部での磁路の形勢を模式的に第1図
に示した。第1図において、破線が磁路を示し、
一つの径方向(r方向)に対する弦方向(θ方
向)をも示している。円筒の径方向(r方向)と
円筒の軸方向とにそれぞれ直交する方向を弦方向
(θ方向)とする。
On the other hand, the shape of a magnet used in the field of multipolar magnetization is generally an axially symmetrical shape, and an example is a cylindrical shape. FIG. 1 schematically shows the configuration of the magnetic path inside the magnet when the inner circumference of the cylindrical magnet is magnetized with multiple poles. In Figure 1, the broken line indicates the magnetic path,
The chordal direction (θ direction) with respect to one radial direction (r direction) is also shown. The direction perpendicular to the radial direction (r direction) of the cylinder and the axial direction of the cylinder is defined as the chordal direction (θ direction).

第1図に示した様に、磁路は内周部ではほぼ径
方向に沿い、それよりも外側の部分では弦方向に
沿い、さらに外側の部分では磁路が通つていな
い。磁石の形状を円筒体とした場合、前述した様
に磁石を三つの部分に分けて考えることができ、
第1は磁路が径方向に沿つている部分(A部)、
第2は磁路が弦方向に沿つている部分(B部)、
第3は磁路が通つていない部分(C部)である。
As shown in FIG. 1, the magnetic path runs approximately in the radial direction at the inner circumferential portion, along the chord direction at the outer portion, and no magnetic path runs at the outer portion. If the shape of the magnet is cylindrical, the magnet can be divided into three parts as mentioned above.
The first is the part where the magnetic path runs along the radial direction (part A),
The second is the part where the magnetic path is along the chord direction (part B),
The third part is a part (C part) through which no magnetic path passes.

前述した面異方性磁石は、径方向と弦方向を含
む平面に平行な任意の方向に磁化容易方向を有す
る磁石であるため、このような内周着磁を施した
場合には優れた磁気特性が得られるが、前述した
ように三つの部分に分けてみた場合、各々につい
ては望ましい異方性構造ではない。つまり、A部
では弦方向よりも径方向に高い磁気特性を有する
方が良く、B部では径方向よりも弦方向に高い磁
気特性を有する方が良い。一方、径異方性磁石
(または、放射状に磁化容易方向を有する磁石、
磁石の形状を中空体状とする中空体の軸方向に垂
直な平面上の任意を一点を通る直線に平行に磁化
容易方向を有する磁石をいい、第1図に示す円筒
体であればr方向(径方向)に磁化容易方向を有
する磁石)では、A部では望ましい異方性構造で
あるがB部では逆に望ましくない異方性構造であ
る。
The above-mentioned plane anisotropic magnet is a magnet that has an easy magnetization direction in any direction parallel to the plane including the radial direction and the chordal direction, so when it is magnetized on the inner circumference in this way, it has excellent magnetic properties. However, when it is divided into three parts as described above, each part does not have a desirable anisotropic structure. That is, it is better for the A part to have higher magnetic properties in the radial direction than in the chordal direction, and it is better for the B part to have higher magnetic properties in the chordal direction than in the radial direction. On the other hand, a radially anisotropic magnet (or a magnet with a radial easy magnetization direction,
A magnet whose shape is a hollow body and whose easy magnetization direction is parallel to a straight line passing through an arbitrary point on a plane perpendicular to the axial direction of the hollow body, and in the case of a cylindrical body as shown in Fig. 1, the direction of easy magnetization is the r direction. In a magnet (having an easy magnetization direction in the radial direction), part A has a desirable anisotropic structure, but part B has an undesirable anisotropic structure.

発明の目的 本発明は、高性能な多極着磁に適するMn−Al
−C系合金磁石の製造法を提供することを目的と
する。
Purpose of the Invention The present invention provides an Mn-Al material suitable for high-performance multipole magnetization.
- It is an object of the present invention to provide a method for manufacturing a C-based alloy magnet.

発明の構成 本発明は、金属材料からなる中空体状のビレツ
トの中空部分に、あらかじめ異方性化した多結晶
Mn−Al−C系合金磁石からなる中空体状のビレ
ツトが存在する状態で、530〜830℃の温度で、前
記あらかじめ異方性化した多結晶Mn−Al−C系
合金磁石からなる中空体状のビレツトの軸方向に
前記二つのビレツトが接するまでもしくはそれ以
上圧縮加工して一体化することを特徴とする。
Structure of the Invention The present invention provides anisotropic polycrystalline material in the hollow part of a hollow billet made of a metal material.
In the presence of a hollow billet made of an Mn-Al-C alloy magnet, the hollow body made of the previously anisotropic polycrystalline Mn-Al-C alloy magnet is heated at a temperature of 530 to 830°C. It is characterized in that the two billets are compressed in the axial direction of the shaped billet until they come into contact with each other or further to be integrated.

あらかじめ異方性化した多結晶Mn−Al−C系
合金磁石からなる中空体状のビレツトの外側に金
属材料からなる中空体状のビレツトが存在する状
態で、二つのビレツトが接するまでもしくはそれ
以上圧縮加工を行うことによつて、放射状に磁化
容易方向を有するMn−Al−C系合金磁石を得る
ことができ、金属材料から中空体状のビレツトと
共に圧縮加工することによつて、圧縮加工が効果
的(組織の微細化、異方性化、磁気特性の向上な
ど)にMn−Al−C系合金磁石に与えられる。
With a hollow billet made of a metal material existing on the outside of a hollow billet made of a polycrystalline Mn-Al-C alloy magnet that has been made anisotropic in advance, the billet is heated until the two billets touch or more. By performing compression processing, it is possible to obtain a Mn-Al-C alloy magnet having a radial direction of easy magnetization, and by compression processing a metal material together with a hollow billet. Effectively (refined structure, anisotropy, improved magnetic properties, etc.) is applied to Mn-Al-C alloy magnets.

さらに、前記金属材料からなる中空体状のビレ
ツトが、少なくとも内周部が磁性体からなる中空
体状のビレツトであれば、前述した内周着磁に適
する二つの構造を有する磁石を得ることができ
る。
Furthermore, if the hollow billet made of the metal material is a hollow billet with at least the inner periphery made of a magnetic material, it is possible to obtain a magnet having two structures suitable for inner periphery magnetization as described above. can.

あらかじめ異方性化した多結晶Mn−Al−C系
合金磁石からなる中空体状のビレツトが圧縮加工
後、A部に適する構造を磁石となり、磁性体の部
分が圧縮加工後、B部に適する構造を有する部分
となる。しかも、前記の二つのビレツトを同時に
圧縮加工し、両者を接触させるため圧縮加工後は
二種類以上の構造を有する磁石を得ることができ
る。
After compression processing, a hollow billet made of a polycrystalline Mn-Al-C alloy magnet that has been made anisotropic in advance becomes a magnet with a structure suitable for part A, and after compression processing, the magnetic body part becomes a magnet with a structure suitable for part B. It becomes a part that has a structure. Moreover, since the two billets are compressed at the same time and brought into contact with each other, it is possible to obtain a magnet having two or more types of structures after the compression process.

実施例の説明 公知のMn−Al−C系磁石様合金、例えば68〜
73重量%(以下単に%で示す)のMnと(1/10・
Mn−6.6)〜(1/3・Mn−22.2)%のCと残部の
Alからなる合金を、530〜830℃の温度域で押出
加工等の塑性加工を施すことによつて、異方性化
した多結晶Mn−Al−C系合金磁石を得ることが
できる。前記磁石の代表的なものとしては、前記
の塑性加工を押出加工とした場合に得られる押出
方向に磁化容易方向を有する一軸異方性磁石、前
述した面異方性磁石および径異方性磁石などがあ
る。
Description of Examples Known Mn-Al-C based magnet-like alloys, e.g. 68~
73% by weight (hereinafter simply expressed as %) of Mn and (1/10・
Mn−6.6) to (1/3・Mn−22.2)% of C and the remainder
An anisotropic polycrystalline Mn-Al-C alloy magnet can be obtained by subjecting an alloy made of Al to plastic working such as extrusion in a temperature range of 530 to 830°C. Typical examples of the magnet include a uniaxial anisotropic magnet having an easy magnetization direction in the extrusion direction obtained when the plastic working is performed by extrusion, the above-mentioned planar anisotropic magnet, and radial anisotropic magnet. and so on.

金属材料からなる中空体状のビレツトの中空部
分に、前記の異方性化した多結晶Mn−Al−C系
合金磁石からなる中空体状のビレツトが存在する
状態で、前記Mn−Al−C系合金磁石からなる中
空体状のビレツトの軸方向に、前記二つのビレツ
トが接するまでもしくはそれ以上圧縮加工を行う
ことによつて、放射状に磁化容易方向を有する
Mn−Al−C系合金磁石を得ることができ、金属
材料からなる中空体状のビレツトと共に圧縮加工
を行うため、圧縮加工の効果(組織の微細化、異
方性化、磁気特性の向上など)が効率的にMn−
Al−C系合金磁石に与えられる。
In a state where the hollow billet made of the anisotropic polycrystalline Mn-Al-C alloy magnet is present in the hollow part of the hollow billet made of the metal material, the Mn-Al-C By compressing a hollow billet made of a system alloy magnet in the axial direction until the two billets touch or more, the billet has an easy magnetization direction radially.
Mn-Al-C alloy magnets can be obtained, and since compression processing is performed together with a hollow billet made of metal material, the effects of compression processing (refining of the structure, anisotropy, improvement of magnetic properties, etc.) ) efficiently converts Mn−
Applied to Al-C alloy magnets.

前記の金属材料とは、Mn−Al−C系合金磁石
と530〜830℃の温度域で共に圧縮加工できる材料
であればよい。一般にいう金属材料にこだわる必
要はない。換言すると、ある材料からなるビレツ
トであればよい。しかし、一般には例えば鋼、黄
銅、銅などがあり、場合によつてはバルク材に限
らず粉末であつてもよい。
The metal material mentioned above may be any material that can be compressed together with the Mn-Al-C alloy magnet in the temperature range of 530 to 830°C. There is no need to be particular about metal materials in general. In other words, any billet made of a certain material is sufficient. However, in general, materials such as steel, brass, and copper are used, and in some cases, the materials are not limited to bulk materials but may also be powders.

また、さらに前記の金属材料からなる中空体状
のビレツトが、少なくとも内周部が磁性体からな
るものであれば、圧縮加工後のビレツトの内周部
(圧縮加工前は異方性化したMn−Al−C系合金
磁石からなる中空体状のビレツトにあたる部分)
は径方向に高い磁気特性を有する部分となり、そ
れよりも外側の部分(磁性体にあたる部分)は内
周着磁を施した場合に磁路が弦方向に沿うのに適
した部分となる。これによつて、前述した内周着
磁を施した場合の三つに分けたA部とB部が形成
され、内周着磁において優れた磁気特性を示す磁
石が得られる。
Furthermore, if the hollow billet made of the metal material described above is made of a magnetic material at least in its inner circumference, the inner circumference of the billet after compression processing (before compression processing, the anisotropic Mn -The part corresponding to the hollow billet made of Al-C alloy magnet)
is a portion that has high magnetic properties in the radial direction, and the portion outside of this (corresponding to the magnetic material) is a portion suitable for the magnetic path to follow the string direction when inner circumferential magnetization is applied. As a result, three divided portions A and B are formed when the inner circumferential magnetization described above is applied, and a magnet exhibiting excellent magnetic properties when inner circumference magnetized is obtained.

前記の磁性体とは、前述した圧縮加工後に弦方
向が磁化困難方向にならない磁性体であればどの
ようなものでも良い。ここで、磁化困難方向と
は、外周着磁において問題となる磁化困難方向を
意味し、例えば単結晶のFeの〔111〕方向のよう
にH=500Oeでは磁化容易軸の〔100〕方向の磁
化の強さと大差がなくなる場合には、外周着磁に
おける磁化の困難な方向とはいえない。前記の磁
性体としては、Mn−Al−C系磁石合金(Mn−
Al−C系磁石用合金とMn−Al−C系合金磁石と
の総称)、等方性Mn−Al−C系合金磁石、純鉄、
電磁軟鉄、Fe−Co合金などの高透磁率材料など
がある。
The above-mentioned magnetic material may be any magnetic material as long as the chord direction does not become the difficult-to-magnetize direction after the above-described compression process. Here, the difficult magnetization direction means the direction in which magnetization is difficult in outer circumferential magnetization, for example, in the [111] direction of single crystal Fe, when H = 500 Oe, the magnetization in the [100] direction of the easy magnetization axis If there is no significant difference in strength from the strength of , it cannot be said that the direction is difficult for magnetization in outer circumferential magnetization. As the magnetic material, Mn-Al-C magnetic alloy (Mn-
Generic term for Al-C magnet alloy and Mn-Al-C alloy magnet), isotropic Mn-Al-C alloy magnet, pure iron,
Examples include high magnetic permeability materials such as electromagnetic soft iron and Fe-Co alloy.

前記のMn−Al−C系合金磁石からなる中空体
状のビレツトが、中空体の軸方向に磁化容易方向
を有する多結晶Mn−Al−C系合金磁石(一軸異
方性磁石)からなる場合には、前記の圧縮加工に
よつて中空体状のビレツトの軸方向に対数ひずみ
の絶対値で0.03以上の圧縮ひずみを与える必要が
ある。これは実施例で詳述するように、圧縮加工
前は軸方向に異方性化したものであり、径方向に
高い磁気特性を示す構造への変化に最低0.03の圧
縮ひずみが必要であるためである。
When the hollow body-shaped billet made of the Mn-Al-C alloy magnet is made of a polycrystalline Mn-Al-C alloy magnet (uniaxially anisotropic magnet) having an easy magnetization direction in the axial direction of the hollow body. In order to achieve this, it is necessary to apply a compressive strain of 0.03 or more in the absolute value of logarithmic strain in the axial direction of the hollow billet through the above-mentioned compression process. This is because, as detailed in the examples, the structure is anisotropic in the axial direction before compression processing, and a compressive strain of at least 0.03 is required for the structure to exhibit high magnetic properties in the radial direction. It is.

前記のMn−Al−C系合金磁石からなる中空体
状のビレツトが、中空体の軸方向に垂直な平面に
平行に磁化容易方向を有する多結晶Mn−Al−C
系合金磁石(面異方性磁石)からなる場合には、
圧縮加工前はすでに径方向と弦方向を含む平面内
のすべての方向に高い磁気特性を示しているが、
前記の圧縮加工を施すことによつて磁化容易方向
が径方向に沿うように変化する。
The hollow billet made of the Mn-Al-C alloy magnet is a polycrystalline Mn-Al-C whose easy magnetization direction is parallel to a plane perpendicular to the axial direction of the hollow body.
In the case of a system alloy magnet (planar anisotropic magnet),
Before compression processing, it already exhibits high magnetic properties in all directions within the plane, including the radial and chordal directions;
By performing the compression process described above, the direction of easy magnetization changes along the radial direction.

前記のMn−Al−C系合金磁石からなる中空体
状のビレツトが、中空体の軸方向に垂直な平面上
の任意の一点を通る直線に平行に磁化容易方向を
有する多結晶Mn−Al−C系合金磁石(径異方性
磁石又は放射状に磁化容易方向を有する磁石)か
らなる場合には、圧縮加工によつてさらに径方向
に高い磁気特性を示すようになる。
The hollow body-shaped billet made of the Mn-Al-C alloy magnet is a polycrystalline Mn-Al- In the case of a C-based alloy magnet (a radially anisotropic magnet or a magnet having an easy direction of magnetization radially), compression processing causes it to exhibit even higher magnetic properties in the radial direction.

前述した圧縮加工は必ずしも連続的な圧縮加工
である必要はなく、複数回に分割して与えても良
い。また、前記の圧縮加工を施したビレツトをさ
らにビツトの一部分(例えば内周部)に軸方向に
圧縮加工を施しても良い。
The compression process described above does not necessarily have to be continuous compression process, and may be divided into multiple times. Furthermore, the billet which has been subjected to the above-mentioned compression processing may be further subjected to compression processing in the axial direction on a portion (for example, the inner peripheral portion) of the bit.

前述した圧縮加工の一例を二つの中空体状のビ
レツトの形状を共に円筒体とし、金属材料からな
る円筒体状のビレツトをビレツトA1、あらかじ
め異方性化したMn−Al−C系合金磁石からなる
円筒体状のビレツトB2として第2図から第6図
に示す。各図共(a)が圧縮加工前の状態を示し、(b)
が圧縮加工後の状態を模式的に示す。第2図から
第6図において、1がビレツトAであり、2がビ
レツトBである。3はビレツトA以外の金属材料
からなるビレツト(ビレツトC)である。4,5
はポンチであり、軸方向に自由に移動することが
でき、しかもある位置で固定することもできる。
6が外型である。
An example of the above-mentioned compression processing is that two hollow billets are made into cylindrical shapes, and a cylindrical billet made of a metal material is called billet A1, which is made from an Mn-Al-C alloy magnet that has been made anisotropic in advance. It is shown in FIGS. 2 to 6 as a cylindrical billet B2 . In each figure, (a) shows the state before compression processing, and (b)
schematically shows the state after compression processing. In FIGS. 2 to 6, 1 is billet A and 2 is billet B. 3 is a billet (billet C) made of a metal material other than billet A. 4,5
is a punch that can move freely in the axial direction and can also be fixed at a certain position.
6 is the outer mold.

まず第2図の例では、ビレツトAの外周を拘束
した状態で(a)で示すようにビレツトBをビレツト
Aに接するように配置させて圧縮加工を行う。圧
縮加工をビレツトAとBの両方に施すことによつ
てビレツトBは圧縮加工後、外径および内径が共
に加工前に比べて小さくなる。第2図に示す例の
ように、1,2が共にMn−Al−C系合金磁石か
らなる一つの円筒ビツトである場合に比べて、前
述したビレツトBの外側にビレツトAが存在する
状態で両者を圧縮加工すると、前述したように圧
縮加工が効果的にMn−Al−C系合金磁石に施さ
れる。
First, in the example shown in FIG. 2, with the outer periphery of billet A restrained, billet B is placed in contact with billet A as shown in (a), and compression processing is performed. By subjecting both billets A and B to compression processing, billet B has both an outer diameter and an inner diameter smaller after compression processing than before processing. As in the example shown in Fig. 2, compared to the case where both 1 and 2 are one cylindrical bit made of Mn-Al-C alloy magnets, the state in which billet A exists outside billet B described above When both are subjected to compression processing, the compression processing is effectively applied to the Mn-Al-C alloy magnet as described above.

第3図の例では、第2図の場合と異なり、ビレ
ツトAとビレツトBの間にかなりのすき間がある
場合である。圧縮加工後は(b)に示すようにほぼ第
2図の場合と同様である。
In the example of FIG. 3, unlike the case of FIG. 2, there is a considerable gap between billets A and B. After compression processing, as shown in (b), it is almost the same as the case in FIG. 2.

第4図の例では、第2図の場合とビレツトAの
外周が外型6と接していない点が異なる。つま
り、圧縮加工前にはビレツトAの外周は拘束され
ていない、圧縮加工の進行にともなつて両ビレツ
トの径は大きくなつて、やがてはビレツトAの外
周が外型と接触するようになり、その後は第2図
と同様の変形が行われる。
The example shown in FIG. 4 differs from the case shown in FIG. 2 in that the outer periphery of the billet A is not in contact with the outer mold 6. In other words, the outer periphery of billet A is not constrained before compression processing, and as the compression processing progresses, the diameters of both billets increase, and eventually the outer periphery of billet A comes into contact with the outer mold. After that, the same transformation as in FIG. 2 is performed.

第5図の例では、第2図の場合でさらに中央に
ビレツトC3が存在する場合である。圧縮加工は
金型内の空気(ポンチ4,5と外型6でかこまれ
た空間)をほぼビレツトで満たされた状態まで行
うことができる。圧縮加工前、図に示した領域内
(特にビレツトの存在する空間とその近傍)がほ
ぼ同一温度であれば、実際にはビレツトの内周面
は曲面となつて中央部(高さ方向、軸方向につい
ての中央部)の内径が最も小さくなるが、ビレツ
トCを入れて共に圧縮加工することによつて曲面
のまがり(内径の変化)を小さくすることができ
る。第5図に例示したビレツトCを用いずに、内
周面を成形する目的でマンドレル等を用いる方法
でもよい。また第5図に限らず第2図から第6図
のすべての例において、内周面を成形する目的で
マンドレル等を用いてもよい。
In the example of FIG. 5, billet C3 is present in the center of the case of FIG. 2. Compression processing can be performed until the air in the mold (the space surrounded by the punches 4 and 5 and the outer mold 6) is almost filled with billet. Before compression processing, if the temperature in the area shown in the figure (especially the space where the billet exists and its vicinity) is approximately the same, the inner circumferential surface of the billet will actually be a curved surface, and the central part (height direction, axis Although the inner diameter of the center portion (with respect to the direction) is the smallest, by inserting the billet C and compressing it together, the curvature of the curved surface (change in the inner diameter) can be reduced. Instead of using the billet C illustrated in FIG. 5, a mandrel or the like may be used for the purpose of forming the inner peripheral surface. Further, a mandrel or the like may be used for the purpose of forming the inner circumferential surface not only in FIG. 5 but also in all the examples shown in FIGS. 2 to 6.

第6図の例では、第5図の場合のビレツトCが
円筒形状になつた場合である。
In the example of FIG. 6, the billet C in FIG. 5 has a cylindrical shape.

以上の例において、第2図のビレツトBの外周
はビレツトAを介して外型6によつて拘束されて
いるが、内周は自由な状態であるとみなせる。一
方、第4図のビレツトBの外周はビレツトAと接
しているが、ビレツトAの外周は外型6と接触し
ていないため自由な状態であるとみなせる。
In the above example, the outer periphery of the billet B in FIG. 2 is restrained by the outer mold 6 via the billet A, but the inner periphery can be considered to be in a free state. On the other hand, although the outer periphery of billet B in FIG. 4 is in contact with billet A, the outer periphery of billet A is not in contact with outer mold 6 and can therefore be considered to be in a free state.

圧縮加工は530〜830℃の温度域で行うため、ビ
レテツトA,BまたはおよびCの材質が異なる場
合、加工後室温まで冷却すると、熱膨張率の差に
よつて焼ばめ状態になつたり、逆にビレツト間に
すき間が生じたりする。Mn−Al−C系磁石合金
以外の材料を用いる場合には、Mn−Al−C系磁
石合金の熱膨張率との大小関係を考慮する必要が
ある。
Compression processing is performed in a temperature range of 530 to 830°C, so if billets A, B, or C are made of different materials, if they are cooled to room temperature after processing, they may become shrink-fit due to the difference in thermal expansion coefficient. Conversely, gaps may occur between the billets. When using a material other than the Mn-Al-C magnet alloy, it is necessary to consider the magnitude relationship with the coefficient of thermal expansion of the Mn-Al-C magnet alloy.

第2図から第6図の例では、圧縮加工工程の内
で少なくともビレツトBの外周を拘束した状態で
圧縮加工を行う部分が存在している。しかし、必
ずしもこのようなビレツトBの外周を拘束した状
態で圧縮加工を行う部分を有する必要はない。例
えば第4図に示した加工において、外型6が存在
しない場合でもよい。この場合でもMn−Al−C
系合金磁石からなるビレツトの外側を金属材料か
らなるビレツトでおおつた状態で加工することに
よつて、前述した圧縮加工の効果が効率的にMn
−Al−C系合金磁石に与えられる。しかし、前
述したビレツトBの外周を拘束した状態で圧縮加
工を行う部分を有する方が、しかもその部分が多
いほどその効果が大きい。
In the examples shown in FIGS. 2 to 6, there is a portion of the compression process in which at least the outer periphery of billet B is constrained. However, it is not necessarily necessary to have a portion where the compression process is performed while the outer periphery of the billet B is restrained. For example, in the processing shown in FIG. 4, the outer mold 6 may not exist. Even in this case, Mn-Al-C
By processing the billet made of Mn-based alloy magnet with the outside covered with a billet made of metal material, the effect of the compression process mentioned above can be effectively applied to Mn.
-Given to Al-C alloy magnets. However, the effect is greater if the billet B has a portion where the compression process is performed while the outer periphery of the billet B is restrained, and the number of such portions increases.

また、以上の例ではビレツトA,Bの一つのも
のからなる円筒体としたが、必ずしもその必要は
ない。例えば第2図においてビレツトAまたはビ
レツトBは二つ以上のものから円筒体を形成する
ものからなつていてもよい。極端な場合には、第
2図のビレツトAの占めている部分が粉末であつ
ても良い。
Further, in the above example, the cylindrical body is made of one of the billets A and B, but this is not necessarily necessary. For example, billet A or billet B in FIG. 2 may be composed of two or more parts forming a cylindrical body. In extreme cases, the portion occupied by billet A in FIG. 2 may be powder.

第2図から第6図の例では、ビレツトAおよび
B(もしくはさらにビレツトC)の圧縮加工前の
高さはほぼ等しいが、各ビレツトの高さが異なつ
ていても良い。例えば第3図において、ビレツト
Aの高さの方がビレツトBより高くても良い。
In the examples of FIGS. 2 to 6, the heights of billets A and B (or even billet C) before compression are approximately equal, but the heights of each billet may be different. For example, in FIG. 3, billet A may be higher than billet B.

また以上の例では、ビレツトB(あらかじめ異
方性化したMn−Al−C系合金磁石からなる中空
体状のビレツト)の全体に圧縮加工を施す例を示
したが、局部的に圧縮加工を施さない領域をもう
けて加工前の構造を保存しても良い。例えば第2
図において、ポンチ5の端面を平面ではなくビレ
ツトB2の内径に大きさに合つた段付きの形状に
して、局部的に内周の一部を拘束して圧縮加工を
施さない領域をもうける方法などである。
In addition, in the above example, the entire billet B (a hollow billet made of an Mn-Al-C alloy magnet that has been made anisotropic) is subjected to compression processing, but compression processing may be performed locally. You may create an area where no processing is performed to preserve the structure before processing. For example, the second
In the figure, there is a method in which the end face of the punch 5 is made into a stepped shape that matches the inner diameter of the billet B2 instead of a flat surface, and a part of the inner circumference is locally restrained to create an area where compression processing is not performed. It is.

また、前述したように圧縮加工後もほぼ円筒形
状のビレツトを得たい場合は、内周面を形成する
目的でマンドレル等を用いてもよい。
Further, as described above, if it is desired to obtain a substantially cylindrical billet after compression processing, a mandrel or the like may be used for the purpose of forming the inner circumferential surface.

さらに、前記の金属材料からなる円筒体状のビ
レツト(ビレツトA1)が、少なくとも内周部が
磁性体からなるビレツトであれば、ビレツトBが
圧縮加工をうけることによつて放射状に磁化容易
方向を有する磁石となり、前述した内周着磁にお
けるA部に適する部分となる。磁性体の部分がB
部に適する部分となつて、2種類以上の構造を有
する磁石を得ることができる。例えば第2図にお
いてビレツトA1が高透磁率材料からなり、ビレ
ツトB2が一軸異方性磁石からなる場合である。
Furthermore, if the cylindrical billet (billet A1) made of the metal material described above is a billet whose inner peripheral portion is made of a magnetic material, the billet B can be compressed to radially change the direction of easy magnetization. It becomes a magnet with a magnetic field, and becomes a part suitable for the part A in the above-mentioned inner circumferential magnetization. The magnetic part is B
It is possible to obtain a magnet having two or more types of structures depending on the part suitable for the part. For example, in FIG. 2, billet A1 is made of a high magnetic permeability material and billet B2 is made of a uniaxially anisotropic magnet.

前述した様な圧縮加工の可能な温度範囲につい
ては、530〜830℃の温度領域について行えたが、
780℃を越える温度で磁気特性がかなり低下した。
より望ましい温度範囲としては560〜760℃であつ
た。
Regarding the possible temperature range of compression processing as mentioned above, it was possible to perform it in the temperature range of 530 to 830℃, but
At temperatures above 780°C, the magnetic properties deteriorated considerably.
A more desirable temperature range was 560 to 760°C.

次に本発明の更に具体的な実施例について説明
する。
Next, more specific embodiments of the present invention will be described.

実施例 1 配合組成で69.5%のMn、29.3%のAl、0.5%の
C及び0.7%のNiを溶解鋳造し、直径80mm、長さ
50mmの円柱ビレツトを作製した。このビレツトを
1100℃で2時間保持した後室温まで放冷する熱処
理を行つた。次に潤滑剤を介して720℃の温度で
直径55mmまでの押出加工を行つた。さらに潤滑油
を介して680℃の温度で直径40mmまでの押出加工
を行つた。この押出棒を長さ20mmに切断し、切削
加工して外径30.6〜35.3mm、内径13.2〜29.1mm、
長さ20mmの種々の円筒ビレツト(ビレツトB)を
数個作製した。
Example 1 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C and 0.7% Ni, diameter 80 mm, length
A 50 mm cylindrical billet was made. This billet
Heat treatment was carried out by holding at 1100°C for 2 hours and then allowing it to cool to room temperature. Next, extrusion processing to a diameter of 55 mm was performed at a temperature of 720° C. using a lubricant. Furthermore, extrusion processing up to a diameter of 40 mm was performed at a temperature of 680°C using lubricating oil. This extruded rod was cut to a length of 20 mm and machined to create an outer diameter of 30.6 to 35.3 mm and an inner diameter of 13.2 to 29.1 mm.
Several cylindrical billets (billet B) of various lengths of 20 mm were prepared.

次に黄銅の棒材を切削加工して外径40mm、内径
30.6〜35.3mmの円筒ビレツト(ビレツトA)を数
個作製した。
Next, we cut a brass bar material to create a shape with an outer diameter of 40 mm and an inner diameter of 40 mm.
Several cylindrical billets (billet A) of 30.6 to 35.3 mm were prepared.

これらのビレツトAとビレツトBを各々1個ず
つ用いてビレツトAの中空部分にビレツトBを入
れ、第2図に示した様な金型を用いて第2図に示
した状態にセツトして、潤滑剤を介して680℃の
温度で圧縮ひずみを変えた圧縮加工を行つた。な
お、用いた金型の外型6の内径は40mmである。
Using one billet A and one billet B, put billet B into the hollow part of billet A, set it in the state shown in FIG. 2 using a mold as shown in FIG. Compression processing was performed using a lubricant at a temperature of 680°C and varying the compressive strain. Note that the inner diameter of the outer mold 6 of the mold used was 40 mm.

加工後のビレツトの内周部(加工前、ビレツト
Bにあたる部分)から各辺が径方向、弦方向およ
び軸方向に沿うようにして一辺が約4mmの立方体
試料を切り出し、磁気特性を測定した。
A cubic sample with a side of approximately 4 mm was cut out from the inner periphery of the processed billet (corresponding to billet B before processing) with each side along the radial, chordal, and axial directions, and the magnetic properties were measured.

圧縮ひずみ(εz)に対する残留磁束密度(Br)
の変化を第7図に実線で示す。
Residual magnetic flux density (Br) against compressive strain (ε z )
The change in is shown in FIG. 7 by a solid line.

比較のために、前記直径40mmの押出棒を切断・
切削加工して外径40mm、内径13.2〜29.1mm、長さ
20mmの種々の円筒ビレツトを数個作製した。次に
このビレツトを前記と同じ条件で圧縮ひずみを変
えた圧縮加工を行つた。
For comparison, the extruded rod with a diameter of 40 mm was cut and
After cutting, the outer diameter is 40 mm, the inner diameter is 13.2 to 29.1 mm, and the length is
Several 20 mm cylindrical billets of various types were made. Next, this billet was subjected to compression processing under the same conditions as above but with different compression strains.

加工後のビレツトの外周部分から前記と同様に
立方体試料を切り出し、磁気特性を測定した。εz
に対するBrの変化を第7図に破線で示す。
A cubic sample was cut out from the outer periphery of the processed billet in the same manner as described above, and its magnetic properties were measured. εz
Figure 7 shows the change in Br as a dotted line.

第7図に示す様に、本発明による方法の方が、
εzに対する径方向のBrは高くなる。つまり、小
さい圧縮ひずみで高い磁気特性を得ることができ
る。本発明の方法では、径方向のBrはεzが0.03以
上で軸方向のBrに比して大きくなり、εzが増加
するとさらに径方向のBrも増加する。この図か
らわかるように、軸方向から径方向への磁化容易
方向の転換はεzが0.03までの範囲で著しく進行す
る。
As shown in FIG. 7, the method according to the present invention
Br in the radial direction with respect to ε z becomes higher. In other words, high magnetic properties can be obtained with small compressive strain. In the method of the present invention, Br in the radial direction becomes larger than Br in the axial direction when ε z is 0.03 or more, and as ε z increases, Br in the radial direction further increases. As can be seen from this figure, the change in the direction of easy magnetization from the axial direction to the radial direction progresses significantly in the range of ε z up to 0.03.

実施例 2 配合組成で69.5%のMn、29.3%のAl、0.5%の
C及び0.7%のNiを溶解鋳造し、直径70mm、長さ
50mmの円柱ビレツトを作製した。このビレツトを
1100℃で2時間保持した後、室温まで放冷する熱
処理を行つた。次に潤滑剤を介して680℃の温度
で、直径37mmまでの押出加工を行つた。この押出
棒を長さ20mmに切断し、切削加工し外径35.3mm、
内径29.1mm、長さ20mmの円筒ビレツト(ビレツト
B)を作製した。
Example 2 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C and 0.7% Ni, diameter 70 mm, length
A 50 mm cylindrical billet was made. This billet
After holding at 1100° C. for 2 hours, heat treatment was performed by allowing it to cool to room temperature. Next, extrusion processing to a diameter of 37 mm was performed at a temperature of 680° C. using a lubricant. This extruded rod was cut to a length of 20 mm and machined to an outer diameter of 35.3 mm.
A cylindrical billet (billet B) with an inner diameter of 29.1 mm and a length of 20 mm was prepared.

次に、純鉄の棒材を切削加工して外径40mm、内
径35.3mm、長さ20mmの円筒ビレツト(ビレツト
A)を作製した。
Next, a cylindrical billet (billet A) having an outer diameter of 40 mm, an inner diameter of 35.3 mm, and a length of 20 mm was produced by cutting a pure iron bar.

ビレツトAの中空部分にビレツトBを入れて、
実施例1と同じ金型を用いて第2図に示すような
状態にビレツトをセツトして、潤滑剤を介して
680℃の温度で圧縮加工を行つた。圧縮加工をビ
レツトの長さが10mmになるまで行つた。
Insert billet B into the hollow part of billet A,
Using the same mold as in Example 1, the billet was set in the state shown in Figure 2, and the billet was heated using lubricant.
Compression processing was performed at a temperature of 680℃. Compression processing was performed until the billet length was 10 mm.

加工後のビレツトを外径39mm、内径22mmに切削
加工した後、12極の内周着磁を行つた。着磁は
2000μFのオイルコンデンサーを用いて、2000V
のパルス着磁した。内周の表面磁束密度をホール
素子で測定した。表面磁束密度は3.0kGで、きわ
めて高い値を示した。このようにビレツトAが磁
性体からなる場合にはきわめて高性能な内周着磁
に適する構造を有する磁石が得られる。
After cutting the processed billet to an outer diameter of 39 mm and an inner diameter of 22 mm, the inner circumference was magnetized with 12 poles. The magnetization is
2000V using 2000μF oil capacitor
It was pulse magnetized. The surface magnetic flux density on the inner circumference was measured using a Hall element. The surface magnetic flux density was 3.0kG, an extremely high value. In this way, when the billet A is made of a magnetic material, a magnet having a structure suitable for extremely high performance inner periphery magnetization can be obtained.

実施例 3 実施例2で得た直径37mmの押出棒を切断・切削
加工して直径30mm、長さ20mmの円柱ビレツトを2
個作製した。このビレツトを潤滑剤を介して680
℃の温度で長さ10mmまで自由圧縮加工した。加工
後のビレツトを切削加工して外径35mm、内径29
mm、長さ10mmの円筒体にして、二個重ね合わせて
長さ20mmの円筒ビレツト(ビレツトB)を作製し
た。
Example 3 The extruded rod with a diameter of 37 mm obtained in Example 2 was cut and machined to form two cylindrical billets with a diameter of 30 mm and a length of 20 mm.
I made one piece. 680 through this billet lubricant
It was freely compressed to a length of 10 mm at a temperature of ℃. After processing, the billet is cut to an outer diameter of 35 mm and an inner diameter of 29 mm.
A cylindrical billet (billet B) with a length of 20 mm was produced by stacking two cylindrical bodies with a length of 10 mm and a length of 20 mm.

次に、電磁軟鉄の棒材を切断・切削加工して外
径40mm、内径35mm、長さ20mmの円筒ビレツト(ビ
レツトA)を作製した。
Next, a cylindrical billet (billet A) having an outer diameter of 40 mm, an inner diameter of 35 mm, and a length of 20 mm was produced by cutting and machining a bar of electromagnetic soft iron.

ビレツトAの中空部分にビレツトBを入れて、
実施例1と同じ金型を用いて第2図に示したよう
な状態にセツトして、潤滑剤を介して680℃の温
度で圧縮加工した。
Insert billet B into the hollow part of billet A,
Using the same mold as in Example 1, the mold was set in the state shown in FIG. 2, and compression working was carried out at a temperature of 680° C. using a lubricant.

加工後のビレツト(長さは10mm)は実施例2と
同様にして切削加工して、内周着磁して表面束密
度を測定したところ実施例2で得られた磁石のそ
れと大差はなかつた。
The billet after processing (length: 10 mm) was cut in the same manner as in Example 2, magnetized on the inner circumference, and the surface flux density was measured, and there was no significant difference from that of the magnet obtained in Example 2. .

実施例 4 配合組成で72%のMn、27%のAl及び1%のC
を溶解鋳造し、直径55mm、長さ50mmの円柱ビレツ
トを作製した。このビレツトを1150℃の温度で2
時間保持した後、700℃まで約20分間で冷却し、
700℃で30分間保持する熱処理を行つた。次に潤
滑剤を介して720℃の温度で直径35mmまでの押出
加工を行つた。この押出棒を長さ20mmに切断し、
切削加工して外径34mm、内径28mm、長さ20mmの円
筒ビレツト(ビレツトA)を作製した。
Example 4 Blend composition: 72% Mn, 27% Al and 1% C
was melted and cast to produce a cylindrical billet with a diameter of 55 mm and a length of 50 mm. This billet is heated to 1150℃ for 2 hours.
After holding for a period of time, cool to 700℃ in about 20 minutes,
Heat treatment was performed at 700°C for 30 minutes. Next, extrusion processing up to a diameter of 35 mm was performed at a temperature of 720°C via a lubricant. Cut this extruded rod into a length of 20 mm,
A cylindrical billet (billet A) with an outer diameter of 34 mm, an inner diameter of 28 mm, and a length of 20 mm was produced by cutting.

実施例2で得た直径37mmの押出棒を長さ20mmに
切断し、切削加工して外径28mm、内径19.6mm、長
さ20mmの円筒ビレツト(ビレツトB)を作製し
た。
The extruded rod with a diameter of 37 mm obtained in Example 2 was cut into a length of 20 mm and machined to produce a cylindrical billet (billet B) with an outer diameter of 28 mm, an inner diameter of 19.6 mm, and a length of 20 mm.

ビレツトAの中空部分にビレツトBを入れて、
第4図に示した状態にビレツトをセツトした。用
いた金型は実施例1と同じである。潤滑剤を介し
て680℃の温度で長さ10mmまで圧縮加工した。こ
のビレツトを外径39mm、内径22mmに切削加工し
て、内周に8極着磁した。内周の表面磁束密度は
2.9kGであつた。なお、着磁条件、測定等は実施
例2と同じである。
Insert billet B into the hollow part of billet A,
The billet was set in the state shown in FIG. The mold used was the same as in Example 1. It was compressed to a length of 10 mm at a temperature of 680°C using a lubricant. This billet was cut to an outer diameter of 39 mm and an inner diameter of 22 mm, and the inner circumference was magnetized with 8 poles. The surface magnetic flux density on the inner circumference is
It was 2.9kG. Note that the magnetization conditions, measurements, etc. are the same as in Example 2.

以上の実施例は第2図から第6図に示した例の
内の代表的な具体例であるが、ビレツトA1とビ
レツトB2の圧縮加工前の長さは異なつていても
よい。また、ビレツト全体を圧縮加工するのでは
なく、ビレツトの一部分を変形させずに加工前の
構造を保存する方法でもよい。また場合によつて
はビレツトが二つ以上のものから中空形状を形成
するものでもよい。さらに、内周面を成形する目
的でマンドレル等を用いてもよい。
Although the above embodiment is a typical example of the examples shown in FIGS. 2 to 6, the lengths of billet A1 and billet B2 before compression processing may be different. Furthermore, instead of compressing the entire billet, a method may be used in which the structure before processing is preserved without deforming a portion of the billet. In some cases, the billet may be formed of two or more billets to form a hollow shape. Furthermore, a mandrel or the like may be used for the purpose of shaping the inner peripheral surface.

発明の効果 以上のように、本発明によれば、多極着磁にお
いて優れた磁気特性を示す磁石を得ることができ
る。また、本発明の方法では、金属材料からなる
ビレツトと共にMn−Al−C系合金磁石を圧縮加
工するため、圧縮加工が効果的にMn−Al−C系
合金磁石に施される。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a magnet that exhibits excellent magnetic properties in multipolar magnetization. Furthermore, in the method of the present invention, since the Mn--Al--C alloy magnet is compressed together with the billet made of a metal material, the Mn--Al--C alloy magnet is effectively compressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒状磁石の内周に多極着磁を施した
場合の磁石内部での磁路の形成を模式的に示す
図、第2図、第3図、第4図、第5図及び第6図
は本発明の圧縮加工の例を模式的に示す金型の一
部の断面図、第7図は実施例1での圧縮ひずみに
対する残留磁束密度(Br)の変化を示す図であ
る。 1……ビレツトA、2……ビレツトB、3……
ビレツトC、4,5……ポンチ、6……外型。
Figure 1 is a diagram schematically showing the formation of a magnetic path inside the magnet when the inner circumference of a cylindrical magnet is subjected to multipolar magnetization, Figures 2, 3, 4, and 5 and FIG. 6 is a cross-sectional view of a part of a mold schematically showing an example of compression processing of the present invention, and FIG. 7 is a diagram showing changes in residual magnetic flux density (Br) with respect to compressive strain in Example 1. be. 1... Billet A, 2... Billet B, 3...
Billet C, 4, 5... Punch, 6... External mold.

Claims (1)

【特許請求の範囲】 1 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の
ビレツトを前記合金磁石とは材料の異なる金属材
料からなる中空体状のビレツトの中空部分に挿入
し、この二つのビレツトを530〜830℃の温度で前
記合金磁石からなる中空体状のビレツトの軸方向
に前記二つのビレツトが互いに接するまでまたは
それ以上圧縮加工して一体化することを特徴とす
るマンガン−アルミニウム−炭素系合金磁石の製
造法。 2 金属材料からなる中空体状のビレツトが、少
なくとも内周部が磁性体からなつている特許請求
の範囲第1項記載のマンガン−アルミニウム−炭
素系合金磁石の製造法。 3 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の
ビレツトが、中空体の軸方向に磁化容易方向を有
する多結晶マンガン−アルミニウム−炭素系合金
磁石からなり、しかも圧縮加工の中空体の軸方向
の圧縮ひずみが対数ひずみの絶対値で0.03以上で
ある特許請求の範囲第1項または第2項記載のマ
ンガン−アルミニウム−炭素系合金磁石の製造
法。 4 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の
ビレツトが、中空体の軸方向に垂直な平面に平行
に磁化容易方向を有し、しかも前記平面内では磁
気的に等方性であり、かつ前記軸方向と前記平面
に平行な直線を含む平面内では異方性である多結
晶マンガン−アルミニウム−炭素系合金磁石から
なる特許請求の範囲第1項または第2項記載のマ
ンガン−アルミニウム−炭素系合金磁石の製造
法。 5 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の
ビレツトが、中空体の軸方向に垂直な平面上の任
意の一点を通る直線に平行に磁化容易方向を有す
る多結晶マンガン−アルミニウム−炭素系合金磁
石からなる特許請求の範囲第1項または第2項記
載のマンガン−アルミニウム−炭素系合金磁石の
製造法。 6 中空体状が、円筒体状である特許請求の範囲
第1項または第2項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。 7 圧縮加工が、あらかじめ異方性化した多結晶
マンガン−アルミニウム−炭素系合金磁石からな
る中空体状のビレツトの外周を拘束した状態で、
しかも少なくとも内周の一部分を自由にした状態
で行う加工である特許請求の範囲第1項または第
2項記載のマンガン−アルミニウム−炭素系合金
磁石の製造法。 8 圧縮加工が、あらかじめ異方性化した多結晶
マンガン−アルミニウム−炭素系合金磁石からな
る中空体状のビレツトの外周および内周の少なく
とも一部分を自由にした状態で行つた後、さらに
前記ビレツトの外周を拘束した状態で、しかも少
なくとも内周の一部分を自由にした状態で行う加
工である特許請求の範囲第1項または第2項記載
のマンガン−アルミニウム−炭素系合金磁石の製
造法。
[Scope of Claims] 1. A hollow body-shaped billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance, and a hollow body-shaped billet made of a metal material different from that of the alloy magnet. the two billets are compressed in the axial direction of the hollow billet made of the alloy magnet at a temperature of 530 to 830°C until the two billets come into contact with each other or further to be integrated. A method for manufacturing a manganese-aluminum-carbon alloy magnet, characterized by: 2. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1, wherein the hollow billet made of a metal material has at least an inner peripheral portion made of a magnetic material. 3. A hollow body-shaped billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been anisotropically made in advance is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the compressive strain in the axial direction of the compressed hollow body is 0.03 or more in absolute value of logarithmic strain. 4. A hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been anisotropically made in advance has an easy magnetization direction parallel to a plane perpendicular to the axial direction of the hollow body, and within said plane Claim 1 comprising a polycrystalline manganese-aluminum-carbon alloy magnet that is magnetically isotropic and anisotropic in a plane that includes the axial direction and a straight line parallel to the plane. 2. A method for producing a manganese-aluminum-carbon alloy magnet according to item 2. 5 A hollow body-shaped billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance has an easy magnetization direction parallel to a straight line passing through an arbitrary point on a plane perpendicular to the axial direction of the hollow body. 3. A method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet. 6. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the hollow body is cylindrical. 7 With the compression process restraining the outer periphery of a hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance,
The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the processing is performed with at least a portion of the inner circumference free. 8. After compression processing is performed with at least a portion of the outer periphery and inner periphery of a hollow billet made of an anisotropic polycrystalline manganese-aluminum-carbon alloy magnet made free, the billet is further compressed. 3. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the processing is carried out with the outer circumference constrained and at least a portion of the inner circumference free.
JP58168635A 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet Granted JPS6059720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168635A JPS6059720A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168635A JPS6059720A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS6059720A JPS6059720A (en) 1985-04-06
JPH0434804B2 true JPH0434804B2 (en) 1992-06-09

Family

ID=15871694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168635A Granted JPS6059720A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS6059720A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206106A (en) * 1989-02-06 1990-08-15 Tokin Corp Manufacture of anisotropic rare-earth magnet
JP3138192B2 (en) * 1995-08-10 2001-02-26 山陽特殊製鋼株式会社 Manganese aluminum magnet with far-infrared radiation effect
JP5707934B2 (en) * 2010-12-27 2015-04-30 トヨタ自動車株式会社 Method for manufacturing anisotropic permanent magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS5830729A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Dimming body
JPS58130263A (en) * 1982-01-28 1983-08-03 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminium-carbon alloy magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS5830729A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Dimming body
JPS58130263A (en) * 1982-01-28 1983-08-03 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminium-carbon alloy magnet

Also Published As

Publication number Publication date
JPS6059720A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
US4579607A (en) Permanent Mn-Al-C alloy magnets and method for making same
JPH0311522B2 (en)
JPH0434804B2 (en)
JPH0479122B2 (en)
JPH0434805B2 (en)
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0434807B2 (en)
JPH0311521B2 (en)
JPH0434806B2 (en)
JPH0311527B2 (en)
JPH061741B2 (en) Alloy magnet manufacturing method
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311523B2 (en)
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143405A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0639673B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0639674B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH037748B2 (en)
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0340922B2 (en)