JPS62143409A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62143409A
JPS62143409A JP60284893A JP28489385A JPS62143409A JP S62143409 A JPS62143409 A JP S62143409A JP 60284893 A JP60284893 A JP 60284893A JP 28489385 A JP28489385 A JP 28489385A JP S62143409 A JPS62143409 A JP S62143409A
Authority
JP
Japan
Prior art keywords
billet
aluminum
magnet
manganese
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60284893A
Other languages
Japanese (ja)
Other versions
JPH0680607B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60284893A priority Critical patent/JPH0680607B2/en
Publication of JPS62143409A publication Critical patent/JPS62143409A/en
Publication of JPH0680607B2 publication Critical patent/JPH0680607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the distribution of magnetic characteristics by a method wherein a compressive processing in axial direction of a billet is performed at the prescribed temperature in such a manner that the compressive distortion of the outermost circumferential part of the billet will be made larger than that of the inside part. CONSTITUTION:Cutting and machining operations are performed on the rod obtained by extrusion-processing an Mn-Al-C alloy, and a cylindrical billet (not shown) is obtained. After a face anisotropic magnet has been formed by performing a free compressive processing on said billet 1, a cylindrical billet 1 is obtained by performing a machining work. Then, said billet 1 is inserted between a bottom force 4 and a fixing punch 2, maintained at the temperature of 530-830 deg.C, and a compressive processing is performed on the outer circumferential part only of the billet 1 using a movable punch 3. Then, after the outer circumference of the billet 1 has been machined, the outer circumference is magnetized. As a result, the magnetic characteristics in radial direction suitable for an outer circumferential multipolar magnetization can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガンーアルミニクムーii(Mn−Al−C)系合金磁
石による高性能な多極着磁用Mn−人1−C系合金磁石
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a permanent magnet, and in particular to a method for producing a high-performance multi-pole magnet using a polycrystalline manganese-aluminum II (Mn-Al-C) alloy magnet. The present invention relates to a method of manufacturing a Mn-C alloy magnet for magnetic use.

従来の技術 Mn−人′1−C系合金磁石は、主として強磁性相であ
る面心正方晶(τ相、L1o型規開路子)の組織で構成
され、Cを必須構成元素として含むものであり、不純物
以外に添加元素を含まない3元系及び少量の添加元素を
含む4元系以上の多元系合金磁石が知られており、これ
らを総称するものである。
Conventional technology Mn-1-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, L1O type open circuit) structure, which is a ferromagnetic phase, and contain C as an essential constituent element. There are known multi-element alloy magnets, including ternary alloy magnets containing no additive elements other than impurities, and quaternary or higher alloy magnets containing a small amount of additive elements.

その製造法としては、鋳造、熱処理によるもの以外に押
出加工等の塑性加工工程を含むものが知られている。特
に後者は、高い磁気特性、機械的強度、耐候性、機械加
工性等の優れた性質を有する異方性磁石の製造法として
知られている。
As for the manufacturing method thereof, in addition to those using casting and heat treatment, methods including a plastic working process such as extrusion processing are known. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

また、Mn−ムl−1系合金磁石を用いた多極着磁用合
金磁石の製造法としては、等方性磁石、圧縮加工による
もの(登録番Ji+1011473号)、押出加工等の
公知の方法で得た一軸異方性の多結晶Mn−Al−C系
合金磁石に異方性方向への自由圧縮加工によるもの(得
られた磁石を面異方性磁石と称す。特開昭56−119
762号公報)、面異方性磁石からなるビレットの一部
分に圧縮加工を施すもの(特開昭68−188103号
公報)、及びあらかじめ異方性化した多結晶Mn−人工
−C系合金磁石からなる中空体状のビレットに特定の圧
縮加工を施すもの(例えば特開昭58−182206な
いし68−182208号公報)が知られている。
In addition, methods for producing multipolar magnetized alloy magnets using Mn-Ml-1 alloy magnets include known methods such as isotropic magnets, compression processing (registration number Ji+1011473), extrusion processing, etc. A uniaxially anisotropic polycrystalline Mn-Al-C alloy magnet obtained by free compression processing in the anisotropic direction (the obtained magnet is called a planar anisotropic magnet. JP-A-56-119
No. 762), one in which a part of a billet made of a planar anisotropic magnet is compressed (Japanese Unexamined Patent Publication No. 188103/1983), and a polycrystalline Mn-artificial-C alloy magnet that has been made anisotropic in advance. It is known that a hollow billet is subjected to a specific compression process (for example, JP-A-58-182206 to JP-A-68-182208).

