JPH061741B2 - Alloy magnet manufacturing method - Google Patents
Alloy magnet manufacturing methodInfo
- Publication number
- JPH061741B2 JPH061741B2 JP60025267A JP2526785A JPH061741B2 JP H061741 B2 JPH061741 B2 JP H061741B2 JP 60025267 A JP60025267 A JP 60025267A JP 2526785 A JP2526785 A JP 2526785A JP H061741 B2 JPH061741 B2 JP H061741B2
- Authority
- JP
- Japan
- Prior art keywords
- billet
- outer peripheral
- magnet
- peripheral surface
- compression processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガン-アルミニウム-炭素(Mn-Al-C系)合金を用いた多
極着磁用磁石の製造法に関する。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a permanent magnet, and more particularly to a multi-pole magnetizing method using a polycrystalline manganese-aluminum-carbon (Mn-Al-C system) alloy. The present invention relates to a manufacturing method of a magnet.
(従来の技術) Mn-Al-C系合金磁石は、68ないし73質量%(以下単に%
で表わす)のMnと(1/10Mn-6.6)ないし(1/3Mn-22.2)%の
Cと残部がAlからなり、不純物以外に添加元素を含まな
い3元素及び少量の添加元素を含む4元系以上の多元系
素磁石用合金が知られており、これらを総称するもので
ある。同様に、Mn−Al−C系合金磁石は、主として
強磁性相である面心正方晶(τ相、L0型規則格子)の組
織で構成され、不純物以外に添加元素を含まない3元素
及び少量の添加元素を含む4元系以上の多元系合金磁石
が知られており、これらを総称するものである。(Prior Art) Mn-Al-C alloy magnets have 68 to 73 mass% (hereinafter simply referred to as%
) And (1 / 10Mn-6.6) to (1 / 3Mn-22.2)% C and the balance Al, 3 elements that do not contain additional elements other than impurities, and 4 elements that contain a small amount of additional elements. Alloys for multi-element elementary magnets of the series and above are known and are collectively referred to. Similarly, the Mn-Al-C alloy magnet is mainly composed of a face-centered tetragonal (τ phase, L 0 -type ordered lattice) structure that is a ferromagnetic phase, and contains three elements including no additional element other than impurities and Quaternary or higher multi-component alloy magnets containing a small amount of additional elements are known, and they are collectively referred to.
また、このMn-Al-C系合金磁石の製造法としては、鋳造
・熱処理によるもの以外に、温間押出加工等の温間塑性
加工工程を含むものがあり、特に後者は、高い磁気特
性、機械的強度、耐候性、機械加工性等の優れた性質を
有する異方性磁石の製造法として知られている。In addition, as a method for manufacturing this Mn-Al-C alloy magnet, in addition to those by casting and heat treatment, there are those that include warm plastic working steps such as warm extrusion, and especially the latter have high magnetic properties, It is known as a method for producing an anisotropic magnet having excellent properties such as mechanical strength, weather resistance and machinability.
多極着磁用Mn-Al-C系合金磁石の製造法としては、等方
性磁石、圧縮加工によるもの、あらかじめ温間押出加工
等の公知の方法で得た一軸異方性の多結晶Mn-Al-C系合
金磁石に異方性方向への温間自由圧縮加工によるもの
(たとえば特開昭56-119762号公報)、及びMn-Al-C系磁
石用合金からなる中空状のビレットの軸方向に圧縮ひず
みを与える各種の塑性加工によるもの(たとえば特開昭
58-192303ないし192306号公報)が知られている。As a method for producing Mn-Al-C alloy magnet for multi-pole magnetization, an isotropic magnet, one by compression processing, uniaxially anisotropic polycrystalline Mn obtained by a known method such as warm extrusion processing in advance. -Al-C alloy magnets by warm free compression in the anisotropic direction (for example, JP-A-56-119762) and hollow billets made of Mn-Al-C alloy alloys. By various types of plastic working that give a compressive strain in the axial direction
58-192303 to 192306) are known.
(発明が解決しようとする問題点) 多極着磁用磁石の形状は一般に円筒体であり、主な着磁
としては、第5図に示したような着磁がある。第5図は
円筒磁石の外周面に多極着磁した場合の磁石内部での磁
路の形成を模式的に示したものである。このような着磁
をここでは外周着磁と称する。(Problems to be Solved by the Invention) The shape of a multi-pole magnetizing magnet is generally a cylindrical body, and the main magnetizing is magnetizing as shown in FIG. FIG. 5 schematically shows the formation of magnetic paths inside the magnet when the outer peripheral surface of the cylindrical magnet is magnetized in multiple poles. Such magnetization is referred to as outer circumference magnetization here.
前述したMn-Al-C系磁石用合金からなる中空体状のビレ
ットの軸方向に、圧縮ひずみを与える各種の塑性加工に
よって得られる磁石では、前記の外周着磁を施した場
合、局部的には磁路に沿った方向に異方性化している
が、全体をみた場合には望ましい方向に異方性化してい
ない。また、前述した公知の方法で、円筒磁石の外周部
が径方向に異方性化し、内周部では周方向(弦方向、以
下同じ)に異方性化したものが得られているが、磁路が
径方向から周方向に変化する途中ではその方向に沿った
異方性構造ではなく、さらに高温度での塑性加工を2回
以上行なう必要がある。In the axial direction of the hollow body-shaped billet made of the above-mentioned Mn-Al-C magnet alloy, in the magnet obtained by various plastic workings that give compressive strain, when the outer peripheral magnetization is applied, locally Has anisotropy in the direction along the magnetic path, but when viewed as a whole, it does not anisotropy in the desired direction. Further, according to the above-mentioned known method, the outer peripheral portion of the cylindrical magnet is anisotropic in the radial direction, and the inner peripheral portion is anisotropic in the circumferential direction (the chord direction, the same applies hereinafter). While the magnetic path is changing from the radial direction to the circumferential direction, it is not an anisotropic structure along that direction, and it is necessary to perform plastic working at a higher temperature twice or more.
(問題点を解決するための手段) 以上述べたよう問題点を解決するために本発明は、Mn-A
l-C系磁石用合金からなる軸対称形状のビレットをその
軸方向に圧縮加工し、この圧縮加工によって外周面を凹
凸上に形成することを特徴とするものである。(Means for Solving Problems) In order to solve the problems as described above, the present invention provides Mn-A
This is characterized in that an axially symmetric billet made of an alloy for lC-based magnets is compressed in the axial direction, and the outer peripheral surface is formed on the unevenness by this compression processing.
(作 用) 上記の方法、すなわち、圧縮加工によってビレットの外
周面を凹凸状に形成することにより、第5図に示した外
周着磁を施した場合の磁路に沿って異方性化させること
ができ、高い磁気特性を示す異方性磁石を得ることがで
きる。(Operation) By the above method, that is, by forming the outer peripheral surface of the billet into an uneven shape by compression processing, anisotropy is achieved along the magnetic path when the outer peripheral magnetization shown in FIG. 5 is applied. It is possible to obtain an anisotropic magnet exhibiting high magnetic properties.
(実施例) 本発明はMn-Al-C系磁石用合金からなる軸対称の形状の
ビレットに、530ないし830℃の温度で、外周面が凹凸状
になるようにビレットの軸方向に圧縮加工を施すことに
よって、第5図に示した外周着磁において、高い磁気特
性を示す磁石を得ることができる。(Example) The present invention is a billet having an axially symmetric shape made of an alloy for Mn-Al-C magnets, and compressed at a temperature of 530 to 830 ° C in the axial direction of the billet so that the outer peripheral surface becomes uneven. By applying the above, it is possible to obtain a magnet exhibiting high magnetic characteristics in the outer peripheral magnetization shown in FIG.
なお、前述した圧縮加工は、必ずしも連続的な圧縮加工
である必要はなく、複数回に分割して与えても良い。The compression process described above does not necessarily have to be a continuous compression process, and may be given in multiple divisions.
上述した本発明の圧縮加工の一例をビレットの形状を円
柱体として図面を用いて説明する。An example of the compression processing of the present invention described above will be described with reference to the drawings, assuming that the billet has a cylindrical shape.
第1図(a)はビレットの圧縮加工前の状態をビレットの
対称軸の方向から見た断面図を示す。1は円柱体状のビ
レット、2は外型で成形のための金型である。第1図
(b)は同じく加工後の状態を示す。(b)図に示したよう
に、円柱体状のビレット1は圧縮加工の進行に伴って径
が大きくなり、外周面の一部が外型2と接触するように
なる。さらに圧縮加工を進行するとビレット1の外周面
がほぼ外型2の内面に接触するまで圧縮加工される。な
お、(b)図に示した状態まで圧縮加工を行なう必要はな
く、ビレット1の外周面の一部が外型2の内面と接触し
た後は、任意の時点で圧縮加工を終了してもよい。要は
ビレットの外周面に凹凸が形成されればよいということ
である。FIG. 1 (a) shows a cross-sectional view of the billet before compression processing as seen from the direction of the symmetry axis of the billet. Reference numeral 1 is a cylindrical billet, and 2 is an outer mold, which is a mold for molding. Fig. 1
Similarly, (b) shows the state after processing. As shown in FIG. 2B, the diameter of the cylindrical billet 1 increases with the progress of compression processing, and a part of the outer peripheral surface comes into contact with the outer die 2. When compression processing is further advanced, compression processing is performed until the outer peripheral surface of the billet 1 almost contacts the inner surface of the outer mold 2. It is not necessary to perform compression processing to the state shown in FIG. 7B, and even if compression processing is finished at any time after a part of the outer peripheral surface of the billet 1 contacts the inner surface of the outer mold 2. Good. The point is that irregularities may be formed on the outer peripheral surface of the billet.
この場合のビレット1の圧縮加工前の直径は、最大で外
型2の内面の凸部に接する大きさである。その場合は、
圧縮加工前にすでにビレット1の外周面の一部が外径2
の内面によって拘束された状態で圧縮加工することにな
る。In this case, the diameter of the billet 1 before compression processing is the maximum size in contact with the convex portion on the inner surface of the outer mold 2. In that case,
Before the compression processing, part of the outer peripheral surface of the billet 1 has an outer diameter of 2
It will be compressed while being constrained by the inner surface of the.
本発明の圧縮加工の別の代表的な一例をビレットの形状
を円筒体として第2図を用いて説明する。第2図は第1
図と同様に外型の断面を示したもので、第1図の大きく
異なる点はコア3が中心に存在することである。この例
ではビレット1の内径にほぼ等しい直径を有するコア3
を用いる例を示しており、コア3は圧縮加工中、常に中
心部に存在し、圧縮加工を施すことによってビレット1
の内径がコア3の直径より小さくなるのを防ぐ。Another typical example of the compression processing of the present invention will be described with reference to FIG. 2 with a billet having a cylindrical body. Figure 2 shows the first
The cross section of the outer mold is shown as in the figure, and the big difference in FIG. 1 is that the core 3 exists in the center. In this example, the core 3 has a diameter approximately equal to the inner diameter of the billet 1.
The core 3 is always present in the center during the compression process, and the billet 1 is formed by performing the compression process.
To prevent the inner diameter of the core from becoming smaller than the diameter of the core 3.
また、この例は圧縮加工前にすでに円筒ビレットの外周
面の一部が外型2と接触しており、拘束状態にある。Further, in this example, a part of the outer peripheral surface of the cylindrical billet is already in contact with the outer mold 2 before compression processing, and is in a restrained state.
このように、外型2の内面に凹凸が存在することによっ
てビレット1には圧縮加工後、外周面に凹凸が形成され
る。As described above, the unevenness is present on the inner surface of the outer mold 2, so that the billet 1 is unevenly formed on the outer peripheral surface after the compression processing.
圧縮加工過程において、最初に外周面が拘束される部分
(加工後のビレットの外周面の凹部)は周方向に磁気容
易方向を有する部分となり、最後に外周面が拘束される
部分又は最後まで外周面が拘束されない部分(加工後の
ビレットの外周面の凸部)は径方向に磁化容易方向を有
する部分となる。その中間の部分の磁化容易方向は周方
向から径方向へ次第に変化していく部分である。言い換
えると、第1図において外型2の内面の凸部によって形
成されるビレット外周面の凹部の曲面に沿った方向に磁
化容易方向がビレット1の外周部から次第に連続的に変
化する。したがって外周着磁において何極着磁するかに
よって、この凹凸部の数が決定される。第1図では加工
後のビレットの外周面の凸部が6つあるため、6極着磁
に適した異方性構造を有する磁石となり、加工後の凸部
に当る部分が、外周着磁における極の部分になる。In the compression process, the part where the outer peripheral surface is constrained first (the recess on the outer peripheral surface of the billet after processing) has a magnetic easy direction in the circumferential direction, and finally the part where the outer peripheral surface is constrained or the outer periphery to the end. The portion where the surface is not restricted (the convex portion on the outer peripheral surface of the billet after processing) is a portion having the easy magnetization direction in the radial direction. The easy magnetization direction of the intermediate portion is a portion that gradually changes from the circumferential direction to the radial direction. In other words, in FIG. 1, the easy magnetization direction gradually and continuously changes from the outer peripheral portion of the billet 1 in the direction along the curved surface of the concave portion on the outer peripheral surface of the billet formed by the convex portion on the inner surface of the outer mold 2. Therefore, the number of the uneven portions is determined depending on how many poles are magnetized in the outer circumference magnetization. In FIG. 1, since there are six convex portions on the outer peripheral surface of the billet after processing, the magnet has an anisotropic structure suitable for 6-pole magnetization, and the portion corresponding to the convex portion after processing is the same as in the outer peripheral magnetization. It becomes the pole part.
上述したように本発明はビレットの軸方向に圧縮加工す
る際に、外型(金型)等を用いてビレットの外周面が凹
凸状になるように成形圧縮加工することによって、外周
着磁を施した場合に高い磁気特性を示す異方性構造を有
する磁石を得るものである。As described above, according to the present invention, when the billet is compressed in the axial direction, the outer circumference is magnetized by using an outer die (mold) and the like so that the outer circumferential surface of the billet becomes uneven. It is intended to obtain a magnet having an anisotropic structure that exhibits high magnetic properties when applied.
そのような圧縮加工の可能な温度範囲については、530
ないし830℃の温度領域において加工が行なえるが、780
℃を超える温度では、磁気特性がかなり低下する。より
望ましい温度範囲としては560ないし760℃であった。For the temperature range in which such compression processing is possible, see 530
Can be processed in the temperature range of 830 to 830 ℃, but 780
At temperatures above ° C, the magnetic properties are significantly reduced. A more desirable temperature range was 560 to 760 ° C.
次に本発明を更に具体的に説明する。Next, the present invention will be described more specifically.
具体例1 配合組成で69.4%のMn、29.3%のAl、0.5%のC、0.7%
のNi及び0.1%のTiを溶解鋳造し、直径18mm、長さ20mm
の円柱ビレットを作製した。このビレットを1100℃で2
時間保持した後、600℃まで風冷し、その温度で30分間
保持した後、室温まで放冷する熱処理を行なった。こう
して出来たビレットを第3図および第4図に示した金型
(外型)を用いて圧縮加工した。第3図は第1図と同様
の外型の断面図である。第3図において(外型2の内
径)DK=30mm、XA=15mm、(外型2の凸部の曲率半径)
RS=3mmであり、外型2の内面の凸部は8個ある。第4
図は第3図と直交する方向からの断面図を示す。4およ
び5がポンチで、外型2の凹凸面と嵌合する外周面を有
し、図の上下方向に移動することができる。このような
外型2を用いて、高さ8.5mmまでビレット1を圧縮加工
した。Example 1 69.4% Mn, 29.3% Al, 0.5% C, 0.7%
Ni and 0.1% Ti are melt-cast, diameter 18mm, length 20mm
The cylindrical billet of was produced. 2 this billet at 1100 ℃
After holding for a time, it was air-cooled to 600 ° C., held at that temperature for 30 minutes, and then heat-treated by allowing it to cool to room temperature. The billet thus produced was compression-processed using the mold (outer mold) shown in FIGS. 3 and 4. FIG. 3 is a sectional view of the outer mold similar to FIG. In FIG. 3, (inner diameter of outer mold 2) D K = 30 mm, X A = 15 mm, (curvature radius of convex portion of outer mold 2)
R S = 3 mm, and there are 8 convex portions on the inner surface of the outer mold 2. Fourth
The figure shows a cross-sectional view from the direction orthogonal to FIG. Punches 4 and 5 have an outer peripheral surface that fits with the uneven surface of the outer mold 2 and can move in the vertical direction in the drawing. Using such an outer mold 2, the billet 1 was compressed to a height of 8.5 mm.
圧縮加工後のビレット1を直径27mmまで切削加工し、8
極の外周着磁を施した。着磁は200μFのオイルコンデ
ンサを用い1500Vでパルス着磁した。外周面の表面磁束
密度をホール素子で測定ちたところ各磁極でのピーク値
は、2.3ないし2.4kGであった。The billet 1 after compression processing is cut to a diameter of 27 mm, and
The outer circumference of the pole was magnetized. The magnetization was pulsed at 1500 V using an oil condenser of 200 μF. When the surface magnetic flux density of the outer peripheral surface was measured with a Hall element, the peak value at each magnetic pole was 2.3 to 2.4 kG.
具体例2 具体例1と同じ配合組成物を溶解鋳造し、外径24mm、内
径18mm、長さ20mmの円筒ビレットを作製した。このビレ
ットに具体例1と同じ条件の熱処理を施した。このビレ
ットを用いて、第2図に示した外径を用いて圧縮加工を
行なった。外型2の各部の寸法は第3図に示したものと
同じで、コア3の直径は18mmである。このような外型を
用いて、高さ11.5mmまでの圧縮加工を行なった。Specific Example 2 The same compounding composition as in Specific Example 1 was melt cast to produce a cylindrical billet having an outer diameter of 24 mm, an inner diameter of 18 mm and a length of 20 mm. The billet was heat-treated under the same conditions as in Example 1. Using this billet, compression processing was performed using the outer diameter shown in FIG. The dimensions of each part of the outer mold 2 are the same as those shown in FIG. 3, and the diameter of the core 3 is 18 mm. Using such an outer die, compression processing up to a height of 11.5 mm was performed.
圧縮加工後のビレットを具体例1と同様に外型27mmまで
切削加工し、外周着磁し、表面磁束密度を測定した。各
磁極でのピーク値は具体例1で得た磁石のそれと大差は
なかった。The billet after compression processing was cut into an outer die of 27 mm in the same manner as in Example 1, magnetized on the outer periphery, and the surface magnetic flux density was measured. The peak value at each magnetic pole was not much different from that of the magnet obtained in Example 1.
具体例1および2で得られた本発明の方法による磁石
は、磁気トルク測定の結果、前述したように磁化容易方
向は凹部の表面に沿って径方向から周方向に連続的に次
第に変化していることが確認された。As a result of the magnetic torque measurement, the magnets obtained by the methods of the present invention obtained in Examples 1 and 2 showed that the easy magnetization direction was gradually changed from the radial direction to the circumferential direction along the surface of the recess as described above. Was confirmed.
(発明の効果) 以上詳細に説明したように本発明は、Mn-Al-C系磁石用
合金からなる軸対称形状のビレットに、その軸方向に圧
縮加工を施し、同時にピレットの外周面を凹凸状に成形
することによって、外周着磁を施した場合に高い磁気特
性を示す磁石を得るものである。(Effects of the Invention) As described in detail above, the present invention provides a billet having an axially symmetric shape made of an alloy for Mn-Al-C magnets, which is subjected to compression processing in the axial direction thereof, and at the same time, the outer peripheral surface of the pellet is uneven. By forming the magnet into a shape, it is possible to obtain a magnet exhibiting high magnetic characteristics when the outer circumference is magnetized.
従来の方法によって得られた磁石と比較すると、本発明
の方法によって得られる磁石は外周着磁を施した場合、
従来の方法による磁石より優れた磁気特性を示し、さら
に従来の方法で、磁石の外周部が径方向に磁化容易方向
を有し、それよりも内周部で周方向に磁化容易方向を有
する構造を得るには、少なくとも2回以上の塑性加工を
必要としたが、本発明の方法では少なくとも1回です
み、かつ、従来よりも望ましい異方性構造を有する磁石
を得ることができる。Compared with the magnet obtained by the conventional method, the magnet obtained by the method of the present invention is
A structure that shows superior magnetic characteristics to the magnet by the conventional method, and further has a magnetized direction in the outer peripheral portion of the magnet in the radial direction and a magnetized direction in the circumferential direction at the inner peripheral portion of the magnet by the conventional method. However, the method of the present invention requires only at least once, and it is possible to obtain a magnet having an anisotropic structure more desirable than in the past.
第1図ないし第4図は本発明の実施例の圧縮加工に使用
する外型の断面図、第5図は円筒状磁石の多極着磁によ
る磁路を摸式的に示す図である。 1…ビレット、2…外型、3…コア、4,5…ポンチ。1 to 4 are cross-sectional views of an outer die used for compression processing of an embodiment of the present invention, and FIG. 5 is a diagram schematically showing a magnetic path by multi-pole magnetization of a cylindrical magnet. 1 ... Billet, 2 ... Outer mold, 3 ... Core, 4,5 ... Punch.
Claims (2)
らなる軸対称形状のビレットを、その軸方向に530ない
し830℃の温度で圧縮加工することにより、外周面を凹
凸状に形成することを特徴とする合金磁石の製造法。1. An outer peripheral surface is formed into an uneven shape by compressing an axially symmetrical billet made of a manganese-aluminum-carbon alloy magnet at a temperature of 530 to 830 ° C. in the axial direction. And method for manufacturing alloy magnets.
拘束した状態で行なうことを特徴とする特許請求の範囲
第(1)項記載の合金磁石の製造法。2. The method for producing an alloy magnet according to claim 1, wherein the compression processing is carried out with a part of the outer peripheral surface of the billet being constrained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60025267A JPH061741B2 (en) | 1985-02-14 | 1985-02-14 | Alloy magnet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60025267A JPH061741B2 (en) | 1985-02-14 | 1985-02-14 | Alloy magnet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61187214A JPS61187214A (en) | 1986-08-20 |
JPH061741B2 true JPH061741B2 (en) | 1994-01-05 |
Family
ID=12161250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60025267A Expired - Lifetime JPH061741B2 (en) | 1985-02-14 | 1985-02-14 | Alloy magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH061741B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8863723B2 (en) | 2006-08-02 | 2014-10-21 | Liquidpiston, Inc. | Hybrid cycle rotary engine |
-
1985
- 1985-02-14 JP JP60025267A patent/JPH061741B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8863723B2 (en) | 2006-08-02 | 2014-10-21 | Liquidpiston, Inc. | Hybrid cycle rotary engine |
Also Published As
Publication number | Publication date |
---|---|
JPS61187214A (en) | 1986-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH061741B2 (en) | Alloy magnet manufacturing method | |
JPH0639675B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663071B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH061743B2 (en) | Alloy magnet manufacturing method | |
JPH0434804B2 (en) | ||
JPH061740B2 (en) | Alloy magnet manufacturing method | |
JPH0479122B2 (en) | ||
JPH0639674B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0665743B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS62247054A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPS6210257A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0639669B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663063B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH061742B2 (en) | Alloy magnet manufacturing method | |
JPH0639671B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0680607B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0665744B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS61213357A (en) | Production of manganese-aluminum-carbon alloy magnet | |
JPH0673328B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663069B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0680606B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS6210258A (en) | Manufacture of manganess-aluminum-carbon alloy magnet | |
JPH0663067B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663073B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0665745B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet |