JPS62247057A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62247057A
JPS62247057A JP8855786A JP8855786A JPS62247057A JP S62247057 A JPS62247057 A JP S62247057A JP 8855786 A JP8855786 A JP 8855786A JP 8855786 A JP8855786 A JP 8855786A JP S62247057 A JPS62247057 A JP S62247057A
Authority
JP
Japan
Prior art keywords
billet
aluminum
manganese
alloy magnet
carbon alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8855786A
Other languages
Japanese (ja)
Other versions
JPH0663073B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8855786A priority Critical patent/JPH0663073B2/en
Publication of JPS62247057A publication Critical patent/JPS62247057A/en
Publication of JPH0663073B2 publication Critical patent/JPH0663073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the titled alloy magnet which shows high magnetic properties when subjected to inside peripheral multipolar magnetization, by subjecting undermentioned two billets to compression working in the axial direction so that compressive strain of a hollow billet which is previously made anisotropic and also is allowed to exist in a hollow metallic billet is lower in the outside peripheral part than in the inside peripheral part. CONSTITUTION:The billet 1 composed of polycrystalline Mn-Al-C alloy magnet which is previously made anisotropic is allowed to exist in the hollow part of the above-mentioned primary billet 2 composed of metallic material. In the above state, axial-direction compression working then is applied to both billets at 530-830 deg.C until the billets 1, 2 come into contact with each other or further extent by the use of punches 4, 5 whose surfaces (punching surfaces) to be in contact with the billets 1, 2, respectively, are severally inclined planes. At this time, respective heights of the billets 1, 2 after working are greater in their outside peripheral parts than in their inside peripheral parts, respectively, so that respective compressive strains of the billets 1, 2 are lower in their outside peripherals parts than in their inside peripherals parts, respectively. As a result, an Mn-Al-C alloy magnet having diameter-direction magnetic properties higher than those of the one obtained by the conventional method based on the same amount of compressive strain can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の人造法に係り、とくに多結晶マン
ガン−アルミニウム−炭!(Mn−ム1−C)系合金磁
石による高性能な多極着磁用Mn−ムl−1系合金磁石
の人造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing permanent magnets, particularly polycrystalline manganese-aluminum-charcoal! The present invention relates to a method of manufacturing a high-performance Mn-M1-1 alloy magnet for multipolar magnetization using a (Mn-M1-C) alloy magnet.

従来の技術 Mn−ム1−C系合金磁石は、主として強磁性相である
面心正方晶(τ相、Ll。型規則格子)の組織で構成さ
れ、Cを必須構成元素として含むものであり、不純物以
外に添加元素を含まない3元系及び少量の添加元素を含
む4元系以上の多元系合金磁石が知られており、これら
を総称するものである。
Conventional technology Mn-1-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, Ll. regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element. , ternary alloy magnets containing no additive elements other than impurities, and quaternary or higher multi-component alloy magnets containing a small amount of additive elements are known, and these are collectively referred to as magnets.

その製造法としては、鋳造・熱処理によるもの以外に押
出加工等の塑性加工工程を含むものが知られている。特
に後者は、高い磁気特性、機械的強度、耐候性1機械加
工性等の優れた性質を有する異方性磁石の製造法として
知られている。
As for the manufacturing method, there are known methods including plastic working steps such as extrusion processing in addition to those using casting and heat treatment. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

また、Mn−ム1−C系合金磁石を用いた多極着磁用合
金磁石の製造法としては、等方性磁石、圧縮加工による
もの(%許第1011473号)。
Further, as a method for producing a multi-polar magnetized alloy magnet using a Mn-1-C alloy magnet, isotropic magnet compression processing is used (% Permit No. 1011473).

押出加工等の公知の方法で得た一軸異方性の多結晶Mn
−ム1−c系合金磁石に異方性方向への自由圧縮加工に
よるもの(得られた磁石を面異方性磁石と称す。特開昭
56−119762号公報)、及び金属材料からなる中
空体状の第1のビレットの中空部分に、あらかじめ異方
性化した多結晶Mn−ム1−C系合金磁石からなる中空
体状の第2のビレットが存在する状態で、二つのビレッ
トが接するまでもしくはそれ以上まで、第1.第2のビ
レットの軸方向に圧縮加工を施すもの(2ビレット同時
圧縮加工法と称する。特開昭60−59720号公報)
が知られている。
Uniaxially anisotropic polycrystalline Mn obtained by a known method such as extrusion
-M 1-c alloy magnets subjected to free compression processing in the anisotropic direction (the obtained magnets are referred to as planar anisotropic magnets. Japanese Patent Application Laid-open No. 119762/1983), and hollow ones made of metal materials. The two billets are in contact with each other in a state where a second billet in the form of a hollow body made of a polycrystalline Mn-1-C alloy magnet that has been made anisotropic in advance is present in the hollow portion of the first billet in the form of a body. up to or more than 1st. A method in which compression processing is performed in the axial direction of the second billet (referred to as a two-billet simultaneous compression processing method. Japanese Patent Application Laid-Open No. 60-59720)
It has been known.

発明が解決しようとする問題点 前述した2ビレット同時圧縮加工法(特開昭60−59
720号公報)では、つまり、金属材料からなる中空体
状の第1のビレットの中空部分に。
Problems to be Solved by the Invention The above-mentioned two billet simultaneous compression method
No. 720), that is, in the hollow portion of a hollow first billet made of a metal material.

あらかじめ異方性化した多結晶Mn−ム1−C系合金磁
石からなる中空体状の第2のビレットが存在する状態で
、二つのビレットが接するまでもしくはそれ以上まで、
ビレットの軸方向に圧縮加工を施す方法では、内周多極
着磁に望ましい磁石が得られている。
In the presence of a second billet in the form of a hollow body made of a polycrystalline Mn-1-C alloy magnet that has been made anisotropic in advance, until the two billets come into contact or beyond,
A method in which the billet is compressed in the axial direction produces a magnet that is desirable for internal multi-pole magnetization.

問題点を解決するための手段 本発明は、金属材料からなる中空体状の第1のビレット
の中空部分に、あらかじめ異方性化した多結晶Mn−ム
l −C系合金磁石からなる中空体状の第2のビレット
が存在する状態で、前記中空体状の第2のビレットの外
周部の圧縮ひずみが内周部の圧縮ひずみより小さくなる
ように、二つのビレットが接するまでもしくはそれ以上
まで、中空体状の第1.第2のビレットの軸方向に圧縮
加工を施すものである。
Means for Solving the Problems The present invention provides a hollow body made of a polycrystalline Mn-Ml-C alloy magnet which has been made anisotropic in advance, in the hollow portion of a first hollow billet made of a metal material. In the state where the second billet having the shape of a hollow body is present, the compressive strain at the outer peripheral part of the second billet having the hollow body shape is smaller than the compressive strain at the inner peripheral part until the two billets touch or more. , a hollow body-shaped first . Compression processing is performed in the axial direction of the second billet.

作用 前述した方法によって、つまり2ビレット同時圧縮加工
において、Mn−ム1−C系合金磁石からなる第2のビ
レットの外周部の圧縮ひずみが内周部の圧縮ひずみよシ
小さくなるように圧縮加工を施すことによって、これま
での公知の方法と同じ圧縮ひずみ量でも、磁石内の径方
向の磁気特性が高くなり、内周多極着磁を施した場合に
高い磁気特性を示す磁石を得ることができる。
Effect: By the above-mentioned method, that is, when two billets are simultaneously compressed, the second billet made of Mn-1-C alloy magnet is compressed so that the compressive strain on the outer circumference is smaller than the compressive strain on the inner circumference. By applying this method, the magnetic properties in the radial direction inside the magnet are improved even with the same amount of compressive strain as in the conventional known method, and a magnet that exhibits high magnetic properties when subjected to inner circumferential multi-pole magnetization can be obtained. I can do it.

実施例 本発明は、金属材料からなる中空体状の第1のビレット
の中空部分に、あらかじめ異方性化した多結晶Mn−ム
1−C系合金磁石からなる中空体状の第2のビレットが
存在する状態で、630〜830℃の温度で、あらかじ
め異方性化した多結晶Mn−Al −C系合金磁石から
なる中空体状の第2のビレットの外周部の圧縮ひずみが
内周部の圧縮ひずみより小さくなるように、二つのビレ
ットが接するまでもしくはそれ以上まで、中空体状の第
1.第2のビレットの軸方向に圧縮加工を施すものであ
る。
Embodiment The present invention provides a hollow portion of a first hollow billet made of a metal material, and a second hollow billet made of a polycrystalline Mn-1-C alloy magnet which has been made anisotropic in advance. In the presence of The hollow body-shaped first . Compression processing is performed in the axial direction of the second billet.

本発明の製造法の大部分は、前記の公知技術(特開昭6
0−59720号公報)と同様である。
Most of the manufacturing method of the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 6
0-59720).

前記公知技術の圧縮加工は、金属材料からなる中空体状
の第1のビレットの中空部分に、あらかじめ異方性化し
た多結晶Mn−ム1−C系合金磁石からなる中空体状の
第2のビレットが存在する状態で、二つのビレットが接
するまで、もしくはそれ以上まで、第1.第2のビレッ
トの軸方向に圧縮加工を施すものである。
In the compression processing of the known technique, a hollow part of a first hollow billet made of a metal material is injected into a second hollow part made of a polycrystalline Mn-1-C alloy magnet which has been made anisotropic in advance. of the first billet is present until the two billets touch or more. Compression processing is performed in the axial direction of the second billet.

一方、本発明の圧縮加工は前記の圧縮加工洗おいて、さ
らにMn−ム1−C系合金磁石からなる第2のビレット
の外周部の圧縮ひずみが内周部の圧縮ひずみより小さく
なるように、第1.第2のビレットの軸方向に圧縮加工
を施すものである。
On the other hand, in the compression processing of the present invention, after the above-mentioned compression processing, the second billet made of the Mn-1-C alloy magnet is processed so that the compressive strain at the outer circumference is smaller than the compressive strain at the inner circumference. , 1st. Compression processing is performed in the axial direction of the second billet.

前記の公知技術と同様に前記のビレットが中空体の軸方
向に磁化容易方向を有する多結晶Mn−ムI−0系合金
磁石(−軸異方性磁石)からなる場合には、圧縮加工時
の圧縮ひずみが対数ひずみの絶対値で0.03以上必要
である。これは、圧縮加工前のビレットは圧縮ひずみを
与える方向に異方性化したものであり、多極着磁におい
て高い磁気特性を示すような構造の変化に最低0.03
の圧縮ひずみが必要であるためである。
Similar to the above-mentioned known technology, when the billet is made of a polycrystalline Mn-I-0 alloy magnet (-axis anisotropic magnet) having an easy magnetization direction in the axial direction of the hollow body, during compression processing, The compressive strain must be 0.03 or more in terms of the absolute value of the logarithmic strain. This is because the billet before compression processing is anisotropic in the direction of applying compressive strain, and the change in structure that exhibits high magnetic properties in multipole magnetization is at least 0.03.
This is because a compressive strain of .

前述した圧縮加工の一例を金属材料からなる中空体状の
第1のビレットの形状を円筒体とし、このビレットの中
空部分に存在するあらかじめ異方性化した多結晶Mn−
ムt−C系合金磁石からなる中空体状の第2のビレット
の形状も円筒体として、いくつかの例を以下に説明する
As an example of the above-mentioned compression processing, the hollow first billet made of a metal material is made into a cylindrical shape, and the polycrystalline Mn-
The shape of the hollow body-like second billet made of a Mt-C alloy magnet is also a cylindrical body, and some examples will be described below.

まず、第1の方法の具体的ないくつかの例を説明する。First, some specific examples of the first method will be explained.

第1図は加工前の状態の断面を示す。1は第2のビレッ
ト(あらかじめ異方性化した多結晶Mn−ム1−C系合
金磁石からなるビレット)。
FIG. 1 shows a cross section before processing. 1 is a second billet (a billet made of a polycrystalline Mn-1-C alloy magnet which has been made anisotropic in advance).

2は第1のビレット(金属材料からなるビレット)3は
第3のビレット(金属材料からなるビレット)、4.5
はポンチ、6は外型である。第1図に示すように、前記
公知技術と異なる点は、ポンチ4およびポンチ6のビレ
ット1〜3と接触する面(ポンチ端面)が平面ではなく
傾斜面であることである。このポンチ4およびポンチ5
を用いて、ビレット1〜3の軸方向に加圧することによ
って、ビレット1〜3は軸方向に圧縮加工される。第1
図において、第1のビレット2および第2のビレット1
の加工前の高さは同じである。加工後のビレット1〜3
の外周部の高さは内周部の高さより大きくなシ、ビレッ
ト1〜3の外周部の圧縮ひずみが内周部の圧縮ひずみよ
υ小さくなるようにビレット1〜3の軸方向に圧縮加工
を施したことになる。圧縮ひずみとは、ビレット1〜3
の軸方向のひずみをいう。
2 is the first billet (billet made of metal material) 3 is the third billet (billet made of metal material), 4.5
is the punch, and 6 is the outer mold. As shown in FIG. 1, the difference from the prior art is that the surfaces (punch end surfaces) of the punches 4 and 6 that come into contact with the billets 1 to 3 are not flat surfaces but sloped surfaces. This punch 4 and punch 5
The billets 1 to 3 are compressed in the axial direction by applying pressure in the axial direction of the billets 1 to 3. 1st
In the figure, a first billet 2 and a second billet 1
The height before processing is the same. Billets 1-3 after processing
The height of the outer periphery is greater than the height of the inner periphery, and compression processing is performed in the axial direction of billets 1 to 3 so that the compressive strain on the outer periphery of billets 1 to 3 is smaller than the compressive strain on the inner periphery. This means that Compressive strain refers to billets 1 to 3.
This refers to the strain in the axial direction.

次に、本発明の代表的な別の圧縮加工の例をビレットの
断面形状をリング状として説明すると、第2図に第1図
と同様に加工前の状態の断面を示す。第2図に示すよう
に第1図と異なる点は、ボンチ4およびポンチ6のポン
チ端面ば平面であり。
Next, another typical compression processing example of the present invention will be described assuming that the cross-sectional shape of the billet is ring-shaped. FIG. 2 shows a cross-section of the billet before processing, similar to FIG. 1. As shown in FIG. 2, the difference from FIG. 1 is that the punch end faces of the punches 4 and 6 are flat.

第2のビレット1の加工前の外周部の高さが内周部の高
さより小さいことである。加工後のビレットはほぼ円筒
体状となり、ビレットの外周部の高さと内周部の高さは
ほぼ一致する。この場合も同様に、第2のビレット1の
外周部の圧縮ひずみが内周部の圧縮ひずみより小さくな
るように第2のビレット1の軸方向に圧縮加工を施した
ことになる。
The height of the outer periphery of the second billet 1 before processing is smaller than the height of the inner periphery. The billet after processing has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet and the height of the inner circumferential portion of the billet are approximately the same. In this case as well, the second billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the second billet 1 is smaller than the compressive strain on the inner circumferential portion.

以上述べてきた様に1本発明は前記公知技術(特開昭6
0−59720号公報)に示された圧縮加工とほとんど
同じであるが第2のビレット1端面を傾斜面あるいはポ
ンチ4,5端面を傾斜面にすることによって、この2ビ
レット同時圧縮加工において、第2のビレット1の外周
部の圧縮ひずみが内周部の圧縮ひずみより小さくなるよ
うに第2のビレット1の軸方向に圧縮加工を施すことが
でき、これによって公知技術と同じ圧縮ひずみ量でも径
方向の磁気特性が高くなる。
As described above, one aspect of the present invention is the above-mentioned known technology (Japanese Unexamined Patent Publication No. 6
This is almost the same as the compression process shown in Japanese Patent Publication No. 0-59720, but by making the end face of the second billet 1 an inclined surface or the end faces of the punches 4 and 5 into inclined surfaces, the simultaneous compression process of the two billets can be performed. The second billet 1 can be compressed in the axial direction so that the compressive strain on the outer circumference of the second billet 1 is smaller than the compressive strain on the inner circumference. The magnetic properties of the direction become higher.

前記の二つの例の組み合わせでも、第2のビレット1の
外周部の圧縮ひずみが内周部の圧縮ひずみより小さくな
るように第2のビレット1の軸方向に圧縮加工を施すこ
とができる。つまり、例えば第1図<tl)に示したポ
ンチ4,5、外型6よりなる金型を用いて、第2図体)
に示した第2のビレット1を圧縮加工する方法である。
Even in a combination of the above two examples, the second billet 1 can be compressed in the axial direction so that the compressive strain on the outer circumferential portion of the second billet 1 is smaller than the compressive strain on the inner circumferential portion. That is, for example, using a mold consisting of the punches 4 and 5 and the outer mold 6 shown in FIG. 1<tl),
This is a method of compressing the second billet 1 shown in FIG.

前述した例では、ポンチ4.6端面あるいはビレット1
WA面が傾斜面であったが、他に階段状面(段付き形状
)、千面十傾斜面あるいは以上の組み合わせなどあシ、
さらに凹凸状にするポンチあるいはビレット端面は両面
でも片面でもよい。必要なことは第2のビレット1の外
周部の圧縮ひずみが内周部の圧縮ひずみより小さくなる
ように第2のビレットの軸方向に圧縮加工を施すことで
ある。これによって、公知技術と同じ圧縮ひずみ量でも
径方向の磁気特性が高くなる。
In the above example, the punch 4.6 end face or billet 1
The WA surface is an inclined surface, but there are other reeds such as stepped surfaces (stepped shapes), 1000 sloped surfaces, or a combination of more than 10 sloped surfaces.
Furthermore, the punch or billet end face to be made uneven may be on both sides or on one side. What is necessary is to compress the second billet 1 in the axial direction so that the compressive strain on the outer circumferential portion of the second billet 1 is smaller than the compressive strain on the inner circumferential portion. As a result, the magnetic properties in the radial direction are improved even with the same amount of compressive strain as in the known technology.

前述したような圧縮加工の可能な温度範囲についてld
、530〜830”Cの温度領域において。
Regarding the possible temperature range of compression processing as mentioned above,
, in the temperature range of 530-830''C.

加工が行えたが、780”Cを越える温度では、磁気特
性がかなシ低下した。よシ望ましい温度範囲としては5
60〜760℃であった。
Although processing was possible, the magnetic properties deteriorated slightly at temperatures exceeding 780"C. The most desirable temperature range is 5.
The temperature was 60-760°C.

次に本発明の更に具体的な実施例について説明する。Next, more specific embodiments of the present invention will be described.

実施例1(第2図a) 配合組成で69.5%のMム、29.3%のムl。Example 1 (Figure 2a) The blend composition is 69.5% Mum and 29.3% Mul.

0.5%のC及び0.7%のN1を溶解鋳造し、直径6
0 閣e長さ401fllの円柱ビレットを作製した。
Melt and cast 0.5% C and 0.7% N1, diameter 6
A cylindrical billet with a length of 401 flll was produced.

このビレットに1100℃で2時間保持した後。After holding this billet at 1100°C for 2 hours.

室温まで放冷する熱処理を施した。Heat treatment was performed by allowing the sample to cool to room temperature.

次に、潤滑剤を介して、720”Cの温度で、押出加工
を行った。加工後のビレットは直径40■。
Next, extrusion processing was performed at a temperature of 720"C using a lubricant. The billet after processing had a diameter of 40 cm.

長さ90mであった。この押出棒を切断および切削加工
して、外径35 wa 、内径29酎、外周部の長さ2
0fl、内周部の長さ30mの両端面が傾斜面の第2の
ビレット1を作製した。さらに、黄銅の棒材を切断、切
削加工して、外径40閣、内径36 a I長さ3oI
III+の円筒の第1のビL/ +7ト2を作製した。
It was 90m long. This extruded rod was cut and machined to have an outer diameter of 35 mm, an inner diameter of 29 mm, and an outer circumference length of 2 mm.
A second billet 1 with an inner circumferential length of 30 m and both end faces having sloped surfaces was prepared. Furthermore, we cut and machined the brass bar material to have an outer diameter of 40mm, an inner diameter of 36cm, and a length of 3oI.
The first biL/+7 cylindrical III+ cylinder was fabricated.

次に、第1のビレット2の中空部に第2のビレット1を
入れ、eso”cの温度で、潤滑剤を介して、第2図(
a)に示したような圧縮加工を行った。第2図(&)に
おいて、外型6の内径は4゜真である。加工後のビレッ
ト1.2の長さは161であった。
Next, the second billet 1 is put into the hollow part of the first billet 2, and the second billet 1 is placed in the hollow part of the first billet 2, and is heated through a lubricant at a temperature of
Compression processing as shown in a) was performed. In FIG. 2 (&), the inner diameter of the outer mold 6 is 4° true. The length of billet 1.2 after processing was 161 mm.

加工後のビレット1,2を内径20rtaaに切削加工
した後、内周表面に24極の内周着磁をした。
The processed billets 1 and 2 were cut to an inner diameter of 20 rtaa, and then the inner circumferential surface was magnetized with 24 poles.

着磁は2000μFのオイルコンデンサーヲ用い。Magnetization uses a 2000μF oil capacitor.

1500Vでパルス着磁した。内周表面の表面磁束密度
をホール素子で測定した。
Pulse magnetization was performed at 1500V. The surface magnetic flux density on the inner peripheral surface was measured using a Hall element.

比較のために、前述した押出棒を切断および切削加工し
て、外径36順、内径29圏、長さ26鵡の円筒の第2
のビレットを作製した。第2のビレットと長さ26簡の
第1のビレットを用いて、前記と同様にし長さが15順
までの圧縮加工を行った。さらに前記と同様に切削加工
した後5着磁し1表面磁束密度を測定した。
For comparison, the extruded rod described above was cut and machined to form a second cylinder with an outer diameter of 36 mm, an inner diameter of 29 mm, and a length of 26 mm.
A billet was prepared. Using the second billet and the first billet having a length of 26 pieces, compression processing was performed in the same manner as described above until the length was 15 pieces. Furthermore, after cutting in the same manner as above, 5 magnetizations were performed and 1 surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

実施例2(第2図b) 純鉄の棒材から、外径40mg、内径35叫、長さ30
mmの円筒の第1のビレット2を作製した。
Example 2 (Fig. 2b) Made of pure iron bar material with an outer diameter of 40 mg, an inner diameter of 35 mm, and a length of 30 mm.
A first billet 2 having a cylindrical size of mm was produced.

ビレット2の中空部に第2のビレット1(実施例1と同
じ)を入れ、潤滑剤を介して、680℃の温度で、第2
図(a)に示した様な圧縮加工を行った。
A second billet 1 (same as in Example 1) was put into the hollow part of the billet 2, and the second billet 1 was heated at a temperature of 680°C via a lubricant.
Compression processing as shown in Figure (a) was performed.

第2図[有])において、外型6の内径は40mmであ
る。
In FIG. 2 [ex.], the inner diameter of the outer mold 6 is 40 mm.

加工後のビレット1.2の高さは15園であった。The height of billet 1.2 after processing was 15mm.

加工後のビレットを内径22圓に切削加工した後、実施
例1と同様に内周に24極の着磁をし。
After cutting the processed billet to an inner diameter of 22 circles, the inner circumference was magnetized with 24 poles in the same manner as in Example 1.

表面磁束密度を測定した。The surface magnetic flux density was measured.

比較のために、実施例1で比較の為に作製した第2のビ
レット1と長さが26順の前記と同じ第1のビレット2
を用いて、前記と同様に圧縮加工をし、切削した後、内
周着磁した。
For comparison, the second billet 1 produced for comparison in Example 1 and the same first billet 2 as described above having a length of 26 were prepared.
After compression processing and cutting were carried out in the same manner as described above, the inner circumference was magnetized.

以上の両者の値を比較すると1本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

実施例3 電磁軟鉄の棒材を用いて、外径4011119内径35
+10111長さ30mの第2の円筒ビレット1を作ッ
ト1(実施例1)と同じを入れ、潤滑剤を介して、es
o’cの温度で、第2図(a)に示した様な圧縮加工を
行った。第2図(a)において、外型6の内径は40m
mである。加工後のビレットの高さは15薗であった。
Example 3 Using a bar of electromagnetic soft iron, the outer diameter is 4011119 and the inner diameter is 35.
+10111 A second cylindrical billet 1 with a length of 30 m was filled with the same material as in the production lot 1 (Example 1), and was heated with es via lubricant.
Compression processing as shown in FIG. 2(a) was performed at a temperature of o'c. In Fig. 2(a), the inner diameter of the outer mold 6 is 40 m.
It is m. The height of the billet after processing was 15 mm.

加工後のビレットを内径22圏に切削した後。After cutting the processed billet to an inner diameter of 22 mm.

実施例1と同様に内周に24極の着磁をし、表面磁束密
度を測定した。
As in Example 1, 24 poles were magnetized on the inner periphery, and the surface magnetic flux density was measured.

比較のために、実施例1で比較の為に作製した第2のビ
レットと長さが261mの前記と同じ第1のビレット2
を用いて、同様に圧縮加工をし、切削した後、内周に2
4極の着磁をした。
For comparison, the second billet produced for comparison in Example 1 and the same first billet 2 having a length of 261 m as described above were used.
After compression processing and cutting in the same way using
It was magnetized with 4 poles.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

実施例4(第2図C) 配合組成で69.4%のMn 、29.3%のム1゜、
0.5%00,0.7%のNi及び0.1%(7)Ti
i溶解鋳造し、直径SOW、長さ40+aの円柱ビレッ
トを作製した。このビレットに実施例1と同じ熱処理を
施した。次に、720℃の温度で、押出加工を行った。
Example 4 (Figure 2 C) The blending composition was 69.4% Mn, 29.3% Mn1°,
0.5%00, 0.7% Ni and 0.1%(7)Ti
A cylindrical billet having a diameter of SOW and a length of 40+a was produced by melting and casting. This billet was subjected to the same heat treatment as in Example 1. Next, extrusion processing was performed at a temperature of 720°C.

加工後のビレットは直径32 m m長さ98閣であっ
た。この押出棒を切断および切削加工して、外径281
1111.内径2011111 e外周部の長さを20
圏、内周部の長さを30+mの端面が傾斜面の第2のビ
レット1を作製した。
The billet after processing had a diameter of 32 mm and a length of 98 mm. This extruded rod was cut and machined to have an outer diameter of 281 mm.
1111. Inner diameter 2011111 e Length of outer periphery 20
A second billet 1 with an inner circumference length of 30+m and an inclined end surface was produced.

次に、配合組成で72%のMn、27チのムl及び1%
のCを溶解鋳造し、直径65順、長さ50職の円柱ビレ
ットを作製し、1160℃で2時間保持した後、115
0℃からToo″C″!で、平均20℃/分の冷却速度
で冷却し、700℃で30分間保持した後、室温まで放
冷する熱処理をした。
Next, the blended composition was 72% Mn, 27% Mn, and 1% Mn.
A cylindrical billet with a diameter of 65 mm and a length of 50 mm was prepared by melting and casting C. After holding at 1160°C for 2 hours,
Too "C" from 0℃! The sample was cooled at an average cooling rate of 20° C./min, held at 700° C. for 30 minutes, and then heat-treated by allowing it to cool to room temperature.

次に、潤滑剤を介して、720℃の温度で、直径が35
咽までの押出加工を行った。この押出棒を切断・切削加
工して外径3411!II、内径28閣、長さ30ra
sの円筒の第1のビレット2を作製した。
Then, through lubricant, at a temperature of 720 ° C, the diameter of 35
Extrusion processing was performed up to the throat. This extruded rod was cut and processed to have an outer diameter of 3411 mm! II, inner diameter 28mm, length 30ra
A first billet 2 having a cylindrical shape of s was produced.

第1のビレット2の中空部に第2のビレット1を入れ、
潤滑剤を介して、680℃の温度で、第2図(C)に示
した様な圧縮加工を行った。外型6の内径は40喘であ
る。加工後の円筒ビレットの長さは16■であった。
Put the second billet 1 into the hollow part of the first billet 2,
Compression processing as shown in FIG. 2(C) was performed at a temperature of 680° C. using a lubricant. The inner diameter of the outer mold 6 is 40mm. The length of the cylindrical billet after processing was 16 mm.

加工後のビレット1,2を内径22薗に切削加工した後
、実施例1と同様に24極の内周着磁をし、表面磁束密
度を測定した。
After cutting the processed billets 1 and 2 to have an inner diameter of 22 mm, the inner circumference was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured.

比較のために、前記の直径が32閣の押出棒を切断し、
切削加工して外径281.内径20fl。
For comparison, the extruded rod with a diameter of 32 mm was cut,
After cutting, the outer diameter is 281. Inner diameter 20 fl.

長さ25mの円筒の第2のビレット1を作製した。A second cylindrical billet 1 with a length of 25 m was produced.

長さが25mmの前記と同じ第1のビレット2を用いて
、前記と同様に圧縮加工をし、さらに切削加工した後、
内周に24極の着磁をした。
Using the same first billet 2 with a length of 25 mm as described above, compression processing was performed in the same manner as above, and after further cutting processing,
24 poles were magnetized on the inner circumference.

以上の両者の値を比較すると1本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

実施例6 実施例1と同じ配合組成のMn、  ム1.C及びN1
を溶解鋳造し、直径80 m +長さ40mmの円柱ビ
レットを作製した。このビレットに実施例1と同じ熱処
理を施した。潤滑剤を介して、720℃の温度で、直径
が60閣までの押出加工を行った。押出棒を切断、切削
加工して外径38m、内径291rrln +外周部の
長さを20rIC≠を30咽の端面が傾斜面の第4のビ
レットを作製した。
Example 6 Mn with the same blending composition as Example 1, Mu1. C and N1
was melted and cast to produce a cylindrical billet with a diameter of 80 m and a length of 40 mm. This billet was subjected to the same heat treatment as in Example 1. Extrusion processing up to a diameter of 60 mm was carried out at a temperature of 720° C. via a lubricant. The extruded rod was cut and machined to produce a fourth billet having an outer diameter of 38 m, an inner diameter of 291 rrln + a length of the outer periphery of 20 rIC≠, and a 30-fold end face with an inclined surface.

さらに、押出棒を切断・切削加工して、直径35 rl
rm e長さ40aのビレットを作製した。潤滑剤を介
して、660℃の温度で、自由圧縮加工した。加工後の
ビレットの長さば30+mであった。
Furthermore, the extruded rod was cut and machined to a diameter of 35 rl.
A billet with rm e length of 40a was produced. Free compression processing was performed at a temperature of 660° C. through a lubricant. The length of the billet after processing was 30+m.

加工後のビレット(面異方性磁石)を切削加工して、外
径35閣、内径29 m 、外周部の長さを201rr
lR#内周部の長さを30wmの端面が傾斜面の第6の
ビレットを作製した。
After processing, the billet (planar anisotropic magnet) is cut into an outer diameter of 35 m, an inner diameter of 29 m, and a length of the outer circumference of 201 rr.
A sixth billet with an inner circumferential length of 30 wm and an inclined end surface was prepared.

次に、黄銅の棒材を切断、切削加工して、外径40 F
M+ e内径35al長さ30mの円筒の第1のビレッ
ト2を2個作製し、各ビレット2の中空部に第4のビレ
ットまたは第5のビレットを入れ。
Next, the brass bar was cut and machined to an outer diameter of 40 F.
M+ e Two cylindrical first billets 2 with an inner diameter of 35 al and a length of 30 m were prepared, and a fourth billet or a fifth billet was placed in the hollow part of each billet 2.

実施例1と同様に、潤滑剤を介して、680℃の温度で
圧縮加工を行った。外径6の内径は40wll1である
。加工後の円筒ビレットの長さは1511111であっ
た。
As in Example 1, compression processing was performed at a temperature of 680° C. using a lubricant. The inner diameter of the outer diameter 6 is 40wll1. The length of the cylindrical billet after processing was 1,511,111 mm.

加工後のビレットを内径20mmに切削加工した後、実
施例1と同様に24極の内周着磁をし、表面磁束密度を
測定した。
After cutting the processed billet to an inner diameter of 20 mm, the inner circumference was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured.

比較のために、前述した押出棒を切断・切削加工して、
外径35麿、内径29圓、長さ25朋の円筒の第2のビ
レットを作製した。この第2のビレットと長さ25rm
の第1のビレットを用いて。
For comparison, the extruded rod mentioned above was cut and machined,
A second cylindrical billet having an outer diameter of 35 mm, an inner diameter of 29 mm, and a length of 25 mm was prepared. This second billet and length 25rm
With the first billet of.

前記と同様に長さが15順までの圧縮加工を行い、切削
加工した後、着磁し、表面磁束密度を測定した。
In the same manner as above, compression processing was performed up to 15 lengths, and after cutting, magnetization was performed, and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、第4.第5のビレットとで差
は認められず、比較のために作製した磁石のそれの約1
.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example is the fourth. No difference was observed between the 5th billet and the magnet made for comparison.
.. It was twice that amount.

実施例6(第1図b) 実施例1で作製した押出棒を切断・切削加工して、外径
35 ’ml +内径29順、長さが20間の円筒第2
のビレット1および黄銅の棒材から外径4o醪、内径3
5+m、長さ20聰の円筒の第1のビレット2をそれぞ
れ作製した。第1のビレット2の中空部に第2のビレッ
ト1を入れ、潤滑剤を介して、680℃の温度で、第1
図伽)に示したような圧縮加工を行った。外型6の内径
は40謂。
Example 6 (Fig. 1b) The extruded rod produced in Example 1 was cut and machined to form a second cylinder with an outer diameter of 35'ml + an inner diameter of 29mm and a length of 20mm.
From the billet 1 and brass bar material, the outer diameter is 4o and the inner diameter is 3.
A cylindrical first billet 2 having a length of 5+m and a length of 20 meters was produced. The second billet 1 is put into the hollow part of the first billet 2, and the first billet 1 is heated at a temperature of 680°C via a lubricant.
Compression processing was performed as shown in Figure 3). The inner diameter of the outer mold 6 is 40 mm.

傾斜角(−は1dOであり、加工後のビレット1,2の
外周部の高さは15廖であった。
The inclination angle (- is 1 dO, and the height of the outer circumference of billets 1 and 2 after processing was 15 liao.

加工後のビレット1.2を内径26閣に切削加工した後
、実施例1と同様に内周に24極の着磁をし1表面磁束
密度を測定した。
After cutting the processed billet 1.2 to an inner diameter of 26 mm, the inner circumference was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured.

比較のために、前記と同じビレット1.2を用いて、第
2図に示したポンチ4,5、外径6よりなる金型を用い
て、圧縮加工をし、さらに前記と同様にビレットを切削
加工した後、内周に24極の着磁をした。
For comparison, the same billet 1.2 as above was compressed using the punches 4 and 5 shown in Fig. 2 and a mold with an outer diameter of 6, and then the billet was processed in the same manner as above. After cutting, the inner circumference was magnetized with 24 poles.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

以上の実施例は第1図及び第2図に示した代表的な具体
例であるが、第2のビレット1、第1のビレット2およ
び第3のビレット3の長さは必ずしも同じである必要は
ない。例えば、一方のビレでもよい。さらに、ビレット
全体を圧縮加工するのではなく、ビレットの一部分のみ
圧縮加工する方法でもよい。場合によっては第2のビレ
ット1(またはビレッ)2.3)が二つ以上に分かれた
ものからなっていてもよい。また、内周面を成型する目
的でマンドレル等を用いてもよい。
The above embodiments are typical examples shown in FIGS. 1 and 2, but the lengths of the second billet 1, first billet 2, and third billet 3 do not necessarily have to be the same. There isn't. For example, one fin may be used. Furthermore, instead of compressing the entire billet, only a portion of the billet may be compressed. In some cases, the second billet 1 (or billet 2.3) may be divided into two or more parts. Further, a mandrel or the like may be used for the purpose of molding the inner peripheral surface.

Mn−ムl −C系合金磁石の組成については、Ni添
加の4元系とNi 、Ti添加の5元系のものについて
のみ示したが、Mn−ムl−C系合金磁石の基本組成で
ある3元系についても磁石の磁気特性に若干の差は認め
られたが、公知の圧縮加工による方法より前述したよう
な磁気特性の向上が認められた。
Regarding the composition of the Mn-Ml-C alloy magnet, only the quaternary system with Ni addition and the quinary system with Ni and Ti additions are shown, but the basic composition of the Mn-Ml-C alloy magnet is Although some differences were observed in the magnetic properties of the magnets for certain ternary systems, the above-mentioned improvement in the magnetic properties was observed compared to the known compression processing method.

あらかじめ異方性化したMn−ム1−C系合金磁石とし
て一軸異方性磁石あるいは面異方性磁石を用いた例を示
したが径異方性磁石などを用いても同様であった。
An example was shown in which a uniaxial anisotropic magnet or a plane anisotropic magnet was used as the Mn-mu 1-C alloy magnet which had been made anisotropic in advance, but the same results could be obtained by using a radially anisotropic magnet or the like.

さらに、ビレット1およびポンチ4.5端面の形状につ
いては傾斜面の例を示したが階段状の段せなどでも従来
の圧縮加工に比べて磁気特性の向上が認められた。
Furthermore, regarding the shapes of the billet 1 and punch 4.5 end faces, an example of an inclined surface was shown, but it was also observed that the magnetic properties were improved compared to conventional compression processing even when the end faces were stepped.

発明の効果 本発明は、実施例によって述べたようだ、金属材料から
なる中空体状の第1のビレットの中空部分に、あらかじ
め異方性化した多結晶Mn−ムl−C系合金磁石からな
る中空体状の第2のビレットが存在する状態で、中空体
状の第2のビレットの外周部の圧縮ひずみが内周部の圧
縮ひずみよシ小さくなるように、二つのビレットが接す
るまでもしくはそれ以上まで、少なくとも中空体状の第
2のビレットの軸方向に圧縮加工を施すことによって内
周多極着磁を施した場合に高い磁気特性を示す磁石を得
るものである・ この方法によって、これまでの公知の方法に比べて同一
の圧縮ひずみ量でも径方向の磁気特性が高くなる。
Effects of the Invention The present invention, as described in the embodiments, consists of a polycrystalline Mn-Ml-C alloy magnet which has been made anisotropic in advance, and is placed in the hollow portion of the first billet in the form of a hollow body made of a metallic material. In the state where the hollow body-shaped second billet exists, the compressive strain at the outer peripheral part of the hollow body-shaped second billet is smaller than the compressive strain at the inner peripheral part until the two billets touch or By applying compression processing in the axial direction of at least the second billet in the form of a hollow body, a magnet that exhibits high magnetic properties when subjected to internal multi-pole magnetization is obtained. By this method, Compared to conventional methods, the magnetic properties in the radial direction are improved even with the same amount of compressive strain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の断面図であ1・・・
・・・第2のビレット、2・・・・・・第1のビレット
。 3・・・・・・第3のビレット、4,6・・・・・・ポ
ンチ、6・・・・・・外型、α・・・・・・傾斜角。
Figures 1 and 2 are cross-sectional views of embodiments of the present invention.
...Second billet, 2...First billet. 3...Third billet, 4,6...Punch, 6...External mold, α...Inclination angle.

Claims (9)

【特許請求の範囲】[Claims] (1)金属材料からなる中空体状の第1のビレットの中
空部分に、あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の第2の
ビレットが存在する状態で、530〜830℃の温度で
、前記あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状の第2のビレ
ットの外周部の圧縮ひずみが内周部の圧縮ひずみより小
さくなるように、前記第1、第2のビレットが接するま
でもしくはそれ以上まで、前記中空体状の第1、第2の
ビレットの軸方向に圧縮加工を施すマンガン−アルミニ
ウム−炭素系合金磁石の製造法。
(1) A state in which a second hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance exists in the hollow part of a first hollow billet made of a metal material. At a temperature of 530 to 830°C, the compressive strain at the outer circumference of the hollow second billet made of the previously anisotropic polycrystalline manganese-aluminum-carbon alloy magnet becomes the compressive strain at the inner circumference. A manganese-aluminum-carbon alloy magnet in which the hollow body-shaped first and second billets are compressed in the axial direction until the first and second billets come into contact with each other or more so as to become smaller. manufacturing method.
(2)金属材料からなる中空体状の第1のビレットが、
少なくとも内周部が磁性体からなる特許請求の範囲第1
項記載のマンガン−アルミニウム−炭素系合金磁石の製
造法。
(2) A hollow first billet made of a metal material,
Claim 1 in which at least the inner peripheral portion is made of a magnetic material
A method for producing a manganese-aluminum-carbon alloy magnet as described in 2.
(3)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状の第2のビレ
ットが、中空体の軸方向に磁化容易方向を有する多結晶
マンガン−アルミニウム−炭素系合金磁石からなり、し
かも前記圧縮ひずみが対数ひずみの絶対値で0.03以
上である特許請求の範囲第1項または第2項記載のマン
ガン−アルミニウム−炭素系合金磁石の製造法。
(3) A second billet in the form of a hollow body made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been anisotropically made in advance is a polycrystalline manganese-aluminum-carbon alloy magnet that has an easy magnetization direction in the axial direction of the hollow body. 3. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the magnet is made of an alloy magnet, and the compressive strain is 0.03 or more as an absolute value of logarithmic strain.
(4)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状の第2のビレ
ットが、中空体の軸方向に垂直な平面に平行に磁化容易
方向を有し、しかも前記平面内では磁気的に等方性であ
り、かつ前記軸方向と前記平面に平行な直線を含む平面
内では異方性である多結晶マンガン−アルミニウム−炭
素系合金磁石からなる特許請求の範囲第1項または第2
項記載のマンガン−アルミニウム−炭素系合金磁石の製
造法。
(4) A second billet in the shape of a hollow body made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been anisotropically made in advance has an easy magnetization direction parallel to a plane perpendicular to the axial direction of the hollow body, Moreover, the patent claim comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is magnetically isotropic within the plane and anisotropic within a plane that includes the axial direction and a straight line parallel to the plane. Range 1st or 2nd
A method for producing a manganese-aluminum-carbon alloy magnet as described in 2.
(5)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状の第2のビレ
ットが、径方向に磁化容易方向を有する多結晶マンガン
−アルミニウム−炭素系合金磁石からなる特許請求の範
囲第1項または第2項記載のマンガン−アルミニウム−
炭素系合金磁石の製造法。
(5) A hollow second billet made of a polycrystalline manganese-aluminum-carbon alloy magnet which has been made anisotropic in advance is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the radial direction. Manganese-aluminum- as claimed in claim 1 or 2
Manufacturing method for carbon-based alloy magnets.
(6)圧縮加工が、前記あらかじめ異方性化した多結晶
マンガン−アルミニウム−炭素系合金磁石からなる中空
体状の第2のビレットの外周を拘束した状態で、しかも
少なくとも内周の一部分を自由にした状態で行なうもの
である特許請求の範囲第1項または第2項記載のマンガ
ン−アルミニウム−炭素系合金磁石の製造法。
(6) The compression process is performed while the outer periphery of the hollow second billet made of the previously anisotropic polycrystalline manganese-aluminum-carbon alloy magnet is constrained, and at least a portion of the inner periphery is free. A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, which is carried out in a state where
(7)圧縮加工が、前記あらかじめ異方性化した多結晶
マンガン−アルミニウム−炭素系合金磁石からなる中空
体状の第1のビレットの外周および内周の少なくとも一
部分を自由にした状態で行った後、さらに前記第1のビ
レットの外周を拘束した状態で、しかも少なくとも内周
の一部分を自由にした状態で行なうものである特許請求
の範囲第1項または第2項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。
(7) The compression process was performed with at least a portion of the outer periphery and inner periphery of the hollow first billet made of the previously anisotropic polycrystalline manganese-aluminum-carbon alloy magnet freed. After that, the manganese-aluminum-carbon according to claim 1 or 2 is further carried out with the outer periphery of the first billet restrained and with at least a part of the inner periphery free. Manufacturing method for alloy magnets.
(8)磁性体が、等方性マンガン−アルミニウム−炭素
系磁石合金である特許請求の範囲第2項記載のマンガン
−アルミニウム−炭素系合金磁石の製造法。
(8) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 2, wherein the magnetic material is an isotropic manganese-aluminum-carbon alloy magnet.
(9)中空体状が円筒体状である特許請求の範囲第1項
、または第2項記載のマンガン−アルミニウム−炭素系
合金磁石の製造法。
(9) The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the hollow body is cylindrical.
JP8855786A 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0663073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8855786A JPH0663073B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8855786A JPH0663073B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62247057A true JPS62247057A (en) 1987-10-28
JPH0663073B2 JPH0663073B2 (en) 1994-08-17

Family

ID=13946168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8855786A Expired - Lifetime JPH0663073B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0663073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206106A (en) * 1989-02-06 1990-08-15 Tokin Corp Manufacture of anisotropic rare-earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206106A (en) * 1989-02-06 1990-08-15 Tokin Corp Manufacture of anisotropic rare-earth magnet

Also Published As

Publication number Publication date
JPH0663073B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0434804B2 (en)
JPH0479122B2 (en)
JPH0311521B2 (en)
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0673327B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0663075B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0642408B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0311526B2 (en)
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311523B2 (en)
JPS58192305A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0340922B2 (en)