発明が解決しようとする間匣点 前述した面異方性磁石からなるビレットの一部分に圧縮
加工を施すもの(特開昭58−188103号公報)あ
るいけあらかじめ異方性化した多結晶Mn−ムl−1系
合金磁石からなる中空体状のビレットに特定の圧縮加工
を施すもの(例えば特開昭58−182206ないし5
8−182208号公報)の内に示されているあらかじ
め異方性化した多結晶Mn−Al−C系合金磁石からな
るビレットの外周部に、ビレットの軸方向に圧縮加工を
施す方法では、圧縮加工を施した部分では径方向に磁化
容易方向を有するものが得られているが、その加工部の
磁気特性の分布は必ずしも外周多極着磁に適したもので
はない。つまり、ビレットの外周部のみを圧縮加工し、
外周に多極着磁する場合には、その加工部の径方向の磁
気特性の分布は最外周部が最も強くなるのが望ましい。
The problem to be solved by the invention is a method in which a part of a billet made of the above-mentioned plane anisotropic magnet is subjected to compression processing (Japanese Patent Laid-Open No. 188103/1983), or a polycrystalline Mn-magnet which has been made anisotropic in advance. A method in which a hollow billet made of an l-1 alloy magnet is subjected to a specific compression process (for example, Japanese Patent Laid-Open No. 58-182206 to 58-182206).
8-182208), in which the outer periphery of a billet made of a polycrystalline Mn-Al-C alloy magnet that has been made anisotropic in advance is compressed in the axial direction of the billet. Although the processed portion has an easy magnetization direction in the radial direction, the distribution of magnetic properties of the processed portion is not necessarily suitable for outer circumferential multi-pole magnetization. In other words, only the outer periphery of the billet is compressed,
When multipole magnetizing is performed on the outer periphery, it is desirable that the distribution of magnetic properties in the radial direction of the processed portion be strongest at the outermost periphery.

本発明は磁気特性の分布の良好な磁石を得ることを目的
としている。
An object of the present invention is to obtain a magnet with a good distribution of magnetic properties.

問題点を解決するための手段 以上の問題点を解決するために本発明は、特定の平面に
平行に磁化容易方向を有する多結晶Mn−Al−C系合
金磁石からなるビレットの外周部に、ビレットの最外周
部の圧縮ひずみがそれよりも内側の部分の圧縮ひずみよ
り大きくなるようにビレットの前記の特定の平面に垂直
な方向(軸方向)に圧縮加工を施すものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a method for solving the problems described above, in which a billet made of a polycrystalline Mn-Al-C alloy magnet having an easy magnetization direction parallel to a specific plane has a The billet is compressed in a direction perpendicular to the specific plane (axial direction) so that the compressive strain at the outermost peripheral portion of the billet is greater than that at the innermost portion.

作用 前述した方法によって、つまり前述したビレットの外周
部への圧縮加工において、ビレットの最外周部の圧縮ひ
ずみがそれよりも内側の部分の圧縮ひずみより大きくな
るようにビレットの軸方向に圧縮加工を施すことによっ
て、これまでの公知の方法と異なり、磁石内の径方向の
磁気特性の分布が外周多極着磁に適したものになり、磁
石の磁気特性は向上する。
Effect: By the method described above, that is, in the compression processing of the outer circumference of the billet, compression processing is performed in the axial direction of the billet so that the compression strain at the outermost circumference of the billet is greater than the compression strain at the innermost portion. By applying this method, unlike conventional methods, the distribution of magnetic properties in the radial direction within the magnet becomes suitable for outer circumferential multi-pole magnetization, and the magnetic properties of the magnet are improved.

実施例 本発明は、特定の平面に平行に磁化容易方向を有する多
結晶Mn−ムl−C系合金磁石からなるビレットに、5
30〜830℃の温度で、ビレットの外周部に、ビレッ
トの最外周部の圧縮ひずみがそれよりも内側の部分の圧
縮ひずみより大きくなるようにビレットの前記特定の平
面に垂直な方向(軸方向)に圧縮加工を施すものである
Example The present invention provides a billet consisting of a polycrystalline Mn-Ml-C alloy magnet having an easy magnetization direction parallel to a specific plane.
At a temperature of 30 to 830°C, the outer circumference of the billet is strained in a direction perpendicular to the specific plane of the billet (in the axial direction ) is subjected to compression processing.

またビレットは、軸方向に垂直な平面に平行に磁化容易
方向を有し、しかも前記平面内では磁気的に等方性であ
り、かつ前記軸方向と前記平面に    ゛平行な直線
を含む平面内では異方性である多結晶マンガン−アルミ
ニウム−炭素系合金磁石である。
Furthermore, the billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction, is magnetically isotropic within the plane, and is magnetically isotropic within the plane including the axial direction and a straight line parallel to the plane. This is an anisotropic polycrystalline manganese-aluminum-carbon alloy magnet.

本発明の製造法の大部分は、前記の公知技術(特開昭6
8−188103号公報あるいは特開昭5B−1822
06ないし58−182208号公報)に示された方法
とほぼ同様である。
Most of the manufacturing method of the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 6
Publication No. 8-188103 or JP-A-5B-1822
This method is almost the same as the method shown in Japanese Patent Nos. 06 to 58-182208).

前記公知技術の圧縮加工は、ビレットの外周部のみをた
だ単にビレットの軸方向に圧縮加工を施すものである。
In the compression processing of the known technique, only the outer peripheral portion of the billet is simply compressed in the axial direction of the billet.

一方、本発明の圧縮加工は前記の圧縮加工において、さ
らにビレットの最外周部の圧縮ひずみがそれよりも内側
の部分の圧縮ひずみより大きくなるようにビレットの軸
方向に圧縮加工を施すものである。換言すれば、ビレッ
トの最外周部の圧縮ひずみが最も大きくなるように、ビ
レットの外周部だけを圧縮加工するものである。
On the other hand, in the compression processing of the present invention, in addition to the compression processing described above, compression processing is further performed in the axial direction of the billet so that the compression strain at the outermost peripheral portion of the billet is larger than the compression strain at the innermost portion. . In other words, only the outer periphery of the billet is compressed so that the compressive strain at the outermost periphery of the billet is the largest.

この圧縮加工の具体的な例をビレットの形状を円筒体と
して説明すると、第1図1に加工前の状態の断面を示す
glはビレット、2は固定用ポンチ、3は可動ポンチ、
4は下型である。第1図1に示すように、前記公知技術
と異なる点は、可動ポンチ3のビレットと接触する而(
ポンチ端面)が平面ではなく傾斜面であることである。
A specific example of this compression processing will be explained assuming that the shape of the billet is a cylindrical body. Figure 1 shows the cross section of the billet before processing. gl is the billet, 2 is a fixed punch, 3 is a movable punch,
4 is the lower mold. As shown in FIG. 1, the difference from the prior art is that the movable punch 3 contacts the billet (
The punch end face) is not a flat surface but an inclined surface.

この可動ポンチ3を用いて、ビレット1の軸方向に加圧
することによって、ビレッ°トの外周部だけが軸方′向
に圧縮加工されて第1図すに示す状態になる。
By applying pressure to the billet 1 in the axial direction using the movable punch 3, only the outer peripheral portion of the billet is compressed in the axial direction, resulting in the state shown in FIG.

第1図b[示したように加工後のビレットの最外周部の
高さはそれよりも内側の部分の高さより小さい。つまり
、ビレットの最外周部の圧縮ひずみがそれよりも内側の
部分の圧縮ひずみより大きくなるように、ビレットの軸
方向に、ビレットの外周部のみに圧縮加工を施したこと
になる。圧縮ひずみとは、ビレットの軸方向のひずみを
いう。
FIG. 1b [As shown, the height of the outermost portion of the billet after processing is smaller than the height of the innermost portion. In other words, compression processing was performed only on the outer periphery of the billet in the axial direction of the billet so that the compressive strain at the outermost periphery of the billet was greater than the compressive strain at the innermost portion. Compressive strain refers to strain in the axial direction of the billet.

次に、本発明の代表的な別の圧縮加工の例をビレットの
断面形状をリング状として説明すると、第2図乙に第1
図と同様に加工前の状態の断面を示す。第2図乙に示す
ように第1図と異なる点は、可動ポンチ3のポンチ端面
ば平面であり、圧縮加工前のビレットの最外周部の高さ
がそれよりも内側の部分の高さより大きいことである。
Next, another typical compression processing example of the present invention will be explained assuming that the cross-sectional shape of the billet is ring-shaped.
Similar to the figure, a cross section before processing is shown. As shown in Figure 2 B, the difference from Figure 1 is that the punch end face of the movable punch 3 is flat, and the height of the outermost part of the billet before compression processing is greater than the height of the inner part. That's true.

第2図すに加工後の状態を示す。加工後のビレットの加
工部はほぼ円筒体状となり、ビレットの最外周部の高さ
とそれよりも内側の部分の高さはほぼ一致する。この場
合も同様に、ビレットの最外周部の圧縮ひずみがそれよ
りも内側の部分の圧縮ひずみより大きくなるようにビレ
ットの軸方向に圧縮加工を施したことになる。
Figure 2 shows the state after processing. The processed portion of the billet after processing has a substantially cylindrical shape, and the height of the outermost peripheral portion of the billet and the height of the innermost portion thereof are approximately the same. In this case as well, the billet was compressed in the axial direction so that the compressive strain at the outermost peripheral portion of the billet was greater than the compressive strain at the innermost portion.

以上述べてきた様に、本発明は前記公知技術(特開昭5
8−188103号公報あるいは特開昭58−1822
06ないし5B−1522os9公報)内に示された圧
縮加工とほとんど同じであるがビレット端面を傾斜面あ
るいはポンチ端面を傾斜面にするこ七によって、この特
定の圧縮加工において、ビレットの外周部のみに、ビレ
ットの最外周部の圧縮ひずみがそれよりも内側の部分の
圧縮ひずみより大きくなるようにビレットの軸方向に圧
縮加工を施すことができ、この最外周部とそれよりも内
側の部分の圧縮ひずみの差を変化させることによって磁
石内の径方向の磁気特性の分布を外周多極着磁に適した
ものにすることができる。
As described above, the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 5
Publication No. 8-188103 or Japanese Unexamined Patent Publication No. 1888-1822
06 to 5B-1522OS9), but by making the billet end face an inclined surface or the punch end face an inclined surface, in this particular compression processing, only the outer periphery of the billet can be processed. , the billet can be compressed in the axial direction so that the compressive strain at the outermost periphery of the billet is greater than the compressive strain at the innermost part, and the compression of this outermost periphery and the inner part By changing the difference in strain, the distribution of magnetic properties in the radial direction within the magnet can be made suitable for outer periphery multipole magnetization.

前記の二つの例の組み合わせでも、ビレットの最外周部
の圧縮ひずみがそれよりも内側の部分の圧縮ひずみより
大きくなるようにビレットの軸方向に圧縮加工を施すこ
とができる。つまり、第1図に示した金型(ポンチ端面
が傾斜面)を用いて、@2図に示しだビレット(ビレッ
ト端面が傾斜面)を圧縮加工する方法である。
Even in a combination of the above two examples, the billet can be compressed in the axial direction so that the compressive strain at the outermost portion of the billet is larger than the compressive strain at the innermost portion. That is, this is a method of compressing the billet shown in Figure 2 (the billet end surface is an inclined surface) using the mold shown in FIG. 1 (the punch end surface is an inclined surface).

前述した例では、ポンチ端面あるいはビレット端面が傾
斜面であったが他に階段状面(段付き形状)、平面+傾
斜面あるいは以上の組み合わせなどあり、さらに凹凸状
にするポンチあるいはビレット端面は両面でも片面でも
よい。必要なことはビレットの最外周部の圧縮ひずみが
それよりも内側の部分の圧縮ひずみより大きくなるよう
にビレットの軸方向に圧縮加工を施すことである。これ
Kよって、磁石の加工部の径方向の磁気特性の分布を外
周多極着磁に適した分布にすることができるg最外周部
の圧縮ひずみとそれよりも内側の部分の圧縮ひずみの差
を大きくすればするほど、磁石の加工部の径方向の磁気
特性は最外周部の方がますます高くなる。
In the above example, the punch end face or billet end face was a sloped face, but there are also stepped faces (stepped shapes), flat + sloped faces, or a combination of the above, and the punch or billet end face that has an uneven shape has both sides. But it can be one-sided. What is necessary is to compress the billet in the axial direction so that the compressive strain at the outermost portion of the billet is greater than the compressive strain at the innermost portion. Therefore, the distribution of magnetic properties in the radial direction of the machined part of the magnet can be made suitable for outer periphery multipole magnetization.g Difference between compressive strain at the outermost periphery and compressive strain at the inner part The larger the value is, the higher the radial magnetic properties of the processed portion of the magnet become at the outermost periphery.

前述したような圧縮加工の可能な温度範囲については、
63Q〜830℃の温度領域において、加工が行えたが
、78o℃を越える温度では、磁気特性がかなり低下し
た。より望ましい湿度範囲〜としては560〜760℃
であった8次に本発明の更に具体的な実施例について説
明する。
Regarding the possible temperature range of compression processing as mentioned above,
Although processing was possible in the temperature range of 63Q to 830°C, the magnetic properties were considerably degraded at temperatures exceeding 78°C. A more desirable humidity range is 560-760℃
8 Next, more specific embodiments of the present invention will be described.

実施例1 配合組成で69.5%のMn、29.3%のA1.0.
5%のC及び0.7%のNiを溶解鋳造し、直径50+
nm、長さ40mmの円柱ビレットを作製した。
Example 1 The blending composition was 69.5% Mn, 29.3% A1.0.
Melt and cast 5% C and 0.7% Ni, diameter 50+
A cylindrical billet with a diameter of 40 mm and a length of 40 mm was produced.

このビレットに1100℃で2時間保持した後、60o
℃まで風冷し、600℃で30分間保持した後、室温捷
で放冷する熱処理を施した。
After holding this billet at 1100℃ for 2 hours, 60o
After cooling with air to 600°C for 30 minutes, heat treatment was performed by cooling at room temperature.

このビレットを用いて、720℃の温度で、押出加工を
行った菖加工後のビレットは直径32m。
Using this billet, extrusion processing was performed at a temperature of 720°C, and the billet after iris processing had a diameter of 32 m.

長さ98咽であった。この押出体を切断および切削加工
して、直径24■、長さ40.の円柱ビレットを作製し
た。次に、潤滑剤を介して、680℃の温度で、長さが
20調までの自由圧縮加工を行った。加工後のビレット
は面異方性磁石である。
It was 98 throats long. This extruded body was cut and machined to a diameter of 24 cm and a length of 40 cm. A cylindrical billet was prepared. Next, free compression processing was performed at a temperature of 680° C. up to a length of 20 lengths using a lubricant. The processed billet is a planar anisotropic magnet.

次に、第1図に示すような金型を用いて、680℃の温
度で、ビレットの外周部のみを圧縮加工した。なおポン
チ2の直径(ポンチ3の内径つけ24閣である。加工後
のビレットの境界部(直径24唄の部分)の長さは16
rrrMであったム加工後のビレットを外径30覇に切
削加工した後、外周表面に24様の外周着磁をしたち着
磁は2000□Fのオイルコンデンサーを用い、150
ovでパルス着磁した。外周表面の表面磁束密度をホー
ル素子で測定した。
Next, using a mold as shown in FIG. 1, only the outer peripheral portion of the billet was compressed at a temperature of 680°C. The diameter of punch 2 (the inner diameter of punch 3 is 24 mm).The length of the boundary part of the billet after processing (the part with a diameter of 24 mm) is 16 mm.
After machining the rrrM billet to an outer diameter of 30 mm, the outer circumferential surface was magnetized in 24 ways.
Pulse magnetization was performed with ov. The surface magnetic flux density on the outer peripheral surface was measured using a Hall element.

比較のために、前述した面異方性構造のビレットを用い
て、第2図に示した金型を用い、前記と同様に潤滑剤を
介して、外周部のみを圧縮加工した。なお固定用ポンチ
2の直径は24閲である。
For comparison, only the outer periphery of the billet having the above-mentioned planar anisotropic structure was compressed using the mold shown in FIG. 2 using a lubricant in the same manner as described above. The fixing punch 2 has a diameter of 24 mm.

加工後のビレットの外周部の長さは15閣であった。さ
らに前記と同様VC+fJ削加工した後、着磁し、表面
磁束密度を測定した。
The length of the outer periphery of the billet after processing was 15 mm. Furthermore, after performing VC+fJ machining in the same manner as above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石それ
の約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

実施例2 実施例1で得だ面異方性磁石からなるビレットを用いて
、潤滑剤を介して、680℃の温度で、!ビレットの中
央部を直径161WRのポンチで加圧すlす ることによって、外径37薗、内径16咽、長さ20m
mのビレットを作製した。加工後の磁石は周方向に磁化
容易方向を有するもの(周異方性磁石)であった。この
ビレットに実施例1と同じ第1図に示した金型を用いた
外周部のみに圧縮加工を施しだ。
Example 2 Using a billet made of a plane-anisotropic magnet obtained in Example 1, through a lubricant, at a temperature of 680°C! By pressing the center part of the billet with a punch with a diameter of 161 WR, the outer diameter is 37 mm, the inner diameter is 16 mm, and the length is 20 m.
A billet of m was prepared. The magnet after processing had an easy magnetization direction in the circumferential direction (circumferentially anisotropic magnet). This billet was compressed only on the outer periphery using the same mold shown in FIG. 1 as in Example 1.

加工後のビレットを外径30燗に切削加工した後、実施
例1と同様に24極の外周着磁をし、表面磁束密度を測
定した。
After cutting the processed billet to an outer diameter of 30 mm, the outer periphery was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured.

比較のために、前述した周異方性磁石からなるビレット
に実施例1と同じ第2図に示した金型を用いた外周部の
みに圧縮加工を施した。′さらに前記と同様に切削加工
した後、着磁し、表面磁束密度を測定した。
For comparison, the billet made of the above-mentioned circumferentially anisotropic magnet was compressed only on the outer periphery using the same mold shown in FIG. 2 as in Example 1. 'Furthermore, after cutting in the same manner as above, it was magnetized and the surface magnetic flux density was measured.

以」二の両者の値を比較すると、本発明の方法で得だ磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the surface magnetic flux density value of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

実施例3 配合組成で69.4%のMn、29.3%の人1.0.
5%のC10,7%のNi及び0.1%ので1を溶解鋳
造し1直径50問、長さ40 ranの円柱ビレットを
作製し、実施例1と同じ熱処理を行った。次に、潤滑剤
を介して、720℃の温度で、押出加工を行った。加工
後のビレットは直径32咽、長さ98咽であった。この
押出体を切断および切削加工して、直径24簡、長さ4
0掴の円柱ビレットを作製し1実施例1と同様に自由圧
縮加工によって長さが20mmの面異方性磁石を作製し
た。この磁石を切削加工して外径34m、内径10mm
、最外置部の長さ20 ms、直径24馴の位置の長さ
が15fiの第2図に示した様な形状のビレットを作製
した。次にこのビレットを潤滑剤を介して、第2図に示
したような金型を用いてビレットの外周部のみを880
℃の温度で、ビレットの外周部の長さが10mmまでの
圧縮加工を行った。なお第2図において、可動ポンチの
内径は24mmである。
Example 3 The composition was 69.4% Mn, 29.3% Mn 1.0.
Cylindrical billets each having a diameter of 50 and a length of 40 ran were prepared by melting and casting 5% C10, 7% Ni and 0.1% Ni, and the same heat treatment as in Example 1 was performed. Next, extrusion processing was performed at a temperature of 720° C. using a lubricant. The billet after processing had a diameter of 32 mm and a length of 98 mm. This extruded body was cut and machined to have a diameter of 24 mm and a length of 4 mm.
A 0-piece cylindrical billet was prepared, and in the same manner as in Example 1, a planar anisotropic magnet with a length of 20 mm was prepared by free compression processing. This magnet was machined to have an outer diameter of 34 m and an inner diameter of 10 mm.
A billet having a shape as shown in FIG. 2 was prepared, with a length of 20 ms at the outermost portion and a length of 15 fi at the position of diameter 24 mm. Next, this billet was coated with a lubricant, and only the outer periphery of the billet was molded using a mold as shown in Figure 2.
The billet was compressed to a length of 10 mm at the outer periphery at a temperature of .degree. In addition, in FIG. 2, the inner diameter of the movable punch is 24 mm.

加工後のビレットを外径30咽に切削した後、実施例1
と同様に24極の外周着磁をし、表面磁束密度を測定し
た。
After cutting the processed billet to an outer diameter of 30mm, Example 1
The outer periphery of 24 poles was magnetized in the same manner as above, and the surface magnetic flux density was measured.

比較のために、1n述した面異方性磁石を切削加工し、
外径34rtan、内径10咽、長さ17.5wMの円
筒ビレットを作製した。次に、潤滑剤を介して、前記と
同様に外周部のみを圧縮加工した。加工後のビレットの
外周部の長さは10胴であった6さらに前記と同様に切
削加工した後、着磁し、表面磁束密度を測定した。
For comparison, the planar anisotropic magnet described above was machined,
A cylindrical billet with an outer diameter of 34 rtan, an inner diameter of 10 rtan, and a length of 17.5 wM was prepared. Next, only the outer peripheral portion was compressed using a lubricant in the same manner as described above. The length of the outer periphery of the billet after processing was 10 cylinders.6 After cutting in the same manner as above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

以上、Mn−人1−C系合金磁石の組成については、N
il&加の4元系とNi、、Ti添加の6元系のものに
ついてのみ示したが、Mn−Al−C系合金磁石の基本
組成である3元系についても磁石の磁気特性に若干の差
は認められたが、公知の圧縮加工による方法より前述し
たような磁気特性の向上が認められた。
As mentioned above, regarding the composition of the Mn-human 1-C alloy magnet, N
Although we have shown only the four-element system with IL&AD and the six-element system with Ni and Ti additions, there are some differences in the magnetic properties of the magnets in the ternary system, which is the basic composition of Mn-Al-C alloy magnets. However, the above-mentioned improvement in magnetic properties was observed compared to the known compression processing method.

特定の平面に平行に磁化容易方向を有する多結晶Mn−
Al−C系合金磁石として面異方性磁石、周異方性磁石
を用いた例を示したが径異方性磁石、前述した公知技術
で得られる複合構造の磁石(例えば、外周部でI/i怪
異方性で内周部では周異方性)などを用いても同様であ
った。
Polycrystalline Mn- with easy magnetization direction parallel to a specific plane
Examples using plane anisotropic magnets and circumferentially anisotropic magnets as Al-C alloy magnets have been shown; The same result was obtained even when using phantom anisotropy (circumferential anisotropy in the inner circumference), etc.

さらに、ビレットおよびポンチ端面の形状については傾
斜面の例を示したが階段状の段付き形状および平面+傾
斜面あるいは以上の組み合わせなどでも従来の圧縮加工
に比べて磁気特性の向上が認められた。また、凹凸状に
する而は両端面でも同様であった。
Furthermore, regarding the shape of the billet and punch end faces, an example of an inclined surface was shown, but improvements in magnetic properties compared to conventional compression processing were also observed with stepped shapes, flat surfaces + inclined surfaces, or a combination of the above. . Further, the process of forming the concave and convex shapes was the same on both end faces.

発明の効果 本発明は、実施例によって述べたように、特定の平面に
平行に磁化容易方向を有する多結晶Mn−Al−1系合
金磁石からなるビレットに、ビレットの外周部のみに、
ビレットの最外周部の圧縮ひずみがそれよりも内側の部
分の圧縮ひずみより大きくなるようにビレットの軸方向
に圧縮加工を施すこさによって外周に多極着磁を施した
場合に高い磁気特性を示す磁石を得るものである。
Effects of the Invention As described in the embodiments, the present invention provides a billet made of a polycrystalline Mn-Al-1 alloy magnet having a direction of easy magnetization parallel to a specific plane, and only on the outer periphery of the billet.
By compressing the billet in the axial direction so that the compressive strain at the outermost part of the billet is greater than that at the inner part, it exhibits high magnetic properties when multipole magnetization is applied to the outer periphery. This is what you get from magnets.

この方法によって、磁石内の径方向の磁気特性の分布を
外周多極着磁に適した分布にすることができ、最外周部
の圧縮ひずみとそれよりも内側の部分の圧縮ひずみの差
を大きくすればするほどその効果が大きい。
This method makes it possible to make the distribution of magnetic properties in the radial direction within the magnet suitable for outer periphery multi-pole magnetization, and to increase the difference between the compressive strain at the outermost periphery and the inner part. The more you do it, the greater the effect will be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の圧縮加工の一例を示す金型の
一部の断面図である。 1・・・・・・ビレット、2・・・・・・固定用ポンチ
、3・・・φ・・可動ポンチ、4・・・・・・下型。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図     ((L) (b)
FIGS. 1 and 2 are cross-sectional views of a part of a mold showing an example of compression processing of the present invention. 1... Billet, 2... Fixed punch, 3... φ... Movable punch, 4... Lower mold. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ((L) (b)

Claims (4)

【特許請求の範囲】[Claims] (1)特定の平面に平行に磁化容易方向を有する多結晶
マンガン−アルミニウム−炭素系合金磁石からなるビレ
ットに、530〜830℃の温度で、ビレットの外周部
のみに、ビレットの最外周部の圧縮ひずみがそれよりも
内側の部分の圧縮ひずみより大きくなるようにビレット
の前記特定の平面に垂直な方向(軸方向)に圧縮加工を
施すことを特徴とするマンガン−アルミニウム−炭素系
合金磁石の製造法。
(1) A billet made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction parallel to a specific plane is heated at a temperature of 530 to 830°C only on the outer periphery of the billet. A manganese-aluminum-carbon-based alloy magnet, characterized in that the billet is compressed in a direction perpendicular to the specific plane (axial direction) so that the compressive strain is greater than that of the inner part. Manufacturing method.
(2)ビレットが、軸方向に垂直な平面に平行に磁化容
易方向を有し、しかも前記平面内では磁気的に等方性で
あり、かつ前記軸方向と前記平面に平行な直線を含む平
面内では異方性である多結晶マンガン−アルミニウム−
炭素系合金磁石からなる特許請求の範囲第1項記載のマ
ンガン−アルミニウム−炭素系合金磁石の製造法。
(2) A plane in which the billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction, is magnetically isotropic within the plane, and includes a straight line parallel to the axial direction and the plane. Polycrystalline manganese-aluminum is anisotropic within
A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1, which comprises a carbon alloy magnet.
(3)ビレットが、径方向に平行に磁化容易方向を有す
る多結晶マンガン−アルミニウム−炭素系合金磁石から
なる特許請求の範囲第1項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。
(3) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1, wherein the billet is a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction parallel to the radial direction.
(4)ビレットが、周方向に平行に磁化容易方向を有す
る多結晶マンガン−アルミニウム−炭素系合金磁石から
なる特許請求の範囲第1項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。
(4) The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1, wherein the billet is a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction parallel to the circumferential direction.
JP60284893A 1985-12-18 1985-12-18 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0680607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284893A JPH0680607B2 (en) 1985-12-18 1985-12-18 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284893A JPH0680607B2 (en) 1985-12-18 1985-12-18 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62143409A true JPS62143409A (en) 1987-06-26
JPH0680607B2 JPH0680607B2 (en) 1994-10-12

Family

ID=17684400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284893A Expired - Lifetime JPH0680607B2 (en) 1985-12-18 1985-12-18 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0680607B2 (en)

Also Published As

Publication number Publication date
JPH0680607B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JPS62143409A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0434804B2 (en)
JPH0479122B2 (en)
JPH0311521B2 (en)
JPS62143405A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143407A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0663074B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663073B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0434807B2 (en)
JPH0663072B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247059A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet