JPS58182206A - Preparation of manganese-aluminum-carbon alloy magnet - Google Patents

Preparation of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS58182206A
JPS58182206A JP57065908A JP6590882A JPS58182206A JP S58182206 A JPS58182206 A JP S58182206A JP 57065908 A JP57065908 A JP 57065908A JP 6590882 A JP6590882 A JP 6590882A JP S58182206 A JPS58182206 A JP S58182206A
Authority
JP
Japan
Prior art keywords
billet
aluminum
axial direction
carbon alloy
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57065908A
Other languages
Japanese (ja)
Other versions
JPH0311521B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Yoichi Sakamoto
洋一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57065908A priority Critical patent/JPS58182206A/en
Priority to US06/486,242 priority patent/US4579607A/en
Priority to DE8383302204T priority patent/DE3365406D1/en
Priority to EP83302204A priority patent/EP0092422B1/en
Publication of JPS58182206A publication Critical patent/JPS58182206A/en
Priority to US06/784,661 priority patent/US4648915A/en
Publication of JPH0311521B2 publication Critical patent/JPH0311521B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Abstract

PURPOSE:To obtain a magnet having high magnetic characteristics in the diametric direction with small compressive stress by a method wherein a hollow steel piece of magnet made of alloy of polycrystalline Mn-Al-C system that has been made anisotropic is compressed in the axial direction at the preselected temperature in such a manner as to make free at least part of its internal and external peripheries. CONSTITUTION:A known alloy of Mn-Al-C system for preparing a magnet is extrusion-processed at 530-830 deg.C to obtain a uniaxial or facial anisotropic magnet. A hollow steel body 1 of the magnet is compression-processed at the temperature range of 530-830 deg.C in such a state that at least part of the internal and external peripheries thereof is set free. In the case of the uniaxial anisotropic magnet, compressive stress must be 0.05 or more at the logarithmic value. With this construction, the magnets of both the anisotropic types display high magnetic characteristics in the diametric direction and the part locally compression- processed has higher magnetic characteristics in the diametric direction, so that flaws such as uneven transformation or a permanent band can be avoided.

Description

【発明の詳細な説明】 本発明は、永久磁石の製造法に関するものである。さら
に詳細には、多結晶マンガン−アルミニウムー炭素系(
Mn−ム1−c系)合金磁石の製造法に関し、特に高性
能な多極着磁用Mn−A11−C系合金磁石の製造法を
提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a permanent magnet. More specifically, polycrystalline manganese-aluminum-carbon system (
The present invention relates to a method for manufacturing a Mn-A11-C alloy magnet, and provides a method for manufacturing a particularly high-performance Mn-A11-C alloy magnet for multipolar magnetization.

Mn−A/−C系合金磁石は主として強磁性相である面
心正方晶(τ相、LIo型規則格子)の組織で構成され
、Cを必須構成元素として含むものであり、不純物以外
に添加元素を含まない3元系及び少量の添加元素を含む
4元系以上の多元系合金磁石が知られており、これらを
総称するものである。
Mn-A/-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, LIo-type regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element, with no additives other than impurities. Multi-component alloy magnets are known, including ternary alloy magnets containing no elements and quaternary or higher alloy magnets containing a small amount of additional elements.

また、このMn−ムl−0系合金磁石の製造法としては
、鋳造・熱処理によるもの以外に、温間押出加工等の温
間塑性加工工程を含むものが知られている。特に後者は
高い磁気特性1機械的強度6耐候性1機械加工性等の優
れた性質を有する異方性磁石の製造法として知られてい
る。
Furthermore, as a manufacturing method of this Mn-M1-0 alloy magnet, in addition to the method of casting and heat treatment, methods including a warm plastic working process such as warm extrusion are known. In particular, the latter is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

多極着磁用Mn−Al−C系合金磁石の製造法としては
、等方性磁石、圧縮加工によるもの、およびあらかじめ
温間押出加工等の公知の方法で得た一軸異方性の多結晶
Mn−A7!−C系合金磁石に異方性方向への温間自由
圧縮加工によるもの(複合加工法によるもの)が知られ
ている。
Methods for producing multipolar magnetized Mn-Al-C alloy magnets include isotropic magnets, compression processing, and uniaxially anisotropic polycrystals obtained in advance by known methods such as warm extrusion processing. Mn-A7! -C alloy magnets subjected to warm free compression processing in an anisotropic direction (combined processing method) are known.

圧縮加工によるものでは、径方向に高い磁気特性が得ら
れているが、比較的大きい加工率が必要であること、不
均一変形が起こる場合があること、不変形帯の存在が避
けられないことなどの問題点がある。複合加工法による
ものでは、小さな圧縮ひずみで径方向1弦方向を含む平
面内の全ての方向に高い磁気特性が得られている。複合
加工法で得た磁石は、特定の平面に平行に磁化容易方向
を有し、しか、も前記平面内では磁気的に等方性・であ
り、かつ前記平面の垂線と前記平面に平行な直線を含む
平面内では異方性であるという構造である(以下このよ
うな磁石を面異方性磁石という)。
Compression processing provides high magnetic properties in the radial direction, but a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed bands is unavoidable. There are problems such as: With the combined processing method, high magnetic properties are obtained in all directions within the plane including the radial first chord direction with small compressive strain. A magnet obtained by a composite processing method has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and has a direction perpendicular to the plane and a direction parallel to the plane. It has a structure that is anisotropic within a plane that includes straight lines (hereinafter, such a magnet will be referred to as a planar anisotropic magnet).

多極着磁用磁石の形状は一般には円筒体であり、主な着
磁としては、第1図から第3図に示すような着磁がある
。第1図は円筒磁石の径方向に多極着磁した場合の磁石
内部での磁路(破線で示す)の形成を模式的に示したも
のである。同様に第2図は円筒磁石の外周に多極着磁し
た場合であり。
The shape of a multipolar magnetized magnet is generally a cylindrical body, and the main magnetization methods include magnetization as shown in FIGS. 1 to 3. FIG. 1 schematically shows the formation of a magnetic path (indicated by a broken line) inside the cylindrical magnet when the cylindrical magnet is magnetized with multiple poles in the radial direction. Similarly, FIG. 2 shows a case where the outer periphery of a cylindrical magnet is magnetized with multiple poles.

第3図は内周に多極着磁した場合のものである。FIG. 3 shows a case where the inner circumference is multi-pole magnetized.

第1図に示した着磁を本明細′書では径方向着磁と称し
、第2図のものを外周着磁、第3図のものを内周着磁と
称する。
In this specification, the magnetization shown in FIG. 1 is referred to as radial magnetization, the magnetization in FIG. 2 is referred to as outer circumference magnetization, and the magnetization in FIG. 3 is referred to as inner circumference magnetization.

第1図に示したように、径方向着磁では磁路はほぼ径方
向に沿っており、前述した面異方性磁石の構造が必ずし
も適切ではないといえる。一方圧線加工によるものでは
、径方向に高い磁気特性が得られているが、前述したよ
うに比較的大きい加工率が必要であること、不均一変形
が起こる場合があること、不変形帯の存在が避けられな
いことなどの問題点があった。
As shown in FIG. 1, in radial magnetization, the magnetic path is substantially along the radial direction, and it can be said that the structure of the above-mentioned planar anisotropic magnet is not necessarily appropriate. On the other hand, pressure wire machining provides high magnetic properties in the radial direction, but as mentioned above, it requires a relatively large machining rate, non-uniform deformation may occur, and the There were problems such as the fact that its existence was unavoidable.

本発明者らは、あらかじめ異方性化した多結晶Mn−ム
1−c系合金磁石からなる中空体状のビレットに、63
0〜830℃の温度で、少なくともビレットの外周およ
び内周の一部分を自由にした状態で、中空体の軸方向に
圧縮加工を施すことによって前記の問題点を解決し得る
ことを見出した。
The present inventors applied 63 mm to a hollow billet made of a polycrystalline Mn-1-c alloy magnet that had been made anisotropic in advance.
It has been found that the above-mentioned problems can be solved by compressing the hollow body in the axial direction at a temperature of 0 to 830° C. while leaving at least a portion of the outer and inner circumferences of the billet free.

すなわち、公知のMn −A7! −C系磁石用合金、
例えば68〜73重量%のMnと(1/10Mn−5,
e) 〜(+/3Mn −22,2)重量%のCと残部
のムlからなる合金を530〜830’Cの温度域で押
出加工等の塑性加工を施すことによって、異方性化した
多結晶Mn −kl −C系合金磁石を得ることができ
る。前記の磁石として代表的なものとしては、前記の塑
性加工を押出加工とした場合に得られる、押出方向に磁
化容易方向を有する一軸異方性磁石と前述した面異方性
磁石などがある。
That is, the known Mn-A7! - Alloy for C-based magnets,
For example, 68-73% by weight of Mn and (1/10Mn-5,
e) An alloy consisting of ~(+/3Mn -22,2)% by weight of C and the balance of mulch was made anisotropic by performing plastic working such as extrusion in a temperature range of 530 to 830'C. A polycrystalline Mn-kl-C alloy magnet can be obtained. Typical examples of the magnet include a uniaxially anisotropic magnet having an easy magnetization direction in the extrusion direction, which is obtained when the plastic working is performed by extrusion, and the above-mentioned planar anisotropic magnet.

前記の異方性化した多結晶Mn−ムl−C系合金磁石か
らなる中空体のビレットに、少なくともビレットの外周
および内周の一部分を自由にした状態で中空体の軸方向
に圧縮加工を施すことによって、多極着磁において高い
磁気特性を有する磁石を得ることができる。なお、ここ
でいう中空体というのは、ビレット内のある任意の方向
(軸方向)に沿って空洞部分が存在するものをいい、も
つとも簡単な形状としては円筒がある。
The hollow billet made of the anisotropic polycrystalline Mn-Ml-C alloy magnet is compressed in the axial direction of the hollow body, with at least a portion of the outer circumference and inner circumference of the billet free. By applying this, it is possible to obtain a magnet having high magnetic properties in multipolar magnetization. Note that the term "hollow body" as used herein refers to a billet in which a hollow portion exists along a certain arbitrary direction (axial direction), and the simplest shape is a cylinder.

みが対数ひずみの絶対値でo、06以上必要である。The absolute value of the logarithmic strain must be o, 06 or more.

これは実施例で詳述するように、圧縮加工前のビレット
は圧縮方向に異方性化したものであり、多極着磁におい
て高い磁気特性を有する磁石への構造の変化に最低0.
06の圧縮ひずみが必要であるためである。
This is because, as detailed in the examples, the billet before compression processing is anisotropic in the compression direction, and when multipole magnetized, the structure changes to a magnet with high magnetic properties at least 0.
This is because a compressive strain of 0.06 is required.

公知技術として、−軸異方性の角柱状磁石の軸方向へ温
間圧縮加工を施した例があるが、その場合は一対の側面
の全面を当初よシ型によって規制しており、自由圧縮で
はない。またその目的も一軸異方性からそれに垂直な一
軸への磁化容易方向の転換である。前記公知技術による
磁化容易方向の一方向への転換には、約60〜70%以
上の加工を要し、これは対数ひずみの絶対値で約0.9
〜1.2以上という大きな値である。さらに、−軸異方
性の磁石の軸方向へ温間自由圧縮加工を施す方法(前記
の複合加工法)があるが、前記の方法で得られる磁石は
前述した面異方性磁石である。一方、本発明は、−例と
して、自由圧縮加工を施すビレットの形状を中空体とし
、しかも外周および内周を自由な状態にして圧縮加工す
ることによって、多極着磁において面異方性磁石より優
れた磁気特性を示す磁石を得るものである。
As a known technique, there is an example in which a prismatic magnet with -axis anisotropy is subjected to warm compression in the axial direction, but in that case, the entire surface of a pair of side surfaces is initially restricted by a horizontal mold, and free compression is performed. isn't it. The purpose is also to change the direction of easy magnetization from uniaxial anisotropy to uniaxial direction perpendicular to it. Converting the direction of easy magnetization to one direction using the known technique requires processing of about 60 to 70% or more, which is about 0.9 in absolute value of logarithmic strain.
This is a large value of ~1.2 or more. Furthermore, there is a method (the above-mentioned composite processing method) of performing warm free compression processing in the axial direction of a magnet with -axis anisotropy, but the magnet obtained by this method is the above-mentioned plane anisotropic magnet. On the other hand, the present invention provides, for example, a billet to be subjected to free compression processing in the form of a hollow body, and by compression processing with the outer and inner peripheries free, a planar anisotropic magnet can be obtained in multipolar magnetization. A magnet exhibiting better magnetic properties is obtained.

前記のビレットが中空体の軸方向に垂直な平面に平行に
磁化容易方向を有する多結晶Mn−ムl−C系合金磁石
(面異方性磁石)からなる場合には、圧縮加工前のビレ
ットは、前述したように、径方向と弦方向を含む平面内
のすべての方向に高い磁気特性を示しているが、中空体
の軸方向に前記の圧縮加工を施すことによって、多極着
磁においてより高い磁気特性を示す磁石を得ることがで
きる。
When the billet is made of a polycrystalline Mn-Ml-C alloy magnet (planar anisotropic magnet) having an easy magnetization direction parallel to a plane perpendicular to the axial direction of the hollow body, the billet before compression processing As mentioned above, shows high magnetic properties in all directions in the plane including the radial direction and the chordal direction, but by applying the compression process in the axial direction of the hollow body, it is possible to A magnet exhibiting higher magnetic properties can be obtained.

前述した圧縮加工は、連続的な加工よりは塑性加工停止
状態を介して複数回に分割して施す方が磁気特性が向上
する。
The magnetic properties of the above-mentioned compression processing are better improved by performing the compression processing in a plurality of times with the plastic processing stopped, rather than continuous processing.

前記の圧縮加工を施したビレットをさらにビレットの一
部分に軸方向に圧縮加工を施すことによって、圧縮加工
を施された部分は径方向により高い磁気特性を示す磁石
となる。また前記の圧縮加工を施したビレットをさらに
ビレットの外周を拘束した状態で、しかも少なくとも内
周の一部分を自由にした状態で軸方向に圧縮加工を施す
ことによって、径方向により高い磁気特性を示す磁石と
なる。さらに、前記の圧縮加工後、外周を拘束した状態
で、しかも少なくとも内周の一部分を自由にした状態で
圧縮加工を施したビレットの一部分に軸方向に圧縮加工
を施すことによって1局部的に圧縮加工を施した部分は
、径方向により高い磁気特性をもった磁石となる。以上
の圧縮加工では、一度に、圧縮ひずみを与える方法と複
数回に分割して与える方法がある。
By further compressing a portion of the billet that has been subjected to the compression processing in the axial direction, the compressed portion becomes a magnet that exhibits higher magnetic properties in the radial direction. In addition, by further compressing the compressed billet in the axial direction with the outer periphery of the billet constrained and with at least a portion of the inner periphery free, it exhibits higher magnetic properties in the radial direction. Becomes a magnet. Furthermore, after the above-mentioned compression processing, the compressed billet is compressed in the axial direction while the outer periphery is constrained and at least a part of the inner periphery is free. The processed portion becomes a magnet with higher magnetic properties in the radial direction. In the compression processing described above, there are two methods: applying compressive strain all at once and applying it in multiple steps.

前記の圧縮加工を施したビレットをさらにビレットの外
周を拘束した状態で、しかも少なくとも内周の一部分を
自由にした状態で軸方向に圧縮加工を施す方法において
、ビレットが中空体の軸方向に磁化容易方向を有する多
結晶Mn−ムl−C系合金磁石(−軸異方性磁石)から
なる場合には、外周を拘束した状態で、しかも少なくと
も内周の一部分を自由にした状態で軸方向に圧縮加工を
施した終了時点でビレットが軸方向に対数ひずみの絶対
値で0.06以上の圧縮ひずみを施す必要がある。換言
すれば、前記の圧縮加工時の圧縮ひずみ量をεzfとし
外周を拘束した状態で、しかも少なくとも内周の一部分
を自由にした状態での圧縮加工時の圧縮ひずみ量を、ε
2rとするとε2fとεzrの和がo、06以上になる
ようにする必要がある。
In a method in which the compressed billet is further compressed in the axial direction with the outer periphery of the billet constrained and at least a portion of the inner periphery free, the billet is magnetized in the axial direction of the hollow body. In the case of a polycrystalline Mn-Ml-C alloy magnet (-axis anisotropic magnet) having an easy direction, the axial direction is set with the outer periphery constrained and at least a part of the inner periphery free. At the end of the compression process, the billet must be subjected to a compression strain of 0.06 or more in terms of the absolute value of logarithmic strain in the axial direction. In other words, let εzf be the amount of compressive strain during the compression process, and let εzf be the amount of compressive strain during the compression process with the outer periphery constrained and at least a portion of the inner periphery free.
2r, it is necessary to make the sum of ε2f and εzr equal to or greater than o,06.

前述した圧縮加工の一例をビレットの形状を円筒として
説明する。まず第1の方法は、円筒ビレットの軸方向に
自由圧縮加工を施す方法である。
An example of the above-mentioned compression processing will be explained assuming that the shape of the billet is cylindrical. The first method is to perform free compression in the axial direction of a cylindrical billet.

第2の方法は、第1の方法で得た、自由圧縮加工を施し
た円筒ビレットの一部に軸方向に圧縮加工を施す方法で
、その−例を第4図に示す。円筒ビレットの一部に圧縮
加工を施す前の状態を第4図(a)に示す。第4図(2
L)は、金型の断面を示したもの ′で、ビレット1は
、拘束金型2と下型3によって固定及び拘束され、可動
ポンチ4によってビレットの内周部のみに加圧できるよ
うになっている。
The second method is a method in which a part of the cylindrical billet obtained by the first method and subjected to free compression is compressed in the axial direction, an example of which is shown in FIG. FIG. 4(a) shows the state before compression processing is applied to a part of the cylindrical billet. Figure 4 (2
L) shows a cross section of the mold. In ', the billet 1 is fixed and restrained by the restraining mold 2 and the lower mold 3, and the movable punch 4 can press only the inner periphery of the billet. ing.

ポンチ4によりビレットを圧縮加工することによって第
4図(blに示した状態となり、ビレットの内周部のみ
が圧縮加工される。
By compressing the billet with the punch 4, the state shown in FIG. 4 (bl) is achieved, and only the inner peripheral portion of the billet is compressed.

第3の方法は、円筒ビレットの軸方向に自由圧縮加工を
施した後、円筒のビレットの外周を拘束した状態で、し
かも内周を自由にした状態で、圧縮加工する方法で、こ
の一連の圧縮加工の一例を第6図に示す。同図(a)に
自由圧縮加工前の状態を示し、上下の可動ポンチ6.6
によってビレット1を加圧し、自由圧縮加工を施すこと
により、ビレットの径が大きくなシ、外型7の内壁に接
触し、(blに示すような状態になる。これによってビ
レットの外周が拘束された状態となり、しかも内周を自
由にした状態でさらに圧縮加工を進めることにの外周を
拘束した状態で、しかも内周を自由にした状態での圧縮
加工に相当する。前述した様に、例えば中空体を円筒と
すると、外周というのは円筒の外側の表面をいい、内周
というのは円筒の内側の表面をいう。
The third method is to perform free compression processing in the axial direction of a cylindrical billet, and then perform compression processing with the outer periphery of the cylindrical billet constrained and the inner periphery free. An example of compression processing is shown in FIG. Figure (a) shows the state before free compression processing, with the upper and lower movable punches 6.6
By pressurizing the billet 1 and performing free compression processing, the billet, which has a large diameter, comes into contact with the inner wall of the outer mold 7, resulting in a state as shown in (bl).As a result, the outer periphery of the billet is restrained. This corresponds to compression processing in a state where the outer periphery is constrained and the inner periphery is free.Proceeding with compression processing with the inner periphery free is equivalent to compression processing with the outer periphery constrained and the inner periphery free. If the hollow body is a cylinder, the outer periphery refers to the outer surface of the cylinder, and the inner periphery refers to the inner surface of the cylinder.

第4の方法は、第3の方法で得た円筒ビレットをさらに
ビレットの一部分に軸方向に圧縮加工を施す方法で、そ
の−例を第4図に示す。第4図(lL)において1を第
3の方法で得たビレットとすると、第4図(bliはビ
レットの内周部のみ圧縮加工を施した状態となる。ビレ
ットの一部分を前記の例では内周部としたが、他の主な
ものとして外周部とする方法などがあり、特殊な用途に
対してはそれぞれに適した部分にすれば良い。
The fourth method is to further compress a portion of the cylindrical billet obtained in the third method in the axial direction, an example of which is shown in FIG. In Fig. 4 (lL), if 1 is the billet obtained by the third method, Fig. 4 (bli) is the state in which only the inner circumference of the billet has been compressed. Although the outer periphery is used as the outer periphery, another method is to use the outer periphery, and for special purposes, the appropriate part may be used.

前記の一例では、少なくともビレットの外周および内周
の一部分を自由にした状態で中空体の軸方向に圧縮ひず
みを与える塑性加工を自由圧縮加工′とした。自由圧縮
加工では、ビレットの外周および内周の全部を自由にし
た状態である。一方、実際の応用上磁石の一部分を本発
明の塑性加工前の異方性のままで磁化容易方向を保存さ
せておきたい場合は、ビレットの一部分の外周および内
周を拘束することによって、局部的に軸方向に圧縮ひず
みを与えない方法をとれば良い。
In the above example, the plastic working that applies compressive strain in the axial direction of the hollow body while leaving at least part of the outer periphery and inner periphery of the billet free is defined as 'free compression working'. In free compression processing, the entire outer and inner circumferences of the billet are left free. On the other hand, in actual applications, if it is desired to preserve the easy magnetization direction of a part of the magnet with the same anisotropy as before the plastic working of the present invention, by restraining the outer and inner peripheries of a part of the billet, it is possible to Therefore, it is best to use a method that does not apply compressive strain in the axial direction.

前述したような圧縮加工の可能な温度範囲については、
630〜830’C,の温度領域において加工が行えた
が、780”Cを越える温度では磁気特性がかなり低下
した。より望ましい温度範囲としては56Q〜760”
Cであった。
Regarding the possible temperature range of compression processing as mentioned above,
Processing was possible in the temperature range of 630 to 830'C, but the magnetic properties deteriorated considerably at temperatures exceeding 780'C.A more desirable temperature range is 56Q to 760'C.
It was C.

以下1本発明を実施例によシ詳細に説明する。The present invention will be explained in detail below using examples.

実施例1 配合組成で69.6重量%(以下単に%で表す)のMn
 、29.3%のムl、0.5%のC及び0.7%のN
i を溶解鋳造し、直径70mm、長さ60mmの円柱
ビレットを作製した。このビレットを11o。
Example 1 Mn of 69.6% by weight (hereinafter simply expressed as %) in the blended composition
, 29.3% Mul, 0.5% C and 0.7% N
i was melted and cast to produce a cylindrical billet with a diameter of 70 mm and a length of 60 mm. This billet is 11o.

℃で2時間保持した後、室温まで放冷する熱処理を行っ
た。次に潤滑剤を介して720’Cの温度で直径45m
Inまでの押出加工を行った。さらに潤滑剤を介して6
80℃の温度で直径3111mまでの押出加工を行った
。この押出棒を長さ2ommに切断して、切削加工して
外径3QIIIm、内径2Qff1m、長さ2ommの
円筒ビレットを数個作製した。これらのビレッNC潤滑
剤を介して680℃の温度で圧縮ひずみを変え、軸方向
に自由圧縮加4工を行った。
After being held at ℃ for 2 hours, heat treatment was performed by allowing it to cool to room temperature. Then 45m in diameter at 720'C through lubricant.
Extrusion processing up to In was performed. Further through lubricant 6
Extrusion processing up to a diameter of 3111 m was carried out at a temperature of 80°C. This extruded rod was cut to a length of 2 omm and machined to produce several cylindrical billets with an outer diameter of 3QIIIm, an inner diameter of 2Qff1m, and a length of 2om. Using these billet NC lubricants, the compressive strain was changed at a temperature of 680° C., and four free compression processes were performed in the axial direction.

加工後のビレットから一辺約4mmの立方体試料を切り
出し磁気特性を測定した。なお各辺は軸方向。
A cubic sample with a side of about 4 mm was cut out from the processed billet and its magnetic properties were measured. Note that each side is in the axial direction.

径方向、および弦方向に平行になるようにした。It was made to be parallel to the radial direction and chord direction.

圧縮ひずみ(ε2)に対する残留磁束密度(Br)の変
化を第6図に示す。
FIG. 6 shows the change in residual magnetic flux density (Br) with respect to compressive strain (ε2).

第6図に示す様に、ε2がO,OSで径方向のBrは軸
方向のBrに比して大きくなり、ε2がさらに大きくな
るとさらに径方向のBrは増加する。
As shown in FIG. 6, when ε2 is O and OS, Br in the radial direction is larger than Br in the axial direction, and as ε2 becomes further larger, Br in the radial direction further increases.

この図かられかるように、軸方向から在方゛向へ磁化容
易方向の転換が82が。、。6までの範囲で著しく進行
する。第6図に示す様に、公知の圧縮加工によるものに
比較すると、非常に小さな圧縮ひずみで高い磁気特性を
示している。換言すれば、圧縮加工によるものでは、径
方向に高い磁気特性を得るには大きな圧縮ひずみを必要
とするが、本発明の方法によると、小さな圧縮ひずみで
高い磁気特性の磁石を得ることができる。
As can be seen from this figure, the direction of easy magnetization is changed from the axial direction to the direction 82. ,. It progresses markedly in the range up to 6. As shown in FIG. 6, compared to the known compression process, it exhibits high magnetic properties with a very small compressive strain. In other words, compression processing requires large compressive strain to obtain high magnetic properties in the radial direction, but according to the method of the present invention, a magnet with high magnetic properties can be obtained with small compressive strain. .

さらにεz=0.69の加工を施したビレットを外径3
emm、内径25mm、長さ10m1llの円筒磁石に
切削加工し、第3図に示したような内周着磁を施した。
Furthermore, the billet processed with εz=0.69 has an outer diameter of 3
A cylindrical magnet with an inner diameter of 25 mm and a length of 10 ml was machined, and the inner circumference was magnetized as shown in FIG.

なお極数は、18極で、着磁は2000μFのオイルコ
ンデンサーを用いて、1500Vでパルス着磁した。内
周部の表面磁束密度をホール素子で測定した。
The number of poles was 18, and the magnetization was pulsed at 1500V using a 2000 μF oil capacitor. The surface magnetic flux density of the inner circumference was measured using a Hall element.

比較のために、前記の直径31 mmの押出棒を長さ2
0ff1mに切断し、切削加工して直径somm、長さ
20mmの円柱ビレットを作製した。これに潤滑剤を介
して680℃の温度で円柱の軸方向に自由圧縮加工を施
した。なお圧縮ひずみ(5)は0.69とした。加工後
のビレットは面異方性磁石であシ、前記と同様に円筒に
切削加工して、着磁後の表面磁束密度を測定した。
For comparison, the extruded rod with a diameter of 31 mm was
A cylindrical billet having a diameter of somm and a length of 20mm was produced by cutting to a length of 0ff1m and machining. This was subjected to free compression processing in the axial direction of the cylinder at a temperature of 680° C. via a lubricant. Note that the compressive strain (5) was set to 0.69. The processed billet was cut into a cylinder using a planar anisotropic magnet in the same manner as described above, and the surface magnetic flux density after magnetization was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、面異方性磁石のそれの約1.2
倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention is about 1.2 of that of the plane anisotropic magnet.
It was double that.

次に、前記の外径somm、内径201nf11.長さ
20m1llの円筒ビレットを円筒の軸方向に自由圧縮
加工を施すに際し、まずεZ = 0.41 を与えた
後、16秒間塑性加工を停止し、再び全圧縮ひずみとし
て0.69まで680℃の温度で自由圧縮加工した。加
工後のビレットを前記と同様に円筒に切削加工して、着
磁後の表面磁束密度を測定した。自由圧縮加工を連続的
に与えたものに比べ0.2kG増加した。
Next, the outer diameter somm and the inner diameter 201nf11. When subjecting a cylindrical billet with a length of 20 ml to free compression in the axial direction of the cylinder, first give εZ = 0.41, then stop the plastic working for 16 seconds, and then compress the billet at 680°C again to a total compression strain of 0.69. Free compression processing was carried out at temperature. The processed billet was cut into a cylinder in the same manner as described above, and the surface magnetic flux density after magnetization was measured. It increased by 0.2 kG compared to the one that was continuously subjected to free compression processing.

自由圧縮加工を連続的に与え、着磁した円筒磁石を第4
図に示すような金型を用いて内周部のみ圧縮加工した。
The cylindrical magnet, which has been continuously subjected to free compression processing and magnetized, is
Only the inner peripheral portion was compressed using a mold as shown in the figure.

第4図においてポンチ4の直径は3Qml11である。In FIG. 4, the diameter of the punch 4 is 3Qml11.

加工後のビレットの内周部の長さは8mmであった。加
工後のビレットを切削加工し、外径3emm、内径25
mmにして前記と同様に着磁後、表面磁束密度を測定し
た。ビレットの内周部のみに圧縮加工を施すことによっ
て、表面磁束密度の値は0.2 k G増加した。
The length of the inner peripheral portion of the billet after processing was 8 mm. After processing, the billet is cut to an outer diameter of 3em and an inner diameter of 25mm.
After magnetization in the same manner as described above, the surface magnetic flux density was measured. By compressing only the inner peripheral portion of the billet, the value of the surface magnetic flux density increased by 0.2 kG.

実、流側2 実施例1で得た直径31 mmの押出棒を長さ2゜a+
toに切断して、外径24m、内径12m1ll、長さ
2ommの円筒ビレットを作製した。次に潤滑剤を介し
て680℃の温度で第6図に示すような状態で円筒の軸
方向に自由圧縮加工後、ビレットの外周を拘束した状態
で、しかも内周を自由な状態で圧縮加工した。なお第6
図において外型7の内径は3ommである。加工後のビ
レットの外径は30mm 、長さは1−ommであった
。加工後のビレットを外径28111m、内径14mt
oに切削加工して第1図に示すような径方向着磁を施し
た。なお極数は6極とし、着磁条件、測定は実施例1と
同じである。
Actually, on the flow side 2, the extruded rod with a diameter of 31 mm obtained in Example 1 was
A cylindrical billet with an outer diameter of 24 m, an inner diameter of 12 ml, and a length of 2 omm was produced by cutting the billet into 2 mm. Next, after free compression in the axial direction of the cylinder at a temperature of 680°C using lubricant in the state shown in Figure 6, the billet is compressed with the outer periphery constrained and the inner periphery free. did. Furthermore, the 6th
In the figure, the inner diameter of the outer mold 7 is 3 omm. The billet after processing had an outer diameter of 30 mm and a length of 1-omm. After processing, the billet has an outer diameter of 28,111 m and an inner diameter of 14 m.
0 and was subjected to radial magnetization as shown in FIG. The number of poles was six, and the magnetization conditions and measurements were the same as in Example 1.

比較のために、実施例1と同様に作製した面異方性磁石
を切削加工して外径28mm、内径14tnmにし前記
と同じ着磁をし、比較した。
For comparison, a planar anisotropic magnet produced in the same manner as in Example 1 was machined to have an outer diameter of 28 mm and an inner diameter of 14 tnm, and was magnetized in the same manner as described above for comparison.

以上の両者の値を比較すると1本発明の方法で得た磁石
の表面磁束密度の値は、面異方性磁石のそれの約1.3
倍であった。
Comparing the above two values, 1. The value of the surface magnetic flux density of the magnet obtained by the method of the present invention is about 1.3 that of the plane anisotropic magnet.
It was double that.

本発明で得た1着磁した円筒磁石をさらに第7図に示す
ような金型を用いて外周部のみ680’Cの温度で圧縮
加工した。第7図においてh (a)には加工前の状態
を、(blには外周部のみ圧縮加工を施した後の状態を
示した。8は下型、9は固定用ポンチ、10は可動用ポ
ンチであり、ポンチ9の外径(ポンチ10の内径)は2
0mmである。加工後のビレットの外周部の長さはsm
mであった。加工後のビレットを切削加工し、外径25
3mm、内径14mmとし、前記と同様に着磁し1表面
磁束密度を測定したところ0.2A)G増加した。
The single-magnetized cylindrical magnet obtained according to the present invention was further compressed at a temperature of 680'C only on the outer circumference using a mold as shown in FIG. In Figure 7, h(a) shows the state before processing, (bl shows the state after compression processing was applied only to the outer periphery. 8 is the lower die, 9 is the fixing punch, and 10 is the movable one. The outer diameter of punch 9 (inner diameter of punch 10) is 2.
It is 0mm. The length of the outer circumference of the billet after processing is sm
It was m. After processing, the billet is cut to an outer diameter of 25
3 mm and an inner diameter of 14 mm, magnetized in the same manner as above, and when the 1-surface magnetic flux density was measured, it increased by 0.2 A)G.

実施例3 実施例1で比較のために作製した面異方性磁石(外径4
2mm、長さ10mmの円柱ビレット)を2個用い、切
削加工して外径301ntll、内径20tnm。
Example 3 Plane anisotropic magnet (outer diameter 4
Two cylindrical billets (2 mm in diameter and 10 mm in length) were cut into an outer diameter of 301 ntll and an inner diameter of 20 tnm.

長さ20mmの円筒ビレットを作製した。これを潤滑剤
を介して660’Cの温度で軸方向に自由圧縮加工した
。加工後のビレットの長さは10mmであった。加工後
のビレットを切削加工し、外径36man 、内径25
mm、長さIQmfllの円筒磁石にし、実施例1と同
様に内周着磁した。着磁条件、測定方法は実施例1と同
じである。実施例1で得た本発明の方法による磁石と比
較すると、表面磁束密度の値に大きな差は認められなか
った。
A cylindrical billet with a length of 20 mm was produced. This was subjected to free compression processing in the axial direction at a temperature of 660'C via a lubricant. The length of the billet after processing was 10 mm. After processing, the billet is cut to an outer diameter of 36mm and an inner diameter of 25mm.
A cylindrical magnet with a length of IQmfl and a length of IQmfl was magnetized on the inner circumference in the same manner as in Example 1. The magnetization conditions and measurement method are the same as in Example 1. When compared with the magnet produced by the method of the present invention obtained in Example 1, no significant difference was observed in the value of surface magnetic flux density.

本発明は、実施例によって述べた様に、あらかじめ異方
性化した多結晶Mn−ムl−C系合金磁石からなる中空
体状のビレットに、少なくともビレットの外周および内
周の一部分を自由にした状態で、中空体の軸方向に圧縮
加工を施すことによって、多極着磁において優れた磁気
特性を示す磁石を得るものである。
As described in the examples, the present invention provides a hollow billet made of a polycrystalline Mn-Ml-C alloy magnet that has been made anisotropic in advance, with at least part of the outer and inner circumferences of the billet free. By compressing the hollow body in the axial direction in this state, a magnet exhibiting excellent magnetic properties in multipolar magnetization is obtained.

公知の方法によって、得られる磁石と比較すると、圧縮
加工によるものとの比較では、本発明では小さな圧縮ひ
ずみで高い磁気特性を示し、不均一変形や不変形帯等の
問題もなく、複合加工法による面異方性磁石との比較で
は、多極着磁した場合より高い特性が得られる。
Comparing with magnets obtained by known methods and those obtained by compression processing, the present invention shows high magnetic properties with small compressive strain, and there are no problems such as non-uniform deformation or non-deformation zones, making it possible to use the composite processing method. In comparison with a planar anisotropic magnet, higher characteristics can be obtained than when magnetized with multiple poles.

本発明で得られる永久磁石は、多極着磁に適した高性能
な磁石であり、モータ、ジェネレータ。
The permanent magnet obtained by the present invention is a high-performance magnet suitable for multipolar magnetization, and is suitable for use in motors and generators.

メータ類など多方面への応用が可能である。It can be applied to many fields such as meters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円筒状磁石の径方向に多極着磁を施した場合の
磁石内部での磁路の形成を模式的に示すJ、第2図は円
筒状磁石の外周に多極着磁を施した場合の磁石内部での
磁路の形成を模式的に示す図、第3図は円筒状磁石の内
周に多極着磁を施した場合の磁石内部での磁路の形成を
模式的に示す図、第4図及び第6図は本発明の塑性加工
の一例を示す金型の一部の断面図、第6図は実施例1で
の圧縮ひずみ(ε2)に対する一残留磁束密度(Br)
の変化を示す図、第7図は本発明の塑性加工の一例を示
す金型の一部の断面図である。 1・・・・・・ビレット、2・・・・・・拘束金型、3
・・・・・・下型、4・・・・・・可動ポンチ、6.6
・・・・・・ポンチ、7・・・・・・外型、8・・・・
・・下型、9・・・・・・固定用ポンチ、1o・・・・
・・可動ポンチ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図
Figure 1 schematically shows the formation of a magnetic path inside the magnet when a cylindrical magnet is multipole magnetized in the radial direction. Figure 3 schematically shows the formation of a magnetic path inside a magnet when the inner circumference of a cylindrical magnet is magnetized with multiple poles. Figures 4 and 6 are cross-sectional views of a part of a mold showing an example of plastic working according to the present invention, and Figure 6 shows the residual magnetic flux density ( Br)
FIG. 7 is a sectional view of a part of a mold showing an example of plastic working of the present invention. 1...Billet, 2...Restriction mold, 3
...Lower die, 4...Movable punch, 6.6
...Punch, 7...External mold, 8...
・・Lower mold, 9・・Fixing punch, 1o・・・・
・・Movable punch. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3

Claims (1)

【特許請求の範囲】 (1)あらかじめ異方性化した多結晶マンガン−アルミ
ニウムー炭素系合金磁石からなる中空体状のビレットに
、630〜830℃の温度で、少なくともビレットの外
周および内周の一部分を自由にした状態で、中空体の軸
方向に圧縮加工を施すことを特徴とするマンガン−アル
ミニウムー炭素系合金磁石の製造法。 (2)前記ビレットが、中空体の軸方向に磁化容易方向
を有する多結晶マンガン−アルミニウムー炭素系合金磁
石からなり、しかも前記圧縮加工が対数ひずみの絶対値
で0.05以上施すものである特許請求の範囲第1項記
載のマンガン−アルミニウムー炭素系合金磁石の製造法
。 (3)前記ビレットが、中空体の軸方向に垂直な平面に
平行に磁化容易方向を有し、しかも前記平面内では磁気
的に等方性ヤあり、かつ前記軸方向と前記平面に平行な
直線を含む平面内では異方性である多結晶マンガン−ア
ルミニウムー炭素系合金磁石からなる特許請求の範囲第
1項記載のマンガン−アルミニウムー炭素系合金磁石の
製造法。 (4)あらかじめ異方性化した多結晶マンガン−アルミ
ニウムー炭素系合金磁石からなる中空体状のビレットに
、630〜830’Cの温度で、少なくともビレットの
外周および内周の一部分を自由にした状態で、中空体の
軸方向に圧縮加工を施した後、さらにビレットの一部分
に中空体の軸方向に圧縮加工を施すことを特徴とするマ
/ガン−アルミニウムー炭素系合金磁石の製造法。 (6)前記ビレットが、中空体の軸方向に磁化容易′方
向を有する多結晶マンガン−アルミニウムー炭素系合金
磁石からなシ、シかも前記少なくともビレットの外周お
よび内周の一部分を自由にした状態での圧縮加工が対数
ひずみの給体値でo、06以上施すものである特許請求
の範囲第4項記載のマンガン−アルミニウムー炭素系合
金磁石の製造法。 (6)前記ビレットが、中空体の軸方向に垂直な平面に
平行に磁化容易方向を有し、しかも前記平面内では磁気
的に等方性であり、かつ前記軸方向と前記平面に平行々
直線を含む平面内では異方性である多結晶マンガン−ア
ルミニウムー炭素系合金磁石からなる特許請求の範囲第
4項記載のマンガン−アルミニウムー炭素系合金磁石の
製造法。 (7)あらかじめ異方性化した多結晶マンガン−アルミ
ニウムー炭素系合金磁石からなる中空体状のビレットに
、530〜830℃の温度で、少なくともビレットの外
周および内周の一部分を自由にした状態で、中空体の軸
方向に圧縮加工を施し、さらにビレットの外周を拘束し
た状態セ、しかも少なくとも内周の一部分を自由にした
状態で、中空体の軸方向に圧縮加工を施すことを特徴と
するマンガン−アルミニウムー炭素系合金磁石の製造法
。 (8)前記ビレットが、中空体の軸方向に磁化容易方向
を有する多結晶マンガン−アルくニウム−炭素系合金磁
石からなり、しかも前記圧縮加工が終了時には軸方向の
圧縮ひずみを対数ひずみの絶対値で0.06以上施すも
のである特許請求の範囲第7項記載のマンガン−アルミ
ニウムー炭素系合金磁石の製造法。 (9)前記ビレットが、中空体の軸方向に垂直な平面に
平行に磁化容易方向を有し、しかも前記平面内では磁気
的に等方性であシ、かつ前記軸方向と前記平面に平行な
直線を含む平面内では異方性である多結晶マンガン−ア
ルミニウムー炭素系合金磁石からなる特許請求の範囲第
7項記載のマンガン−アルミニウムー炭素系合金磁石の
製造法。 (l(ト)あらかじめ異方性化した多結晶マンガン−ア
ルミニウムー炭素系合金磁石からなる中空体状のビレッ
トに、630〜830’Cの温度で、少なくともビレッ
トの外周および内周の一部分を自由にした状態で、中空
体の軸方向に圧縮加工を施し、さらにビレットの外周を
拘束した状態で、しかも少なくとも内周の一部分を自由
にした状態で、中空体の軸方向に圧縮加工を施した後、
ビレットの一部分に中空体の軸方向に圧縮加工を施すこ
とを特徴とするマンガン−アルミニウムー炭素系合金磁
石の製造法。 (11)前記ビレットが、中空体の軸方向に磁化容易方
向を有する多結晶マンガン−アルミニウムー炭素系合金
磁石からなシ、しかも前記ビレットの外周を拘束した状
態で、少なくとも内周の一部分を自由にした状態での圧
縮加工が、終了時には軸方向の圧縮ひずみを対数ひずみ
の絶対値で0.06以上施すものである特許請求の範囲
第10項記載のマンガン−アルミニウムー炭素系合金磁
石の製造法。 (12)  前記ビレットが、中空体の軸方向に垂直な
平面に平行に磁化容易方向を有し、しかも前記平面内で
は磁気的に等方性であり、かつ前記軸方向と前記平面に
平行な直線を含む平面内では異方性である多結晶マンガ
ン−アルミニウムー炭素系合金磁石からなる特許請求の
範囲第10項記載のマンガン−アルミニウムー炭素系合
金磁石の製造法。
[Scope of Claims] (1) A hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet which has been made anisotropic in advance is heated at a temperature of 630 to 830°C at least on the outer and inner peripheries of the billet. A method for manufacturing a manganese-aluminum-carbon alloy magnet, which comprises compressing a hollow body in the axial direction while leaving a portion free. (2) The billet is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, and the compression process is performed with an absolute value of logarithmic strain of 0.05 or more. A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1. (3) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, and is magnetically isotropic within the plane, and has a direction parallel to the axial direction and the plane. A method for producing a manganese-aluminum-carbon alloy magnet according to claim 1, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing straight lines. (4) A hollow billet made of a pre-anisotropic polycrystalline manganese-aluminum-carbon alloy magnet was heated at a temperature of 630 to 830'C, with at least part of the outer and inner circumferences of the billet free. 1. A method for producing a ma/gan-aluminum-carbon alloy magnet, which comprises compressing the hollow body in the axial direction in the state, and then compressing a portion of the billet in the axial direction of the hollow body. (6) The billet may be a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, or a state in which at least a portion of the outer periphery and inner periphery of the billet is free. 5. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 4, wherein the compression working is performed at a feed material value of logarithmic strain of 0.06 or more. (6) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is parallel to the axial direction and the plane. 5. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 4, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane including straight lines. (7) A hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance, at a temperature of 530 to 830°C, with at least a portion of the outer and inner circumferences of the billet free. The billet is compressed in the axial direction of the hollow body, and is further compressed in the axial direction of the hollow body while the outer periphery of the billet is constrained, and at least a part of the inner periphery is left free. A method for manufacturing a manganese-aluminum-carbon alloy magnet. (8) The billet is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, and when the compression process is completed, the compressive strain in the axial direction is reduced to the absolute logarithmic strain. 8. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 7, wherein the magnet is applied in a value of 0.06 or more. (9) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is parallel to the axial direction and the plane. 8. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 7, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing a straight line. (l(g) At least a portion of the outer and inner circumference of the billet is freed at a temperature of 630 to 830'C to a hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance. The hollow body was compressed in the axial direction while the billet was in a state of rear,
A method for manufacturing a manganese-aluminum-carbon alloy magnet, which comprises compressing a portion of a billet in the axial direction of a hollow body. (11) The billet is not a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, and moreover, while the outer periphery of the billet is restrained, at least a part of the inner periphery is free. The production of a manganese-aluminum-carbon alloy magnet according to claim 10, wherein the compression processing in the state of Law. (12) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is parallel to the axial direction and the plane. 11. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 10, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing straight lines.
JP57065908A 1982-04-19 1982-04-19 Preparation of manganese-aluminum-carbon alloy magnet Granted JPS58182206A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57065908A JPS58182206A (en) 1982-04-19 1982-04-19 Preparation of manganese-aluminum-carbon alloy magnet
US06/486,242 US4579607A (en) 1982-04-19 1983-04-18 Permanent Mn-Al-C alloy magnets and method for making same
DE8383302204T DE3365406D1 (en) 1982-04-19 1983-04-19 Permanent mn-al-c alloy magnets and method for making same
EP83302204A EP0092422B1 (en) 1982-04-19 1983-04-19 Permanent mn-al-c alloy magnets and method for making same
US06/784,661 US4648915A (en) 1982-04-19 1985-09-30 Permanent Mn-Al-C alloy magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065908A JPS58182206A (en) 1982-04-19 1982-04-19 Preparation of manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS58182206A true JPS58182206A (en) 1983-10-25
JPH0311521B2 JPH0311521B2 (en) 1991-02-18

Family

ID=13300524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065908A Granted JPS58182206A (en) 1982-04-19 1982-04-19 Preparation of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS58182206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203842A (en) * 2013-04-01 2014-10-27 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet
CN107377653A (en) * 2017-09-22 2017-11-24 南昌航空大学 The flat prod cast of extruding metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203842A (en) * 2013-04-01 2014-10-27 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet
CN107377653A (en) * 2017-09-22 2017-11-24 南昌航空大学 The flat prod cast of extruding metal

Also Published As

Publication number Publication date
JPH0311521B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
JPH0311522B2 (en)
JPS58182206A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0479122B2 (en)
JPH0434804B2 (en)
JPH0311527B2 (en)
JPS58192305A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58182208A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPS58192304A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS61166957A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210253A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192303A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH037748B2 (en)
JPS61187213A (en) Manufacture of alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0340922B2 (en)
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210254A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet