JPS62247055A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62247055A
JPS62247055A JP8855586A JP8855586A JPS62247055A JP S62247055 A JPS62247055 A JP S62247055A JP 8855586 A JP8855586 A JP 8855586A JP 8855586 A JP8855586 A JP 8855586A JP S62247055 A JPS62247055 A JP S62247055A
Authority
JP
Japan
Prior art keywords
billet
alloy magnet
aluminum
manganese
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8855586A
Other languages
Japanese (ja)
Other versions
JPH0663071B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8855586A priority Critical patent/JPH0663071B2/en
Publication of JPS62247055A publication Critical patent/JPS62247055A/en
Publication of JPH0663071B2 publication Critical patent/JPH0663071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the titled alloy magnet showing high magnetic properties, by subjecting a billet of the titled polycrystalline alloy magnet which is previously made anisotropic to compression working so that compressive strain is higher in the outside peripheral part than in the inside peripheral part and further by subjecting the outside peripheral surface of the billet to compression forming into recessed and projecting shape. CONSTITUTION:The billet 1 of axially symmetric shape composed of the polycrystalline Mn-Al-C alloy magnet which is previously made anisotropic is subjected to compression working in the axial direction by the use of a punch 2 having a shape capable of preventing the center from spreading at the time of the compression working of the billet 1. At that time, the temp. is regulated to 530-830 deg.C. As the compression working proceeds, the outside peripheral surface of the billet 1 is nearly brought into contact with the internal surface of an outer die 4, while the inside peripheral surface is brought into contact with the surface of the punch 2. Then, further compression working is applied to the billet 1 by means of the punch 2, so that outside peripheral surface of the billet 1 is formed into recessed and projecting shape. In this way, the Mn-Al-C alloy magnet which shows high magnetic properties when subjected to outside peripheral magnetization can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガン−アルミニウム−炭素(Mn−ム1−C)系合金磁
石による多極着磁用Mn−ムl−C系合金磁石の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing permanent magnets, and in particular to a method for manufacturing permanent magnets, in particular Mn magnets for multipolar magnetization using polycrystalline manganese-aluminum-carbon (Mn-1-C) alloy magnets. -Relates to a method for manufacturing a MLC alloy magnet.

従来の技術 Mn−ムl−C系合金磁石は、主として強磁性相である
面心正方晶(τ相、Lo型規則格子)の組織で構成され
、Cを必須構成元素として含み、不純物以外に添加元素
を含まない3元系及び夕景の添加元素を含む4元系以上
の多元系合金磁石が知られておシ、これらを総称するも
のである。
Conventional technology Mn-Ml-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, Lo-type regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element, with no other impurities. Multi-component alloy magnets are known, including ternary alloy magnets that do not contain additive elements and quaternary or higher alloy magnets that contain additive elements.

その製造法としては、鋳造・熱処理によるもの以外に押
出加工等の塑性加工工程を含むものがあり、特に後者は
、高い磁気特性、機械的強度、耐侯性、機械加工性等の
優れた性質を有する異方性磁石の製造法として知られて
いる。
In addition to casting and heat treatment, there are manufacturing methods that include plastic working processes such as extrusion, and the latter in particular has excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability. It is known as a method for manufacturing anisotropic magnets.

また、Mn−ムl−1系合金磁石を用いた多極着磁用磁
石の製造法としては、等方性磁石、圧縮加工によるもの
、押出加工等の公知の方法で得た一軸異方性の多結晶M
n−ムl−0系合金磁石に異方性方向への自由圧縮加工
によるもの(例えば特開昭66−119762号公報)
、あらかじめ異方性化した多結晶Mn−ムl−C系合金
磁石からなる中空体状のビレットの軸方向に圧縮ひずみ
を与える各種の塑性加工によるもの(例えば特開昭58
−182205.同58−182207゜同58−18
2208号公報)、及びあらかじめ異方性化した多結晶
Mn−ムl−0系合金磁石からなる中空体状のビレット
と、金属材料からなるビレットを同時に圧縮加工するも
の(例えば特開昭eo−59721号公報)が知られて
いる。
In addition, methods for manufacturing multipolar magnets using Mn-Ml-1 alloy magnets include isotropic magnets, compression processing, and uniaxial anisotropy obtained by known methods such as extrusion processing. Polycrystalline M
An n-mul l-0 alloy magnet subjected to free compression processing in an anisotropic direction (for example, JP-A-66-119762)
, by various plastic working methods that apply compressive strain in the axial direction of a hollow billet made of a polycrystalline Mn-Ml-C alloy magnet that has been made anisotropic in advance (for example, JP-A-58
-182205. 58-182207゜58-18
No. 2208), and those in which a hollow billet made of a polycrystalline Mn-M1-0 alloy magnet that has been made anisotropic in advance and a billet made of a metal material are simultaneously compressed (for example, JP-A No. 2208), No. 59721) is known.

発明が解決しようとする問題点 多極着磁用磁石の形状は一般に円筒体であり、主な着磁
としては、第6図に示したような着磁がある。第6図は
円筒磁石の外周面に多極着磁した場合の磁石内部での磁
路の形成を模式的に示したもので、この上うな着磁をこ
こでは外周着磁と称するO 前述したあらかじめ異方性化した多結晶Mn −ムl 
−C系合金磁石からなる中空体状のビレットの軸方向に
、圧縮ひずみを与える各種の塑性加工によって得られた
磁石では、外周着磁を施した場合、局部的には磁路に沿
った方向に異方性化しているが、全体をみた場合には望
ましい方向に異方性化していない。また、前述した方法
によれば、円筒磁石の外周部は径方向に異方性化し、内
周部では周方向(弦方向、以下同じ)に異方性化したも
のが得られるが、磁路が径方向から周方向に変化する途
中では、その方向に沿った異方性構造ではなく、さらに
高温度での塑性加工を2回以上行う必要がある。
Problems to be Solved by the Invention Multi-pole magnetizing magnets are generally cylindrical in shape, and the main magnetization is as shown in FIG. Figure 6 schematically shows the formation of a magnetic path inside the magnet when the outer peripheral surface of a cylindrical magnet is magnetized with multiple poles. Pre-anisotropic polycrystalline Mn-mul
- For magnets obtained by various types of plastic working that apply compressive strain in the axial direction of a hollow body-shaped billet made of C-based alloy magnets, when the outer periphery is magnetized, the magnets are locally magnetized in the direction along the magnetic path. However, when looking at the whole, the anisotropy is not in the desired direction. Furthermore, according to the method described above, the outer circumference of the cylindrical magnet is anisotropic in the radial direction, and the inner circumference is anisotropic in the circumferential direction (chord direction, hereinafter the same), but the magnetic path In the middle of the change from the radial direction to the circumferential direction, the structure is not anisotropic along that direction, and it is necessary to perform plastic working at a higher temperature two or more times.

問題点を解決するための手段 以上のような従来の問題点を解決するため本発明は、あ
らかじめ異方性化した多結晶Mn−ム1−C系合金磁石
からなる軸対象形状のビレットに、外周部の圧縮ひずみ
が内周部の圧縮ひずみより大きくなるように圧縮加工し
、さらに圧縮加工によってビレットの外周面を凹凸状に
成型するものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention provides an axially symmetrical billet made of a polycrystalline Mn-1-C alloy magnet which has been made anisotropic in advance. The billet is compressed so that the compressive strain on the outer circumferential portion is greater than the compressive strain on the inner circumferential portion, and the outer circumferential surface of the billet is shaped into an uneven shape by the compression process.

作用 前述した方法によって、つまり外周部の圧縮ひずみが内
周部の圧縮ひずみより大きくなるように圧縮加工し、さ
らに圧縮加工によってビレットの外周面を凹凸状に成型
することによって、第6図に示した外周着磁を施した場
合の磁路に沿って異方性化させることができ、高い磁気
特性を示す異方性磁石を得ることができる。
Operation By using the method described above, that is, by compressing so that the compressive strain on the outer circumference is larger than the compressive strain on the inner circumference, and further forming the outer circumferential surface of the billet into an uneven shape by compression, the billet is produced as shown in FIG. When the outer periphery is magnetized, anisotropy can be achieved along the magnetic path, and an anisotropic magnet exhibiting high magnetic properties can be obtained.

実施例 本発明は、あらかじめ異方性化した多結晶Mn−ムl−
1系合金磁石からなる軸対象形状のビレットに、530
ないし830°Cの温度で、外周部の圧縮ひずみが内周
部の圧縮ひずみより大きくなるように圧縮加工し、さら
に圧縮加工によってビレットの外周面を凹凸状に成型す
るものである。
EXAMPLE The present invention is based on polycrystalline Mn-Ml- which has been anisotropic in advance.
530 on an axially symmetrical billet made of 1 series alloy magnet.
The billet is compressed at a temperature between 830° C. and 830° C. so that the compressive strain at the outer circumferential portion is larger than that at the inner circumferential portion, and the outer circumferential surface of the billet is shaped into an uneven shape by the compression process.

前述した圧縮加工は必ずしも連続的な圧縮加工である必
要はなく、複数回に分割して与えても良い。
The compression process described above does not necessarily have to be continuous compression process, and may be divided into multiple times.

前記の公知技術と同様に前記のビレットが対象軸の方向
に磁化容易方向を有する多結晶Mn −Al−C系合金
磁石(−軸異方性磁石)からなる場合には、圧縮加工時
の圧縮ひずみが対数ひずみの絶対値で0.05以上必要
である。これは、圧縮加工前のビレットは圧縮ひずみを
与える方向に異方性化したものであり、多極着磁におい
て高い磁気特性を示すような構造の変化に最低0−OS
の圧縮ひずみが必要であるためである。
Similar to the prior art described above, when the billet is made of a polycrystalline Mn-Al-C alloy magnet (-axis anisotropic magnet) having an easy magnetization direction in the direction of the object axis, the compression during compression processing The strain must be 0.05 or more in absolute value of logarithmic strain. This is because the billet before compression processing is anisotropic in the direction of applying compressive strain, and the change in structure that exhibits high magnetic properties in multipole magnetization requires a minimum of 0-OS.
This is because a compressive strain of .

次に、具体的な圧縮加工の例をビレットの外周面を凹凸
状に成型する方法と外周部の圧縮ひずみが内周部の圧縮
ひずみより大きくなるように圧縮加工する方法に分け、
軸対象形状を円筒体とじて説明する。
Next, concrete examples of compression processing are divided into a method in which the outer peripheral surface of the billet is molded into an uneven shape and a method in which compression processing is performed so that the compressive strain on the outer peripheral part is larger than the compressive strain on the inner peripheral part.
The axis-symmetric shape will be explained using a cylindrical body.

まず、圧縮加工によってビレットの外周面を凹凸状に成
型する一例を第1図を用いて説明する。
First, an example of forming the outer circumferential surface of a billet into an uneven shape by compression processing will be described with reference to FIG.

第1図(+L)は圧縮加工前の状態をビレットの軸方向
から見た断面を示し、1はあらかじめ異方性化した多結
晶Mn −Al −C系合金磁石からなる円筒体状のビ
レット、2はポンチで、ビレット1を圧縮加工成形する
時にビレット1が中心部に広がるのを防止する。4は外
型で、成形のための金型である。第1図(b)は圧縮加
工後の状態を示す。(b)に示したように、円筒体状の
ビレット1は圧縮加工の進行に共なって径が大きくなシ
、外周面の一部が外型4の内面と接触するようになり、
さらに圧縮加工を進行させることによりrb>に示した
ようにビレット1の外周面がほぼ外型4の内面に接触し
、一方、内周面はポンチ2の表面に接触する。(b)に
示した状態まで圧縮加工を行う必要はなく、ビレット1
の外周面の一部が外型4の内面と接触した後は、適宜の
時点で圧縮加工を終了してもよい。
Fig. 1 (+L) shows a cross section of the billet before compression processing as seen from the axial direction, 1 is a cylindrical billet made of a polycrystalline Mn-Al-C alloy magnet that has been anisotropic in advance; A punch 2 prevents the billet 1 from spreading toward the center when the billet 1 is compressed and molded. 4 is an outer mold, which is a mold for molding. FIG. 1(b) shows the state after compression processing. As shown in (b), as the compression process progresses, the diameter of the cylindrical billet 1 increases, and a part of the outer peripheral surface comes into contact with the inner surface of the outer mold 4.
By further advancing the compression process, the outer circumferential surface of the billet 1 almost comes into contact with the inner surface of the outer mold 4, while the inner circumferential surface comes into contact with the surface of the punch 2, as shown in rb>. There is no need to compress the billet 1 to the state shown in (b).
After a part of the outer circumferential surface of the outer mold 4 comes into contact with the inner surface of the outer mold 4, the compression process may be finished at an appropriate time.

言い換えれば、ビレット1の外周面に凹凸が形成されれ
ばよい。
In other words, unevenness may be formed on the outer peripheral surface of the billet 1.

この場合のビレット1の圧縮加工前の外径の最大は外型
4の内面の凸部に接する大きさである。
In this case, the maximum outer diameter of the billet 1 before compression processing is a size that touches the convex portion on the inner surface of the outer mold 4.

この場合は、圧縮加工前にすでにビレット1の外周面の
一部が外型4の内面によって拘束された状態で圧縮加工
が施される。この場合の一例を第2図に示す。第2図は
第1図と同様な断面で、圧縮加工前の状態を示したもの
である。第2図に示した例ではビレット1の内周面も圧
縮加工前、すでにポンチ2と接触状態にある。
In this case, before the compression process, the billet 1 is subjected to the compression process in a state where a part of its outer circumferential surface is already restrained by the inner surface of the outer mold 4. An example of this case is shown in FIG. FIG. 2 is a cross section similar to FIG. 1, showing the state before compression processing. In the example shown in FIG. 2, the inner peripheral surface of the billet 1 is also already in contact with the punch 2 before compression processing.

このように、外型4の内面に凹凸が存在することによっ
てビレット1は圧縮加工後、外周面に凹凸が形成される
。圧縮加工過程において、最も早く外周面が拘束される
部分(加工後のビレット1の外周面の凹部)は周方向に
磁化容易方向を有する部分となり、最後に外周面が拘束
される部分又は最後まで外周面が拘束されない部分(加
工後のビレット1の外周面の凸部)は径方向に磁化容易
方向を有する部分となる。その中間の部分の磁化容易方
向は周方向から径方向へ順次変化している部分である。
As described above, since the unevenness exists on the inner surface of the outer mold 4, the billet 1 is formed with unevenness on the outer circumferential surface after compression processing. In the compression processing process, the part where the outer circumferential surface is constrained earliest (the concave part on the outer circumferential surface of the billet 1 after processing) is the part with the easy magnetization direction in the circumferential direction, and the part where the outer circumferential surface is constrained last or until the end. The portion where the outer circumferential surface is not constrained (the convex portion on the outer circumferential surface of the billet 1 after processing) becomes a portion having an easy magnetization direction in the radial direction. The easy magnetization direction of the intermediate portion changes sequentially from the circumferential direction to the radial direction.

言い換えると、第1図において外型4の内面の凸部によ
って形成されるビレット1の外周面の凹部の曲面に沿っ
た方向に磁化容易方向がビレット1の外周部から次第に
連続的に変化する。そのため外周着磁において同極着磁
するかによって、この凹凸部の数を決定すればよい。第
1図では加工後のビレット1の外周面の凸部が6つある
ため、6極着磁に適した異方性構造を有する磁石となシ
、加工後の凸部に当る部分が、外周着磁における極の部
分になる。
In other words, in FIG. 1, the direction of easy magnetization gradually changes continuously from the outer circumference of the billet 1 in a direction along the curved surface of the recess on the outer circumference of the billet 1 formed by the convex portion on the inner surface of the outer mold 4. Therefore, the number of these uneven portions may be determined depending on whether or not the outer periphery is magnetized with the same polarity. In Figure 1, there are six convex portions on the outer peripheral surface of the billet 1 after processing. It becomes the pole part in magnetization.

前記の一例で述べた様に、本発明はビレットの軸方向に
圧縮加工する際に、金型等を用いてビレットの外周面が
凹凸状になるように成形圧縮加工することによって、外
周着磁を施した場合に高い磁気特性を示す異方性構造を
有する磁石を得るものである。
As described in the above example, the present invention is capable of magnetizing the outer periphery by compressing the billet in the axial direction using a mold or the like so that the outer periphery of the billet becomes uneven. A magnet having an anisotropic structure exhibiting high magnetic properties is obtained when subjected to the following steps.

次に、外周部の圧縮ひずみが内周部の圧縮ひずみより大
きくなるように圧縮加工するための具体的な例を第4図
を用いて説明すると、第4図は第1図に垂直な方向から
みた加工前の状態の断面を示す。1はビレット、2.3
はポンチ、4は外型である。第4図に示すように、ポン
チ2およびポンチ3のビレット1と接触する面(ポンチ
端面)が平面ではなく傾斜面である。このポンチ2およ
びポンチ3を用いて、ビレット1の軸方向に加圧するこ
とによって、ビレット1は軸方向に圧縮加工される。圧
縮加工後のビレット1の外周部の高さは内周部の高さよ
り小さい。つまり、ビレット1の外周部の圧縮ひずみが
内周部の圧縮ひずみよシ大きくなるようにビレット1の
軸方向に圧縮加工を施したことになる。圧縮ひずみとは
、ビレット1の軸方向のひずみをいう。
Next, a specific example of compression processing so that the compressive strain on the outer circumference becomes larger than the compressive strain on the inner circumference will be explained using Fig. 4. Fig. 4 shows the direction perpendicular to Fig. 1. This shows a cross section of the state before processing when viewed from above. 1 is billet, 2.3
is the punch, and 4 is the outer mold. As shown in FIG. 4, the surfaces of the punches 2 and 3 that contact the billet 1 (punch end surfaces) are not flat surfaces but sloped surfaces. By applying pressure to the billet 1 in the axial direction using the punches 2 and 3, the billet 1 is compressed in the axial direction. The height of the outer periphery of the billet 1 after compression processing is smaller than the height of the inner periphery. In other words, the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is greater than the compressive strain on the inner circumferential portion. Compressive strain refers to strain in the axial direction of billet 1.

次に、別の外周部の圧縮ひずみが内周部の圧縮ひずみよ
り大きくなるように圧縮加工するための具体的な例をビ
レットの断面形状’k IJング状として第6図を用い
て説明する。第6図は第4図と同様に加工前の状態の断
面を示す。第6図に示すように第4図と異なる点は、ポ
ンチ2およびポンチ3のポンチ端面ば平面であり、圧縮
加工前のビレット1の外周部の高さが内周部の高さより
大きいことである。加工後のビレット1はほぼ円筒体状
となり、ビレット1の外周部の高さと内周部の高さはほ
ぼ一致する。この場合も同様に、ビレット1の外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレット1の軸方向に圧縮加工を施したことになる。
Next, a specific example of compressing so that the compressive strain of another outer peripheral part is larger than the compressive strain of the inner peripheral part will be explained using FIG. . FIG. 6 shows a cross section before processing, similar to FIG. 4. As shown in Fig. 6, the difference from Fig. 4 is that the punch end faces of punches 2 and 3 are flat, and the height of the outer periphery of the billet 1 before compression processing is greater than the height of the inner periphery. be. After processing, the billet 1 has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet 1 and the height of the inner circumferential portion of the billet 1 substantially match. In this case as well, the billet 1 is compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is greater than the compressive strain on the inner circumferential portion.

以上述べてきた様に、ビレット1端面を傾斜面あるいは
ポンチ2.3端面を傾斜面にすることによって、この特
定の圧縮加工において、ビレット1の外周部の圧縮ひず
みが内周部の圧縮ひずみより大きくなるようにビレット
1の軸方向に圧縮加工を施すことができる。
As mentioned above, by making the end face of billet 1 an inclined face or the end face of punch 2.3 an inclined face, in this particular compression process, the compressive strain at the outer circumference of billet 1 is lower than the compressive strain at the inner circumference. Compression processing can be performed in the axial direction of the billet 1 to increase its size.

前記の二つの例の組み合わせでも、ビレット1の外周部
の圧縮ひずみが内周部の圧縮ひずみより大きくなるよう
にビレット1の軸方向に圧縮加工を施すことができる。
Even in a combination of the above two examples, the billet 1 can be compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet 1 is larger than the compressive strain on the inner circumferential portion.

つまり、第4図に示したポンチ2.3、外型4よりなる
金型を用いて、第6図に示したビレット1を圧縮加工す
る方法である。
That is, this is a method of compressing the billet 1 shown in FIG. 6 using a mold consisting of the punch 2.3 and the outer mold 4 shown in FIG.

前述した例では、ポンチ2.3端面あるいはビレット1
端面が傾斜面であったが他に階段状面(段付き形状)、
平面+傾斜面あるいは以上の組み合わせなどあり、さら
に凹凸状にするポンチあるいけビレット端面は両面でも
片面でもよい。必要なことはビレット1の外周部の圧縮
ひずみが内周部の圧縮ひずみより大きくなるようにビレ
ット1の軸方向に圧縮加工を施すことである。
In the above example, the punch 2.3 end face or billet 1
The end surface was a sloped surface, but there were also stepped surfaces (stepped shape),
There are flat surfaces + inclined surfaces, or a combination of the above, and the end surface of the billet can be punched or punched to make it uneven. What is necessary is to compress the billet 1 in the axial direction so that the compressive strain on the outer circumference of the billet 1 is greater than the compressive strain on the inner circumference.

以上の圧縮加工の具体的な例はビレット1形状を円筒体
としたが円柱体の場合でも同様である。
In the above-described specific example of the compression process, the shape of the billet 1 is cylindrical, but the same applies to a cylindrical body.

前述したような圧縮加工の可能な温度範囲については、
530ないし830℃の温度領域において、加工が行え
たが、780°Cを越える温度では、磁気特性がかなり
低下した。より望ましい温度範囲としてはseoないし
760’Cであった。
Regarding the possible temperature range of compression processing as mentioned above,
Processing was possible in the temperature range of 530 to 830°C, but at temperatures above 780°C, the magnetic properties deteriorated considerably. A more desirable temperature range was from seo to 760'C.

次に本発明の更に具体的な実施例について説明する。Next, more specific embodiments of the present invention will be described.

実施例1(第6図) 配合組成で69.6%のMn、2J3%のム1.0.6
%のC及びO−7%のN1を溶解鋳造し、直径60市、
長さ40mmの円柱ビレット1を作製した。
Example 1 (Figure 6) Blend composition: 69.6% Mn, 2J3% Mn 1.0.6
% C and O-7% N1 melted and cast, diameter 60 city,
A cylindrical billet 1 having a length of 40 mm was produced.

このビレット1に1100°Cで2時間保持した後、8
00’Cまで風冷し、600 ’Cで30分間保持した
後、室温まで放冷する熱処理を施した。
After holding this billet 1 at 1100°C for 2 hours, 8
After air-cooling to 00'C, holding at 600'C for 30 minutes, heat treatment was performed by cooling to room temperature.

次に、潤滑剤を介して、720°Cの温度で、押出加工
を行った。押出加工後のビレット1は直径32mm、長
さ9801mであった。押出棒を切断および切削加工し
て、外径24!IIm、内径18ffll11.外周部
の長さ25ff1m、内周部の長さ2oImmの端面が
傾斜面のビレット1を作製した。このビレット1に第3
図および第6図に示したようなポンチ2,3、外型4よ
りなる金型を用いて、潤滑剤を介して、680°Cの温
度で圧縮加工を施!−た。第3図は第1図と同様の金を
の断面図であり、(外型4の内径) Dk = 30m
m、 XAzl 5mn+、 (外型4の凸部の半径)
R1=3mm、ポンチ径は1801mであり、外型4の
内面の凸部は8個ある。2および3はポンチで外型4の
凹凸面と互いに嵌合する外周面を有し、図の上下方向に
移動することができる。このような金型を用いて、金型
内の空洞がほぼなくなるまで圧縮加工を行った。
Next, extrusion processing was performed at a temperature of 720° C. through a lubricant. Billet 1 after extrusion had a diameter of 32 mm and a length of 9801 m. The extruded rod was cut and machined to an outer diameter of 24! IIm, inner diameter 18ffll11. A billet 1 having an outer circumference length of 25fflm and an inner circumference length of 2oImm and having an inclined end surface was produced. This billet 1 has a third
Compression processing was performed at a temperature of 680°C using a lubricant using a mold consisting of punches 2 and 3 and an outer mold 4 as shown in the figure and Fig. 6! -ta. Figure 3 is a cross-sectional view of gold similar to Figure 1, (inner diameter of outer mold 4) Dk = 30m
m, XAzl 5mn+, (radius of convex part of outer mold 4)
R1=3 mm, the punch diameter is 1801 m, and there are 8 convex portions on the inner surface of the outer mold 4. 2 and 3 are punches having outer circumferential surfaces that fit together with the uneven surface of the outer mold 4, and can be moved in the vertical direction in the figure. Using such a mold, compression processing was performed until the cavity in the mold was almost completely eliminated.

加工後のビレット1を外径27mmまで切削加工した後
、8極の外周着磁をした。着磁は2000μFのオイル
コンデンサーを用い、16oOvでパルス着磁した。外
周表面の表面磁束密度をホール素子で測定した。
After cutting the processed billet 1 to an outer diameter of 27 mm, the outer periphery was magnetized with eight poles. Magnetization was carried out using a 2000 μF oil capacitor and pulsed magnetization at 16 oOv. The surface magnetic flux density on the outer peripheral surface was measured using a Hall element.

比較のために、前述した押出棒を切断・切削加工し、直
径が24aIm、長さ201!1fllの円柱ビレスト
を作製した。このビレットをaso’cの温度で円柱の
軸方向に長さが2Qmfllまでの自由圧縮加工した。
For comparison, the extruded rod described above was cut and machined to produce a cylindrical virest having a diameter of 24 aIm and a length of 201!1 fl. This billet was subjected to free compression processing at a temperature of aso'c in the axial direction of the cylinder to a length of 2Qmfl.

加工後のビレットを前記と同様に切削加工した後、着磁
し、表面磁束密度を測定した。
After cutting the processed billet in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の表面磁束密度の値を比較すると、本実施例
の方法で得た磁石の値は、比・較のために作製した磁石
のそれの約1.7倍であった。
Comparing the values of the surface magnetic flux density of both of the above, the value of the magnet obtained by the method of this example was about 1.7 times that of the magnet produced for comparison.

実施例2(第4図) 配合組成で69.4%のMn、 29.3%のム110
.6%のc、o7%のNIL及び0.1%のTiを溶解
鋳造し)直径somm、長さaommの円柱ビレット1
を作製した。このビレット1に実施例1と同じ熱処理を
施した。次に、潤滑剤を介して、720°Cの温度で、
押出加工を行った。押出加工後のビンット1は直径32
+nm、長さ98fflll+であった。この押出棒を
切断および切削加工して、外径が24mm 、内径が1
801m、長さが20mmのビレット1を作製した。こ
のビレット1に、第3図および第4図に示した金型(各
寸法は、実施例1で用いた金型と同じで、傾斜角αは1
0°である。)を用いて、潤滑剤を介して、680’C
の温度で圧縮加工を施した。金型内の空洞がほぼなくな
るまで、加工を行った。
Example 2 (Figure 4) Mixture composition: 69.4% Mn, 29.3% Mn 110
.. Cylindrical billet 1 of diameter somm and length aomm (melting and casting of 6% C, O7% NIL and 0.1% Ti)
was created. This billet 1 was subjected to the same heat treatment as in Example 1. Then, through a lubricant, at a temperature of 720 °C,
Extrusion processing was performed. Bin 1 after extrusion has a diameter of 32 mm.
+nm, and the length was 98ffllll+. This extruded rod was cut and machined to have an outer diameter of 24 mm and an inner diameter of 1 mm.
Billet 1 having a length of 801 m and a length of 20 mm was produced. This billet 1 was molded into the mold shown in FIGS. 3 and 4 (each dimension is the same as the mold used in Example 1, and the inclination angle α is 1.
It is 0°. ) using a lubricant at 680'C.
Compression processing was performed at a temperature of . Processing was performed until the cavity in the mold was almost completely eliminated.

実施例1と同様に加工後のビレット1を外径27mmま
で切削加工した後、8極の外周着磁をし、表面磁束密度
を測定した。
After cutting the processed billet 1 to an outer diameter of 27 mm in the same manner as in Example 1, the outer periphery was magnetized with 8 poles, and the surface magnetic flux density was measured.

比較のために、前述した押出棒を切断・切削加工し、直
径が24mm、長さ20m1llの円柱ビレット1を作
製した。このビレット1を680℃の湿度で円柱の軸方
向に長さがIQfflll+までの自由圧縮加工した。
For comparison, the extruded rod described above was cut and machined to produce a cylindrical billet 1 with a diameter of 24 mm and a length of 20 ml. This billet 1 was subjected to free compression processing in the axial direction of the cylinder at a humidity of 680° C. to a length of IQffllll+.

加工後のビレット1を前記と同様に切削加工した後、着
磁し、表面磁束密度を測定した。
After cutting the processed billet 1 in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の表面磁束密度の値を比較すると、本実施例
の方法で得た磁石の値は、比較のために作製した磁石の
それの約1.7倍であった。
Comparing the values of the surface magnetic flux density of both of the above, the value of the magnet obtained by the method of this example was about 1.7 times that of the magnet produced for comparison.

実施例3 実施例1で得た押出棒を切断し、切削加工して外径24
ff1m、内径18mm、長さ20岬の円筒ビレット(
ビレットX)を作製した。
Example 3 The extruded rod obtained in Example 1 was cut and machined to an outer diameter of 24 mm.
Cylindrical billet with ff1m, inner diameter 18mm, and length 20 capes (
Billet X) was produced.

さらに、同じ押出棒を切断、切削加工して、直径23m
m、長さ35mmの円柱ビレットを作製し、潤滑剤を介
して、680’Cの温度で、ビレットの軸方向に自由圧
縮加工した。加工後のビレットの長さは20mmであっ
た。加工後のビレット(面異方性磁石)を切削加工して
、外径24mm、内径1B+11ff+、長さ20mm
の円筒ビレット(ビレットY)を作製した。
Furthermore, the same extruded rod was cut and machined to create a diameter of 23 m.
A cylindrical billet with a length of 35 mm and a length of 35 mm was prepared, and was subjected to free compression in the axial direction of the billet at a temperature of 680'C via a lubricant. The length of the billet after processing was 20 mm. After processing, the billet (planar anisotropic magnet) is cut to have an outer diameter of 24 mm, an inner diameter of 1B+11ff+, and a length of 20 mm.
A cylindrical billet (billet Y) was produced.

これらのビレッ)X、Yに、実施例2と同じ第3図およ
び第4図に示した金型を用いて、潤滑剤を介して、68
0°Cの温度で、金型内の空洞がほぼなくなるまでの圧
縮加工を施した。
These billets)
Compression processing was performed at a temperature of 0°C until the cavity in the mold was almost eliminated.

実施例1と同様に加工後のビレットを外径27市まで切
削加工した後、8極の外周着磁をし、表面磁束密度を測
定した。
After cutting the processed billet to an outer diameter of 27 inches in the same manner as in Example 1, the outer periphery was magnetized with 8 poles, and the surface magnetic flux density was measured.

比較のために、前述した押出棒を切断・切削加工し、直
径が24111m、長さ20m1nの円柱ビレットを作
製した。このビレットを6BO”Cの温度で円柱の軸方
向に長さが10mmまでの自由圧縮加工した。加工後の
ビレットを前記と同様に切削加工した後、着磁し、表面
磁束密度を測定した。
For comparison, the extruded rod described above was cut and machined to produce a cylindrical billet with a diameter of 24111 m and a length of 20 m1. This billet was subjected to free compression processing in the axial direction of the cylinder up to a length of 10 mm at a temperature of 6BO"C. The processed billet was cut in the same manner as described above, and then magnetized and the surface magnetic flux density was measured.

以上の表面磁束密度の値を比較すると、実施例3で得た
磁石の値は、ビレットxおよびビレットYでほとんど差
はなく、実施例3で比較のために作製した磁石のそれの
約1.8倍であった。
Comparing the above surface magnetic flux density values, the value of the magnet obtained in Example 3 shows almost no difference between billet x and billet Y, and is about 1. It was 8 times more.

実施例4 実施例1で得た押出棒を切断・切削加工して、直径が1
6m+n、長さが20IIII11のビレットを作製し
た。このビレットに、第3図および第4図に示したよう
な金型を用いて、潤滑剤を介して、680°Cの湿度で
、金型内の空洞がほぼなくなるまでの圧縮加工を施した
。ここで、用いた金型のポンチ2.3の中心部には、互
いに嵌合する段付き部(実施例3で用いた金型のφ1B
mmの部分)はなうN0他の寸法は実施例3で用いた金
型と同じである。
Example 4 The extruded rod obtained in Example 1 was cut and processed to have a diameter of 1
A billet having a length of 6m+n and a length of 20III11 was produced. This billet was compressed using a mold as shown in Figures 3 and 4 at a humidity of 680°C with a lubricant until the cavity in the mold was almost eliminated. . Here, in the center of the punch 2.3 of the mold used, there is a stepped part that fits together (φ1B of the mold used in Example 3).
The other dimensions are the same as the mold used in Example 3.

実施例1と同様に加工後のビレットを外径27mmまで
切削加工した後、8極の外周着磁をし、表面磁束密度を
測定した。
After cutting the processed billet to an outer diameter of 27 mm in the same manner as in Example 1, the outer periphery was magnetized with 8 poles, and the surface magnetic flux density was measured.

比較のために、前述した押出棒を切断・切削加工し、直
径が24mm、長さ20111111の円柱ビレットを
作製した。このビレットを680°Cの温度で円柱の軸
方向に長さが10mm1での自由圧縮加工した。加工後
のビレットを前記と同様に切削加工した後、着磁し、表
面磁束密度を測定した。
For comparison, the extruded rod described above was cut and machined to produce a cylindrical billet with a diameter of 24 mm and a length of 20111111. This billet was subjected to free compression processing to a length of 10 mm in the axial direction of the cylinder at a temperature of 680°C. After cutting the processed billet in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の表面磁束密度の値を比較すると、本実施例
の方法で得た磁石の値は、比較のために作製した磁石の
それの約1.7倍であった。
Comparing the values of the surface magnetic flux density of both of the above, the value of the magnet obtained by the method of this example was about 1.7 times that of the magnet produced for comparison.

実施例1.2.3および4で得た本発明の方法による磁
石は、磁気トルク測定の結果、前述したように磁化容易
方向は凹部の表面に沿って径方向から周方向に連続的に
変化していることが確認された。
In the magnets obtained by the method of the present invention obtained in Examples 1.2.3 and 4, as a result of magnetic torque measurement, the direction of easy magnetization continuously changes from the radial direction to the circumferential direction along the surface of the recessed part, as described above. It was confirmed that

以上、Mn−ムl−C系合金磁石の組成についのものに
ついてのみ示したが、Mn−ムl−C系合金磁石の基本
組成である3元系あるいは前記以外の添加元素を含んだ
公知の多元系についても塑性加工後の磁石の磁気特性に
若干の差は認められたが、従来の技術による方法より前
述したような磁気特性の向上が認められた。
The above has only shown the composition of the Mn-Ml-C alloy magnet, but the basic composition of the Mn-Ml-C alloy magnet is the ternary system or the known composition containing additive elements other than the above. Although some differences were observed in the magnetic properties of the magnets after plastic working for the multi-component system, the above-mentioned improvement in magnetic properties was observed compared to the conventional method.

あらかじめ異方性化したMn−ムl−C系合金磁石とし
て一軸異方性磁石、面異方性磁石を用いた例を示したが
、径異方性磁石1周異方性磁石などを用いても同様であ
った。
Although we have shown examples using uniaxial anisotropic magnets and planar anisotropic magnets as Mn-Ml-C alloy magnets that have been made anisotropic in advance, it is also possible to use radially anisotropic magnets, single-turn anisotropic magnets, etc. It was the same.

さらに、ビレットおよびポンチ端面の形状については傾
斜面の例を示したが階段状の段付き形状、平面+傾斜面
あるいは以上の組み合わせなどでも同様であった。
Further, regarding the shapes of the billet and punch end faces, although an example of an inclined surface is shown, a stepped shape, a flat surface + an inclined surface, or a combination of the above may also be used.

発明の効果 以上詳細に説明して明らかなように、本発明は、あらか
じめ異方性化した多結晶Mn−ムl−C系合金磁石から
なる軸対象形状のビレットに、63゜内周部の圧縮ひず
みより大きくなるように圧縮加工し、さらに圧縮加工に
よってビレットの外周面に凹凸状部を形成して、外周着
磁を行なった場合に高い磁気特性を示す磁石の製造法で
あり、本発明の方法による磁石を従来の方法による磁石
と比較すると、外周着磁を施した場合、従来の方法によ
る磁石より優れた磁気特性を示し、さらに磁石の外周部
が径方向に磁化容易方向を有し、それよシも内周部で周
方向に磁化容易方向を有する構造を得るには従来の方法
では少なくとも2回以上の塑性加工を必要としたが、本
発明の方法では1回ですみ、一層望ましい異方性構造を
有する磁石を得ることができる。
Effects of the Invention As is clear from the detailed explanation above, the present invention provides an axially symmetrical billet made of a polycrystalline Mn-Ml-C alloy magnet that has been made anisotropic in advance. A method for manufacturing a magnet that exhibits high magnetic properties when the billet is compressed so that it becomes larger than the compressive strain, and then the outer circumference is magnetized by forming uneven portions on the outer peripheral surface of the billet by compression processing, and the present invention Comparing the magnet produced by this method with the magnet produced by the conventional method, it was found that when the outer periphery is magnetized, it has superior magnetic properties than the magnet produced by the conventional method, and that the outer periphery of the magnet has an easy magnetization direction in the radial direction. Furthermore, in order to obtain a structure with an easy magnetization direction in the circumferential direction at the inner periphery, the conventional method required plastic working at least twice, but the method of the present invention requires only one plastic working, making it even more effective. A magnet having a desirable anisotropic structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の実施例に用いる金型部の
断面図、第6図は円筒状磁石における外周多極着磁によ
る磁路を模式的に示す図である。 1・・・・・・ビレット、2.3・・・・・・ポンチ、
4・・・・・・外型、α・・・・・・傾斜角。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 (α) Cb) 第23 第4図 第5図
1 to 6 are cross-sectional views of a mold part used in an embodiment of the present invention, and FIG. 6 is a diagram schematically showing a magnetic path caused by multi-pole magnetization on the outer periphery of a cylindrical magnet. 1... Billet, 2.3... Punch,
4...External shape, α...Inclination angle. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure (α) Cb) Figure 23 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる軸対象形状のビレット
を、530ないし830℃の温度で、外周部の圧縮ひず
みが内周部の圧縮ひずみより大きくなるように圧縮加工
し、さらに圧縮加工によってビレットの外周面を凹凸状
に成型するマンガン−アルミニウム−炭素系合金磁石の
製造法。
(1) An axially symmetrical billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance is heated at a temperature of 530 to 830°C, so that the compressive strain at the outer circumference is larger than that at the inner circumference. A method for manufacturing a manganese-aluminum-carbon alloy magnet, which comprises compressing the billet so that the billet has an uneven shape, and then molding the outer peripheral surface of the billet into an uneven shape.
(2)ビレットが、対象軸の方向に磁化容易方向を有し
、圧縮加工時の圧縮ひずみが対数ひずみの絶対値で0.
05%以上である特許請求の範囲第(1)項記載のマン
ガン−アルミニウム−炭素系合金磁石の製造法。
(2) The billet has an easy magnetization direction in the direction of the symmetrical axis, and the compressive strain during compression processing is 0.0 as the absolute value of the logarithmic strain.
A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim (1), wherein the manganese-aluminum-carbon alloy magnet has a carbon content of 0.05% or more.
(3)ビレットが、対象軸に垂直な平面に平行に磁化容
易方向を有し、しかも前記平面内では磁気的に等方性で
あり、かつ前記対象軸の方向と前記平面に平行な直線を
含む平面内では異方性である特許請求の範囲第(1)項
記載のマンガン−アルミニウム−炭素系合金磁石の製造
法。
(3) The billet has a direction of easy magnetization parallel to a plane perpendicular to the object axis, is magnetically isotropic within the plane, and has a straight line parallel to the direction of the object axis and the plane. A method for producing a manganese-aluminum-carbon alloy magnet according to claim (1), which is anisotropic in a plane containing the magnet.
(4)圧縮加工は、ビレットの外周の一部分を拘束した
状態で行なう特許請求の範囲第(1)項記載のマンガン
−アルミニウム−炭素系合金磁石の製造法。
(4) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim (1), wherein the compression processing is performed with a portion of the outer periphery of the billet being restrained.
JP8855586A 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0663071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8855586A JPH0663071B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8855586A JPH0663071B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62247055A true JPS62247055A (en) 1987-10-28
JPH0663071B2 JPH0663071B2 (en) 1994-08-17

Family

ID=13946112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8855586A Expired - Lifetime JPH0663071B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0663071B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151215A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet
JPH01212418A (en) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet
US8894779B2 (en) 2010-11-29 2014-11-25 Jfe Steel Corporation Bearing steel being excellent both in post spheroidizing-annealing workability and in post quenching-tempering hydrogen fatigue resistance property
US9034120B2 (en) 2010-11-29 2015-05-19 Jfe Steel Corporation Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151215A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet
JPH01212418A (en) * 1988-02-19 1989-08-25 Matsushita Electric Ind Co Ltd Manufacture of rare-earth magnet
US8894779B2 (en) 2010-11-29 2014-11-25 Jfe Steel Corporation Bearing steel being excellent both in post spheroidizing-annealing workability and in post quenching-tempering hydrogen fatigue resistance property
US9034120B2 (en) 2010-11-29 2015-05-19 Jfe Steel Corporation Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering

Also Published As

Publication number Publication date
JPH0663071B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210260A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210259A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS61166957A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58182206A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143405A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143410A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS6210258A (en) Manufacture of manganess-aluminum-carbon alloy magnet
JPS6210254A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS61187213A (en) Manufacture of alloy magnet
JPH0639669B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62143409A (en) Manufacture of manganese-aluminum-carbon alloy magnet