JPS62243753A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62243753A
JPS62243753A JP8850686A JP8850686A JPS62243753A JP S62243753 A JPS62243753 A JP S62243753A JP 8850686 A JP8850686 A JP 8850686A JP 8850686 A JP8850686 A JP 8850686A JP S62243753 A JPS62243753 A JP S62243753A
Authority
JP
Japan
Prior art keywords
billet
compressive strain
punch
compression processing
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8850686A
Other languages
Japanese (ja)
Other versions
JPH0663067B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8850686A priority Critical patent/JPH0663067B2/en
Publication of JPS62243753A publication Critical patent/JPS62243753A/en
Publication of JPH0663067B2 publication Critical patent/JPH0663067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain an anisotropic magnet showing high magnetic properties, by subjecting an Mn-Al-C magnetic alloy to compression working so that compressive strain is lower in the outside peripheral part than in the inside peripheral part and by forming the inside peripheral surface of a billet into recessed and projecting shape by means of further compression working. CONSTITUTION:A hollow billet 1 composed of Mn-Al-C magnetic alloy is set up so that its inside peripheral surface is in contact with the surface of a punch 2 of recessed and projecting shape while its outside peripheral surface is in contact with the inside peripheral surface of a die 4. The billet 1 is subjected to compression working at 530-830 deg.C by the use of the punch 2 so that compressive strain in the outside peripheral part is lower than that in the inside peripheral part and, by further compression working, the inside peripheral surface of the billet 1 is formed into recessed and projecting shape.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係シ、とくに多結晶マン
ガン−アルミニウム−炭X(In−ム1−C)系合金磁
石による多極着磁用Mn−ム4−〇系合金磁石の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing permanent magnets, and in particular to multipolar magnetization using polycrystalline manganese-aluminum-carbon X (In-M1-C) alloy magnets. The present invention relates to a method for manufacturing Mn-4-0 series alloy magnets.

従来の技術 Mn−五l−C系磁石用合金ハ、68〜73質量チ(以
下単にチで表わす)のMnと(1710MN−6,8)
〜(173MN−22,2)%のCと残部のムlからな
シ、不純物以外に添加元素を含まない3元系及び少量の
添加元素を含む4元系以上の多元系磁石用合金が知られ
ておシ、これらを総称するものである。同様に、Mn−
人/−C系合金磁石は、主として強磁性相である面心正
方晶(γ相、L1g型規別格子)の組織で構成され、C
を必須構成元素として含むものであり、不純物以外に添
加元素を含まない3元系及び少量の添加元素を含む4元
系以上の多元系合金磁石が知られており、これらを総称
するものである。
Conventional technology Mn-5 l-C magnet alloy C, Mn of 68 to 73 mass Chi (hereinafter simply expressed as Chi) and (1710MN-6,8)
~(173MN-22,2)% of C and the balance of mulch, ternary alloys containing no additive elements other than impurities, and quaternary or higher multi-component alloys containing small amounts of additive elements are known. This is a general term for these. Similarly, Mn-
Human/-C alloy magnets are mainly composed of a face-centered tetragonal (γ phase, L1g type regular lattice) structure, which is a ferromagnetic phase.
There are known multi-component alloy magnets, including ternary alloy magnets containing as essential constituent elements, and containing no additional elements other than impurities, and quaternary or higher alloy magnets containing small amounts of additive elements. .

その製造法としては、鋳造・熱処理によるもの以外に押
出加工等の塑性加工工程を含むものがあり、特に後者は
、高い磁気特性9機械的強度、耐候性9機械加工性等あ
優れた性質を有する異方性磁石の製造法として知られて
いる。
In addition to casting and heat treatment, manufacturing methods include extrusion and other plastic working processes, and the latter in particular has excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability. It is known as a method for manufacturing anisotropic magnets.

また、Mn−ムl−C系合金磁石を用いた多極着磁用磁
石の製造法としては、等方性磁石、圧縮加工によるもの
、Mn−ムd−C系磁石用合金からなる中空体状のビレ
ットの軸方向に圧縮ひずみを与える各種の塑性加工によ
るもの(例えば特開昭58−192303.同58−1
92306゜同58−192306号公報)、及びMn
−ムE−〇系磁石用合金からなる中空体状のビレットと
、金属材料からなるビレットを同時に圧縮加工するもの
(例えば特開昭60−59055号公報)が知られてい
る。
In addition, methods for producing multipolar magnets using Mn-Mul-C alloy magnets include isotropic magnets, compression processing, and hollow bodies made of Mn-Mul-C alloy magnets. Various types of plastic working that apply compressive strain in the axial direction of shaped billets (for example, JP-A-58-192303, JP-A-58-1)
92306゜Patent No. 58-192306), and Mn
A method is known in which a hollow billet made of an alloy for M-E-0 series magnets and a billet made of a metal material are simultaneously compressed (for example, Japanese Patent Laid-Open No. 60-59055).

発明が解決しようとする問題点 多極着磁用磁石の形状は一般に円筒体であり、主な着磁
としては、第6図に示したような着磁がある。第6図は
円筒磁石の内周面に多極着磁した場合の磁石内部での磁
路の形成を模式的に示したもので、このような着磁をこ
こでは内周着磁と称するO 前述したMn−ムl−C系磁石用合金からなる中空体状
のビレットの軸方向に、圧縮ひずみを与える各種の塑性
加工によって得られた磁石では、内周着磁を施した場合
、局部的には磁路に沿った方向に異方性化しているが、
全体をみた場合には望ましい方向に異方性化していない
。また、前述した方法によれば、円筒磁石の内周部は径
方向に異方性化し、外周部では周方向(弦方向、以下同
じに異方性化したものが得られるが、磁路が径方向から
周方向に変化する途中では、その方向に沿った異方性構
造ではなく、さらに高温度での塑性加工を2回以上行う
必要がある。
Problems to be Solved by the Invention Multi-pole magnetizing magnets are generally cylindrical in shape, and the main magnetization is as shown in FIG. Figure 6 schematically shows the formation of a magnetic path inside the magnet when the inner peripheral surface of a cylindrical magnet is magnetized with multiple poles. In magnets obtained by various types of plastic working that apply compressive strain in the axial direction of the hollow billet made of the Mn-Ml-C magnet alloy described above, when internal magnetization is applied, localized magnetization occurs. is anisotropic in the direction along the magnetic path,
When viewed as a whole, anisotropy is not achieved in the desired direction. In addition, according to the method described above, the inner circumference of the cylindrical magnet is anisotropic in the radial direction, and the outer circumference is anisotropic in the circumferential direction (chord direction, hereinafter referred to as the same), but the magnetic path is In the middle of the change from the radial direction to the circumferential direction, it is necessary to perform plastic working at a higher temperature two or more times, rather than creating an anisotropic structure along that direction.

問題点を解決するための手段 以上のような従来の問題点を解決するために本発明は、
Mn−ムl−C系磁石用合金からなる中空体状のビレッ
トを、外周部の圧縮ひずみが内周部の圧縮ひずみより小
さくなるように圧縮加工し、さらに圧縮加工によってビ
レットの内周面を凹凸状に成型するものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention provides the following:
A hollow billet made of Mn-Ml-C magnet alloy is compressed so that the compressive strain at the outer circumference is smaller than that at the inner circumference, and the inner circumference of the billet is further compressed by compression. It is molded into an uneven shape.

作用 前述した方法によって、つまり外周部の圧縮ひずみが内
周部の圧縮ひずみより小さくなるように圧縮加工し、さ
らに圧縮加工によってビレットの内周面を凹凸状に成型
することによって、第5図に示した内周着磁を施した場
合の磁路に沿って異方性化させることができ、高い磁気
特性を示す異方性磁石を得ることができる。
Operation By using the method described above, that is, by compressing the billet so that the compressive strain on the outer circumferential portion is smaller than that on the inner circumferential portion, and further forming the inner circumferential surface of the billet into an uneven shape by compression processing, the billet as shown in Fig. 5 is produced. When the inner periphery is magnetized as shown, anisotropy can be achieved along the magnetic path, and an anisotropic magnet exhibiting high magnetic properties can be obtained.

実施例 本発明は、Mn−ムl−1系磁石用合金からなる中空体
状のビレットを、630ないし830℃の温度で、外周
部の圧縮ひずみが内周部の圧縮ひずみより小さくなるよ
うに圧縮加工し、さらに圧縮加工によってビレットの内
周面を凹凸状に成型するものである。
EXAMPLE The present invention produces a hollow billet made of an Mn-Ml-1 alloy for magnets at a temperature of 630 to 830°C so that the compressive strain at the outer circumference is smaller than the compressive strain at the inner circumference. The billet is subjected to compression processing, and the inner circumferential surface of the billet is shaped into an uneven shape by compression processing.

前述した圧縮加工は必ずしも連続的な圧縮加工である必
要はなく、複数回に分割して与えても良い。
The compression process described above does not necessarily have to be continuous compression process, and may be divided into multiple times.

が内周部の圧縮ひずみより小さくなるように圧縮加工す
る方法に分けて説明する。
The method of performing compression processing so that the compression strain is smaller than the compression strain of the inner peripheral portion will be explained separately.

まず、圧縮加工によってビレットの内周面を凹凸状に成
型する一例をビレットの形状を円筒体として第1図を用
いて説明する。第1図(&)は圧縮加工前の状態をビレ
ットの軸方向から見た断面を示し、1はMn−ムl−C
系磁石用合金からなる円′ 筒体状のビレット、2はポ
ンチで、ビレット1の内周面を成型するために凹凸状で
あり、4は金型で、ビレ7ト1の外周面を拘束するため
の金型である。第1図(b)は圧縮加工後の状態を示す
。(b)に示したように、円筒体状のビレット1は圧縮
加工の進行に共なって径が小さくなシ、内周面の一部が
ポンチ2の表面と接触するようになり、さらに圧縮加工
を進行させることにより (b)に示したようにビレッ
ト1の内周面がほぼポンチ20表面に接触し、一方、外
周面は金型4の内面に接触したままである。(b)に示
した状態まで圧縮加工を行う必要はなく、ビレット1の
内周面の一部がポンチ2終了してもよい。言い換えれば
、ビレット1の内周面に凹凸が形成されればよい。この
場合のビレット1の圧縮加工前の内径の最小はポンチ2
の表面の凸部に接する大きさである。この場合は、圧縮
加工前にすてにビレーIト1の内周面の一部がポンチ2
の表面によって拘束された状態で圧縮加工が施される。
First, an example of forming the inner circumferential surface of a billet into an uneven shape by compression processing will be described with reference to FIG. 1, assuming that the billet has a cylindrical shape. Figure 1 (&) shows a cross section of the billet before compression processing, viewed from the axial direction, and 1 indicates Mn-Mul-C
A circular cylindrical billet made of an alloy for magnets, 2 is a punch, which has an uneven shape for shaping the inner circumferential surface of the billet 1, and 4 is a mold, which restrains the outer circumferential surface of the billet 1. This is a mold for FIG. 1(b) shows the state after compression processing. As shown in (b), as the compression process progresses, the cylindrical billet 1 becomes smaller in diameter, and part of its inner circumferential surface comes into contact with the surface of the punch 2, and is further compressed. As the machining progresses, the inner circumferential surface of the billet 1 almost comes into contact with the surface of the punch 20, while the outer circumferential surface remains in contact with the inner surface of the mold 4, as shown in FIG. It is not necessary to perform the compression process to the state shown in (b), and a part of the inner circumferential surface of the billet 1 may be finished by the punch 2. In other words, the unevenness may be formed on the inner circumferential surface of the billet 1. In this case, the minimum inner diameter of billet 1 before compression is punch 2.
It is the size that touches the convex part of the surface. In this case, a part of the inner circumferential surface of belay I 1 is removed by punch 2 before compression processing.
Compression processing is performed while being restrained by the surface of the

このように、ポンチ2の表面に凹凸が存在することによ
ってビレット1は圧縮加工後、内周面に凹凸が形成され
る。圧縮加工過程において、最も早く内周面が拘束され
る部分(加工後のビレット1の内周面の凹部)は周方向
に磁化容易方向を有する部分となシ、最後に内周面が拘
束される部分又は最後まで内周面が拘束されない部分(
加工後のビレーIト1の内周面の凸部、中心に最も近い
部分)は径方向に磁化容易方向を有する部分となる。
As described above, the presence of the unevenness on the surface of the punch 2 causes unevenness to be formed on the inner circumferential surface of the billet 1 after compression processing. In the compression processing process, the part where the inner circumferential surface is constrained earliest (the recessed part of the inner circumferential surface of the billet 1 after processing) is the part which has an easy magnetization direction in the circumferential direction, and the inner circumferential surface is constrained last. or the part where the inner peripheral surface is not restrained until the end (
The convex portion on the inner circumferential surface of the belay Ito 1 after processing (the portion closest to the center) becomes a portion having an easy magnetization direction in the radial direction.

その中間の部分の磁化容易方向は周方向から径方向へ順
次変化している部分である。言い換えると、第1図にお
いてポンチ2の表面の凸部によって形成されるビレット
1の内周面の凹部の曲面に沿った方向に磁化容易方向が
ピレント1の内周部から次第に連続的に変化する。その
ため内周着磁において細極着磁するかによって、この凹
凸部の数を決定すればよい。第1図では加工後のビレッ
ト1の内周面の凸部が6つあるため、6極着磁に適した
異方性構造を有する磁石となり、加工後の凸部に当る部
分が、内周着磁における極の部分になる。
The easy magnetization direction of the intermediate portion changes sequentially from the circumferential direction to the radial direction. In other words, in FIG. 1, the direction of easy magnetization gradually and continuously changes from the inner circumference of the pilent 1 in the direction along the curved surface of the concave part of the inner circumference of the billet 1 formed by the convex part on the surface of the punch 2. . Therefore, the number of concave and convex portions may be determined depending on whether fine pole magnetization is performed during inner circumference magnetization. In Figure 1, there are six convex parts on the inner peripheral surface of billet 1 after processing, so the magnet has an anisotropic structure suitable for six-pole magnetization, and the parts that correspond to the protrusions after processing are on the inner circumference. It becomes the pole part in magnetization.

前記の一例で述べた様に、本発明はビレーIト1の軸方
向に圧縮加工する際に、金型4等を用いてビレット1の
内周面が凹凸状になるように成形圧縮加工することによ
って、内周着磁を施した場合に高い磁気特性を示す異方
性構造を有する磁石を得るものである。
As described in the above example, in the present invention, when compressing the billet 1 in the axial direction, the mold 4 or the like is used to mold and compress the billet 1 so that the inner peripheral surface becomes uneven. By doing so, it is possible to obtain a magnet having an anisotropic structure that exhibits high magnetic properties when internally magnetized.

次に、外周部の圧縮ひずみが内周部の圧縮ひずみより小
さくなるように圧縮加工するための具体的な例をビレッ
ト1の形状を円筒体として第3図を用いて説明すると、
第3図は第1図に垂直な方向からみた加工前の状態の断
面を示す。1はビレット、2.3はポンチ、4は金型で
ある。第3図に示すように、ポンチ2およびポンチ3の
ビレット1と接触する面(ポンチ端面)が平面ではなく
傾斜面である。このポンチ2およびポンチ3を用いて、
ビレット1の軸方向に加圧することによって、ビレット
1は軸方向に圧縮加工される。圧縮加工後のビレット1
の外周部の高さは内周部の高さより大きい。つまり、ビ
レット1の外周部の圧縮ひずみが内周部の圧縮ひずみよ
り小さくなるようにビレット1の軸方向に圧縮加工を施
したことになる。圧縮ひずみとは、ビレット1の軸方向
のひずみをいう。
Next, a specific example of compressing so that the compressive strain at the outer circumference is smaller than the compressive strain at the inner circumference will be explained using FIG. 3, assuming that the billet 1 has a cylindrical shape.
FIG. 3 shows a cross section of the unprocessed state viewed from a direction perpendicular to FIG. 1. 1 is a billet, 2.3 is a punch, and 4 is a mold. As shown in FIG. 3, the surfaces of the punches 2 and 3 that contact the billet 1 (punch end surfaces) are not flat surfaces but sloped surfaces. Using this punch 2 and punch 3,
By applying pressure in the axial direction of the billet 1, the billet 1 is compressed in the axial direction. Billet 1 after compression processing
The height of the outer circumference is greater than the height of the inner circumference. In other words, the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion. Compressive strain refers to strain in the axial direction of billet 1.

次に、外周部の圧縮ひずみが内周部の圧縮ひずみより小
さくなるように圧縮加工するための具体的な別の例をビ
レット1の断面形状をリング状として第4図を用いて説
明する。第4図は第3図と同様に加工前の状態の断面を
示す。第4図に示すように第3図と異なる点は、ポンチ
2およびポンチ3のポンチ端面は平面であり、圧縮加工
前のビレット1の外周部の高さが内周部の高さより小さ
いことである。加工後のビレット1はほぼ円筒体状とな
り、ビレット1の外周部の高さと内周部の高さはほぼ一
致する。この場合も同様に、ビレット1の外周部の圧縮
ひずみが内周部の圧縮ひずみより小さくなるようにビレ
ット1の軸方向に圧縮加工を施したことによる。
Next, another specific example of compressing so that the compressive strain on the outer circumferential portion is smaller than the compressive strain on the inner circumferential portion will be described with reference to FIG. 4, assuming that the cross-sectional shape of the billet 1 is ring-shaped. FIG. 4 shows a cross section before processing, similar to FIG. 3. As shown in Fig. 4, the difference from Fig. 3 is that the punch end faces of punches 2 and 3 are flat, and the height of the outer periphery of billet 1 before compression processing is smaller than the height of the inner periphery. be. After processing, the billet 1 has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet 1 and the height of the inner circumferential portion of the billet 1 substantially match. In this case as well, the billet 1 was compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 was smaller than the compressive strain on the inner circumferential portion.

以上述べてきた様に、ビレット1端面を傾斜面あるいは
ポンチ2.3端面を傾斜面にすることによって、この特
定の圧縮加工において、ビレット1の外周部の圧縮ひず
みが内周部の圧縮ひずみより小さくなるようにビレット
1の軸方向に圧縮加工を施すことができる。
As mentioned above, by making the end face of billet 1 an inclined face or the end face of punch 2.3 an inclined face, in this particular compression process, the compressive strain at the outer circumference of billet 1 is lower than the compressive strain at the inner circumference. Compression processing can be performed in the axial direction of the billet 1 so that it becomes smaller.

前記の二つの例の組み合わせでも、ビレット1の外周部
の圧縮ひずみが内周部の圧縮ひずみより小さくなるよう
にビレット1の軸方向に圧縮加工を施すことができる。
Even in a combination of the above two examples, the billet 1 can be compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is smaller than the compressive strain on the inner circumferential portion.

つまり、第3図に示したポンチ2,3、金型4を用いて
、第4図に示したビレットを圧縮加工する方法である。
That is, this method uses the punches 2, 3 and mold 4 shown in FIG. 3 to compress the billet shown in FIG. 4.

″ 前述した例では、ポンチ2.3端面あるいはビレット1
端面が傾斜面であったが他に階段状面(段付き形状)、
平面+傾斜面あるいは以上の組み合わせなどあり、さら
に凹凸状にするポンチ2゜3あるいはビレット1端面は
両面でも片面でもよい。必要なことはビレット1の外周
部の圧縮ひずみが内周部の圧縮ひずみより大きくなるよ
うにビレット1の軸方向に圧縮加工を施すことである。
″ In the above example, the punch 2.3 end face or billet 1
The end surface was a sloped surface, but there were also stepped surfaces (stepped shape),
There may be a flat surface + an inclined surface or a combination of the above, and the end surface of the punch 2.3 or the billet 1 to be made uneven may be either double-sided or single-sided. What is necessary is to compress the billet 1 in the axial direction so that the compressive strain on the outer circumference of the billet 1 is greater than the compressive strain on the inner circumference.

前述したような圧縮加工の可能な温度範囲については、
630ないし830℃の温度領域において、加工が行え
たが、780℃を越える温度では、磁気特性がかなり低
下した。よシ望ましい温度範囲としては660ないし7
60℃であった。
Regarding the possible temperature range of compression processing as mentioned above,
Processing was possible in the temperature range of 630 to 830°C, but at temperatures exceeding 780°C, the magnetic properties deteriorated considerably. The preferred temperature range is 660 to 7.
The temperature was 60°C.

次に本発明の更に具体的な実施例について説明する。Next, more specific embodiments of the present invention will be described.

実施例1(第2図、第4図) 配合組成でee、s%のMn、29.3%の五l。Example 1 (Fig. 2, Fig. 4) The blend composition is ee, s% Mn, and 29.3% 5L.

0.6%のC及び0.7%のN1を溶解鋳造し、外径3
0綱、内径24讃、外周部の長さが20 m 、内周部
の長さが26鰭の端面が傾斜面のビレット1を作製した
。このビレット1に1100℃で2時間保持した後、6
00℃まで風冷し、aoo℃で30分間保持した後、室
温まで放冷する熱処理を施した。
Melting and casting 0.6% C and 0.7% N1, outer diameter 3
A billet 1 of 0 wire, an inner diameter of 24 fins, an outer circumference length of 20 m, an inner circumference length of 26 fins, and an inclined end surface was prepared. After holding this billet 1 at 1100°C for 2 hours,
After air-cooling to 00°C, holding at aoo°C for 30 minutes, heat treatment was performed by cooling to room temperature.

次に、第2図および第4図に示したポンチ2゜3、金型
4を用いて、潤滑剤を介して、680°Cの温度で圧縮
加工を行った。第2図は第1図と同様の外型の断面図で
あυ、(外型4の内径) Dk= 30 m 、 X 
A = 8 tx、(ポンチ2の凸部の半径)RB =
2.5 wm 、ポンチ径Dp=16mであり、ポンチ
2の表面の凸部は8個ある。2および3はポンチで凹凸
面が互いに嵌合する段付き部ないし穴を有し、図の上下
方向に移動することができる。
Next, compression processing was performed at a temperature of 680° C. using a punch 2°3 and a mold 4 shown in FIGS. 2 and 4 through a lubricant. Figure 2 is a cross-sectional view of the outer mold similar to Figure 1, υ, (inner diameter of outer mold 4) Dk = 30 m, X
A = 8 tx, (radius of convex part of punch 2) RB =
2.5 wm, the punch diameter Dp=16 m, and the punch 2 has eight convex portions on its surface. 2 and 3 are punches having stepped portions or holes in which concave and convex surfaces fit into each other, and can be moved in the vertical direction in the figure.

このようなポンチ2,3、金型4を用いて、金型4内の
空洞がほぼなくなるまでの圧縮加工を行った。
Using such punches 2 and 3 and the mold 4, compression processing was performed until the cavity in the mold 4 was almost completely eliminated.

加工後のビレット1を内径20 tmまで切削加工した
後、8極の内周着磁をした。着磁は2000μFのオイ
ルコンデンサーを用い、15oovでパルス着磁した。
After cutting the processed billet 1 to an inner diameter of 20 tm, the inner circumference was magnetized with eight poles. For magnetization, a 2000 μF oil capacitor was used, and pulse magnetization was performed at 15 oov.

内周表面の表面磁束密度をホール素子で測定した◇ 比較のために、前述した配合組成のMn、人l。The surface magnetic flux density on the inner peripheral surface was measured with a Hall element◇ For comparison, Mn and human l of the above-mentioned formulation composition.

C及びN1を溶解鋳造し、直径24 tax 、長さ2
゜寵の円柱ビレット1を作製した。前記と同じ熱処理を
した。このビレット1に680℃の温度で円柱の軸方向
に長さが10wIAまでの自由圧縮加工を施した。加工
後のビレット1を前記と同様に切削加工した後、着磁し
、表面磁束密度を測定した0以上の両者の表面磁束密度
の値を比較すると、本発明の方法で得た磁石の値は、比
較のために作製した磁石のそれの約1.7倍であった。
C and N1 are melted and cast, diameter 24 tax, length 2
A round cylindrical billet 1 was produced. The same heat treatment as above was carried out. This billet 1 was subjected to free compression processing at a temperature of 680° C. in the axial direction of the cylinder to a length of 10 wIA. After cutting the processed billet 1 in the same manner as above, it was magnetized and the surface magnetic flux density was measured. Comparing the surface magnetic flux density values of 0 or more, the value of the magnet obtained by the method of the present invention is , which was about 1.7 times that of a magnet prepared for comparison.

実施例2(第2図) 配合組成で69.4%のMn、29.3%のムl。Example 2 (Figure 2) The blend composition is 69.4% Mn and 29.3% Mul.

0.6%のC,0,7%のN1及び0.1チのTiを溶
解鋳造し、外径30fl、内径24fi、長さ20簡の
ビレット1を作製した。このビレット1に実施例1と同
じ熱処理を施した。次に、第2図および第3図に示した
ポンチ2,3、金型4を用いて、潤滑剤を介して、68
0℃の温度で、金型4内の空洞がほぼなくなるまでの圧
縮加工を行った。なお、第2図に示した各部の寸法は実
施例1と同じで、傾斜角(α)は20°である。
Billet 1 having an outer diameter of 30 fl, an inner diameter of 24 fi, and a length of 20 strips was prepared by melting and casting 0.6% C, 0.7% N1, and 0.1 tin. This billet 1 was subjected to the same heat treatment as in Example 1. Next, using the punches 2 and 3 and the mold 4 shown in FIGS. 2 and 3, 68
Compression processing was performed at a temperature of 0° C. until the cavity in the mold 4 was almost completely eliminated. Note that the dimensions of each part shown in FIG. 2 are the same as in Example 1, and the inclination angle (α) is 20°.

実施例1と同様に加工後のビレット1を内径20麿まで
切削加工した後、8極の内周着磁をし、表面磁束密度を
測定した。
After cutting the processed billet 1 to an inner diameter of 20mm in the same manner as in Example 1, the inner circumference was magnetized with 8 poles, and the surface magnetic flux density was measured.

比較のために、前述した配合組成のMn、ムe。For comparison, Mn and Mue of the above-mentioned compounding composition.

C,Ni及びT1を溶解鋳造し、直径24寵、長さ20
 mの円柱ビレット1を作製し、前記と同じ熱処理をし
た。このビレット1に680℃の温度で円柱の軸方向に
長さが10IIIIIまでの自由圧縮加工を施した。加
工後のビレット1を前記と同様に切削加工した後、着磁
し1表面磁束密度を測定した。
Melt and cast C, Ni and T1, diameter 24 mm, length 20 mm.
A cylindrical billet 1 having a diameter of m was produced and subjected to the same heat treatment as described above. This billet 1 was subjected to free compression processing at a temperature of 680°C to a length of 10III in the axial direction of the cylinder. After cutting the processed billet 1 in the same manner as described above, it was magnetized and the surface magnetic flux density of the billet 1 was measured.

以上の両者の表面磁束密度の値を比較すると、本実施例
の方法で得た磁石の値は、比較のために作製した磁石の
それの約1.7倍であった。
Comparing the values of the surface magnetic flux density of both of the above, the value of the magnet obtained by the method of this example was about 1.7 times that of the magnet produced for comparison.

実施例1および2で得た本発明の方法による磁石は、磁
気トルク測定の結果、前述したように磁化容易方向は凹
部の表面に沿って径方向から周方向に連続的に変化して
いることが確認された。
As a result of magnetic torque measurement, the magnets obtained by the method of the present invention obtained in Examples 1 and 2 showed that the direction of easy magnetization continuously changed from the radial direction to the circumferential direction along the surface of the recessed portion, as described above. was confirmed.

以上、Mn−ムl−C系磁石用合金の組成については、
N1添加の4元系とNi、Ti添加の6元系のものにつ
いてのみ示したが、Mn−ムl−C系合金磁石の基本組
成である3元系あるいは前記以外の添加元素を含んだ公
知の多元系についても塑性加工後の磁石の磁気特性に若
干の差は認められたが、従来の技術による方法よシ前述
したような磁気特性の向上が認められた。
As mentioned above, regarding the composition of the Mn-Ml-C alloy for magnets,
Although only the four-element system with N1 addition and the six-element system with Ni and Ti added are shown, it is possible to use the ternary system, which is the basic composition of Mn-Ml-C alloy magnets, or the known ones containing additive elements other than the above. Although some differences were observed in the magnetic properties of the magnets after plastic working for the multi-component system, the above-mentioned improvement in magnetic properties was observed compared to the conventional method.

さらに、ビレット1およびポンチ2,3端面の形状につ
いては傾斜面の例を示したが階段状の段付き形状、平面
十傾斜面あるいは以上の組み合わせなどでも従来の圧縮
加工に比べて磁気特性の向上が認められた。
Furthermore, as for the shape of the billet 1 and the punches 2 and 3 end faces, an example of an inclined surface is shown, but even a stepped shape, a flat surface, an inclined surface, or a combination of the above can also improve magnetic properties compared to conventional compression processing. was recognized.

発明の効果 以上詳細に説明して明らかなように、本発明はMn−ム
l−C系磁石用合金からなる中空体状のビレットを、6
30ないし830℃の温度で、外周部の圧縮ひずみが内
周部の圧縮ひずみより小さくなるように圧縮加工し、さ
らに圧縮加工によってビレウドの内周面に凹凸状部を形
成したものであるので、内周着磁を行った場合に高い磁
気特性を示す磁石を得ることができるものであり、本発
明の方法による磁石を従来の方法による磁石と比較する
と、内周着磁を施した場合、従来の方法による磁石より
優れた磁気特性を示し、さらに磁石の内周部が径方向に
磁化容易方向を有し、それよりも外周部で周方向に磁化
容易方向を有する構造を得るには従来の方法では少なく
とも2個以上の塑性加工を必要としたが、本発明の方法
では1回 。
Effects of the Invention As is clear from the detailed explanation above, the present invention provides a hollow billet made of an Mn-Ml-C alloy for magnets.
It is compressed at a temperature of 30 to 830°C so that the compressive strain on the outer circumferential part is smaller than that on the inner circumferential part, and the uneven part is formed on the inner circumferential surface of the bereud by the compression process. When magnetized on the inner periphery, it is possible to obtain a magnet that exhibits high magnetic properties.Comparing the magnet produced by the method of the present invention with the magnet produced by the conventional method, it is found that when magnetized on the inner periphery, the magnet exhibits high magnetic properties. In order to obtain a structure that exhibits superior magnetic properties than the magnet produced by the above method, and further has a structure in which the inner periphery of the magnet has an easy direction of magnetization in the radial direction, and the outer periphery has an easier direction of magnetization in the circumferential direction, the conventional method is used. The method required at least two or more plastic workings, but the method of the present invention requires only one plastic working.

ですみ、一層望ましい異方性構造を有する磁石を得るこ
とができる。
Therefore, a magnet having a more desirable anisotropic structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の実施例に用いるポンチ、
金型部の断面図、第6図は円筒状磁石における内周多極
着磁による磁路を模式的に示す図である。 1・・・・・・ビレット、2,3・・・・・・ポンチ、
4・・曲金型、α・・・・・・傾斜角・ 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (0,) (b) 第2図 第3図 第4図
Figures 1 to 4 show punches used in embodiments of the present invention;
FIG. 6, a cross-sectional view of the mold part, is a diagram schematically showing a magnetic path caused by multi-pole magnetization on the inner circumference of a cylindrical magnet. 1...Billet, 2,3...Punch,
4...Bent mold, α...Inclination angle, Agent's name: Patent attorney Toshio Nakao and 1 other person 1st
Figure (0,) (b) Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)マンガン−アルミニウム−炭素系磁石用合金から
なる中空体状のビレットに、530ないし830℃の温
度で、外周部の圧縮ひずみが内周部の圧縮ひずみより小
さくなるように圧縮加工し、さらに圧縮加工によってビ
レットの内周面を凹凸状に成型するマンガン−アルミニ
ウム−炭素系合金磁石の製造法。
(1) A hollow billet made of a manganese-aluminum-carbon alloy for magnets is compressed at a temperature of 530 to 830°C so that the compressive strain on the outer circumference is smaller than the compressive strain on the inner circumference, Furthermore, the method for manufacturing a manganese-aluminum-carbon alloy magnet includes forming the inner circumferential surface of the billet into an uneven shape by compression processing.
(2)圧縮加工は、ビレットの外周を拘束した状態で行
う特許請求の範囲第(1)項記載のマンガン−アルミニ
ウム−炭素系合金磁石の製造法。
(2) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim (1), wherein the compression processing is performed while the outer periphery of the billet is restrained.
(3)圧縮加工は、前記ビレットの内周の一部分を拘束
した状態で行う特許請求の範囲第(1)項記載のマンガ
ン−アルミニウム−炭素系合金磁石の製造法。
(3) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim (1), wherein the compression processing is performed while a portion of the inner circumference of the billet is restrained.
JP8850686A 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0663067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8850686A JPH0663067B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8850686A JPH0663067B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62243753A true JPS62243753A (en) 1987-10-24
JPH0663067B2 JPH0663067B2 (en) 1994-08-17

Family

ID=13944709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8850686A Expired - Lifetime JPH0663067B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0663067B2 (en)

Also Published As

Publication number Publication date
JPH0663067B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210260A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS6210259A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0639671B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58182206A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPS62143410A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247056A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192305A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143409A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061743B2 (en) Alloy magnet manufacturing method
JPS6210252A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet