JPS62143406A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS62143406A
JPS62143406A JP60284890A JP28489085A JPS62143406A JP S62143406 A JPS62143406 A JP S62143406A JP 60284890 A JP60284890 A JP 60284890A JP 28489085 A JP28489085 A JP 28489085A JP S62143406 A JPS62143406 A JP S62143406A
Authority
JP
Japan
Prior art keywords
billet
axial direction
aluminum
manganese
carbon alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60284890A
Other languages
Japanese (ja)
Inventor
Akihiko Ibata
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60284890A priority Critical patent/JPS62143406A/en
Publication of JPS62143406A publication Critical patent/JPS62143406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the desirable magnetic anisotropy by a method wherein a compression-processing is performed in the axial direction of a billet in such a manner that the compressive distortion of the outer circumferential part of the billet is made larger than that of the inner circumferential part in the state wherein a part of the outer and the inner circumference of the billet is made free. CONSTITUTION:A cylindrical billet 1 is obtained by performing cutting and machining operations on the rod obtained by conducting an extrusion-processing on an Mn-Al-C alloy. This billet 1 has the direction of axis of easy magnetization in parallel with the plane surface vertical to axial direction. Then, said billet 1 is inserted between punches 2 and 3, maintained at the temperature of 530-830 deg.C, and a compressive processing is performed thereon. As the end face of the punches 2 and 3 has a non- plane surface, the outer circumferential part of the billet has the compressive distortion larger than that of the inner circumferential part. Then, after a cutting process has been finished, the outer circumference of the billet is magnetized. As a result, the magnet having the magnetic characteristics suitable for an outer circumferential multipolar magnetization can be obtained easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガン−アルミニウム−炭i(Mn−ムiC)系合金磁石
による高性能な多極着磁用Mn −Ae−C系合金磁石
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a permanent magnet, and in particular, to a method for producing a permanent magnet, and in particular to a method for producing a high-performance multi-polar magnet using a polycrystalline manganese-aluminum-carbon (Mn-mu-iC) alloy magnet. The present invention relates to a method of manufacturing a Mn-Ae-C alloy magnet for use in the manufacturing industry.

従来の技術 Mn−Ae−C系合金磁石は、主として強磁性相である
面心正方晶(τ相、L、。型規則格子)の組織で構成さ
れ、Cを必須構成元素として含むものであり、不純物以
外に添加元素を含まない3元系及び少量の添加元素を含
む4元系以上の多元系合金磁石が知られており、これら
を総称するものである。
Conventional technology Mn-Ae-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, L, regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element. , ternary alloy magnets containing no additive elements other than impurities, and quaternary or higher multi-component alloy magnets containing a small amount of additive elements are known, and these are collectively referred to as magnets.

その製造法としては、鋳造・熱処理によるもの以外に押
出加工等の塑性加工工程を含むものが知られている。特
に後者は、高い磁気特性、機械的強度、耐候性、機械加
工性等の優れた性質を有する異方性磁石の製造法として
知られている。
As for the manufacturing method, there are known methods including plastic working steps such as extrusion processing in addition to those using casting and heat treatment. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

また、Mn−Ae−C系合金磁石を用いた多極着磁用合
金磁石の製造法としては、等方性磁石、圧縮加工による
もの、押出加工等の公知の方法で得た一軸異方性の多結
晶Mn−Ag−c系合金磁石に異方性方向への自由圧縮
加工によるもの(得られた磁石を面異方性磁石と称す。
In addition, methods for producing multipolar magnetized alloy magnets using Mn-Ae-C alloy magnets include isotropic magnets, compression processing, and uniaxial anisotropy obtained by known methods such as extrusion processing. (The obtained magnet is called a plane anisotropic magnet.)

特開昭66−119762号公報)、及びあらかじめ異
方性化した多結晶Mn −Al−1系合金磁石からなる
中空体状のビレットに特定の圧縮加工を施すもの(特開
昭58−182205号公報)が知られている。
JP-A No. 66-119762), and one in which a hollow billet made of a polycrystalline Mn-Al-1 alloy magnet that has been made anisotropic in advance is subjected to a specific compression process (JP-A No. 58-182205). Public bulletin) is known.

発明が解決しようとする問題点 前述したあらかじめ異方性化した多結晶Mn −人e−
C系合金磁石からなる中空体状のビレットに特定の圧縮
加工を施すもの(特に、特開昭68−182205号公
報)では、つまり、あらかじめ異方性化した多結晶Mn
−Ae−C系合金磁石からなる中空体状のビレットに、
少なくともビレットの外周および内周の一部分を自由に
した状態で、ビレットの軸方向に圧縮加工を施す方法で
は、得られた磁石は径方向に磁化容易方向を有する。こ
の異方性構造は外周あるいは内周面に多極着磁して用い
るのに必ずしも望しい異方性構造ではない。
Problems to be Solved by the Invention The previously anisotropic polycrystalline Mn
In the method in which a hollow billet made of a C-based alloy magnet is subjected to a specific compression process (in particular, JP-A-68-182205), polycrystalline Mn that has been made anisotropic in advance is used.
-A hollow billet made of Ae-C alloy magnet,
In a method in which the billet is compressed in the axial direction with at least a portion of the outer circumference and inner circumference of the billet free, the obtained magnet has an easy magnetization direction in the radial direction. This anisotropic structure is not necessarily a desirable anisotropic structure for use with multipolar magnetization on the outer or inner circumferential surface.

本発明は望しい異方性構造を有する磁石を得ることを目
的としている。
The present invention aims at obtaining a magnet with a desirable anisotropic structure.

問題点を解決するだめの手段 以上の問題点を解決するために本発明は、あらかじめ異
方性化した多結晶Mn−ムe−C系合金磁石からなる中
空体状のビレットに、少なくともビレットの外周および
内周の一部分を自由にした状態で、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレットの軸方向に圧縮加工を施すものである。
In order to solve the problems that are more than just a means to solve the problems, the present invention provides a hollow body-shaped billet made of a polycrystalline Mn-M-e-C alloy magnet which has been made anisotropic in advance. The billet is compressed in the axial direction so that the compressive strain on the outer periphery of the billet is greater than the compressive strain on the inner periphery, with a portion of the outer periphery and inner periphery free.

作用 前述した特定の圧縮加工において、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより犬きくなるように
ビレットの軸方向に圧縮加工を施すことによって、これ
までの公知の方法と異なり、磁石の外周部では径方向に
磁化容易方向を有し、内周部では周方向に磁化容易方向
を有する磁石が得られる。
Effect: In the specific compression process mentioned above, the compression process is performed in the axial direction of the billet so that the compression strain on the outer circumference of the billet is greater than the compression strain on the inner circumference, unlike conventional methods. A magnet having an easy magnetization direction in the radial direction at the outer circumference of the magnet and an easy magnetization direction in the circumferential direction at the inner circumference is obtained.

実施例 本発明は、あらかじめ異方性化した多結晶Mn−Ae−
C系合金磁石からなる中空体状のビレットに、530〜
830 ℃の温度で、少なくともビレットの外周および
内周の一部分を自由にした状態で、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレットの軸方向に圧縮加工を施すものである。
Example The present invention uses polycrystalline Mn-Ae- which has been made anisotropic in advance.
A hollow body-shaped billet made of a C-based alloy magnet has 530~
At a temperature of 830 °C, with at least a portion of the outer and inner circumferences of the billet free, the billet is compressed in the axial direction so that the compressive strain on the outer circumference of the billet is greater than the compressive strain on the inner circumference. It is something.

本発明の製造法の大部分は、前記の公知技術(特開昭5
8−182205号公報)と同様である。
Most of the manufacturing method of the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No.
8-182205).

前記公知技術の圧縮加工は、少なくともビレットの外周
および内周の一部分を自由にした状態で、ビレットの軸
方向に圧縮加工を施すものである。
In the compression processing of the known technique, compression processing is performed in the axial direction of the billet with at least a portion of the outer periphery and inner periphery of the billet free.

一方、本発明の圧縮加工は前記の圧縮加工において、さ
らにビレットの外周部の圧縮ひずみが内、周部の圧縮ひ
ずみより大きくなるようにビレットの軸方向に圧縮加工
を施すものである。
On the other hand, in the compression processing of the present invention, in addition to the compression processing described above, compression processing is further performed in the axial direction of the billet so that the compression strain at the outer peripheral portion of the billet is larger than the compression strain at the inner and peripheral portions.

前記の公知技術と同様に前記のビレットが中空体の軸方
向に磁化容易方向を有する多結晶Mn −ムe−c  
系合金磁石(−軸異方性磁石)からなる場合には、圧縮
加工時の圧縮ひずみが対数ひずみの絶対値で0.05以
上必要である。これは、圧縮加工前のビレットは圧縮ひ
ずみを与える方向に異方性化したものであり、多極着磁
において高い磁気特性を示すような構造の変化に最低0
.05の圧縮ひずみが必要であるためである。
Similar to the above-mentioned known technology, the above-mentioned billet has a polycrystalline Mn-m e-c having an easy magnetization direction in the axial direction of the hollow body.
In the case of a magnet made of a series alloy magnet (-axis anisotropic magnet), the compressive strain during compression processing must be 0.05 or more in terms of the absolute value of the logarithmic strain. This is because the billet before compression processing is anisotropic in the direction of applying compressive strain, and the change in structure that exhibits high magnetic properties in multipole magnetization requires at least zero
.. This is because a compressive strain of 0.05 is required.

また本発明では、ビレットが、中空体の軸方向に垂直な
平面に平行に磁化容易方向を有し、しかも前記平面内で
は磁気的に等方性であり、かつ前記軸方向と前記平面に
平行な直線を含む平面内では異方性である多結晶マンガ
ン−アルミニウム−炭素系合金磁石となる。
Further, in the present invention, the billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is parallel to the axial direction and the plane. The magnet becomes a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing straight lines.

この圧縮υロエの具体的な例を以下に示す。まず第1の
方法は、円筒ビレットの軸方向に第1図に示した金型を
用いて自由圧縮加工を施す方法である。第1図は(a)
に加工前の状態の断面を示す。1はビレット、2,3は
ポンチである。第1図(a)に示すように、前記公知技
術と異なる点は、ポンチ2およびポンチ3のビレットと
接触する面(ポンチ端面)が平面ではなく傾斜面(傾斜
角α)であることである。このポンチ2およびポンチ3
を用いて、ビレット1の軸方向に加圧することによって
、ビレットは軸方向に圧縮加工されて第1図(b)に示
す状態になる。第1図(b)に示したように圧縮加工後
のビレットの外周部の高さは内周部の高さより小さい。
A specific example of this compression υ loe is shown below. The first method is to perform free compression in the axial direction of a cylindrical billet using a mold shown in FIG. Figure 1 is (a)
shows the cross section before processing. 1 is billet, 2 and 3 are punch. As shown in FIG. 1(a), the difference from the prior art is that the surfaces of punches 2 and 3 that contact the billet (punch end surfaces) are not flat surfaces but are sloped surfaces (angle of inclination α). . This punch 2 and punch 3
By applying pressure in the axial direction of the billet 1 using a compressor, the billet is compressed in the axial direction and becomes the state shown in FIG. 1(b). As shown in FIG. 1(b), the height of the outer peripheral part of the billet after compression processing is smaller than the height of the inner peripheral part.

つまり、ビレットの外周部の圧縮ひずみが内周部の圧縮
ひずみより大きくなるようにビレットの軸方向に圧縮加
工を施したことになる。
In other words, the billet was compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet was greater than the compressive strain on the inner circumferential portion.

圧縮ひずみとは、ビレットの軸方向のひずみをい” う
Compressive strain refers to strain in the billet's axial direction.

第1の方法の代表的な別の圧縮加工の例をビレットの断
面形状をリング状として説明すると、第2図(+L)に
第1図と同様に加工前の状態の断面を示す。第2図(&
)に示すように第1図と異なる点は、ポンチ2およびポ
ンチ3のポンチ端面は平面であり、加工前のビレットの
外周部の高さが内周部の高さより大きいことである。第
2図(b)に加工後の状態を示す。加工後のビレットは
ほぼ円筒体状となり、ビレットの外周部の高さと内周部
の高さはほぼ一致する。この場合も同様に、ビレットの
外周部の圧縮ひずみが内周部の圧縮ひずみより大きくな
るようにビレットの、軸方向に圧縮加工を施したことに
なる。
Another typical compression processing example of the first method will be described assuming that the cross-sectional shape of the billet is ring-shaped. FIG. 2 (+L) shows a cross section before processing, similar to FIG. 1. Figure 2 (&
), the difference from FIG. 1 is that the punch end faces of punches 2 and 3 are flat, and the height of the outer periphery of the billet before processing is greater than the height of the inner periphery. FIG. 2(b) shows the state after processing. The billet after processing has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet and the height of the inner circumferential portion of the billet are approximately the same. In this case as well, the billet was compressed in the axial direction so that the compressive strain at the outer circumferential portion of the billet was greater than the compressive strain at the inner circumferential portion.

第2の方法は、第1の方法で得だ、自由圧縮加工を施し
たビレットの一部分に軸方向に圧縮加工を施す方法であ
り、この方法は前記公知技術と同じである。
The second method is a method in which a portion of the billet that has been subjected to free compression, which is advantageous in the first method, is compressed in the axial direction, and this method is the same as the above-mentioned known technique.

第3の方法は、ビレットの外周部の圧縮ひずみが内周部
の圧縮ひずみより大きくなるようにビレットの軸方向に
自由圧縮加工(圧縮加工1、第1の方法)を施した後、
ビレットの外周を拘束した状態で、しかも内周を自由に
した状態で、ビレットの軸方向に圧縮加工(圧縮加工2
)する方法で、この一連の圧縮加工の一例を第3図に示
す。第3図は(a)に加工前の状態の断面を示す。1は
ビレット、2.3はポンチ、4は外型である。第3図(
a)に示すように、前記公知技術と異なる点は、ポンチ
2およびポンチ3のポンチ端面が平面ではなく傾斜面で
あることである。このポンチ2およびポンチ3を用いて
、ビレット1の軸方向に加圧することによって、ビレッ
トは軸方向に圧縮加工されて第1図(b)に示す状態(
圧縮加工1終了)になり、更に圧縮加工を行なうと第3
図(C)に示したようになる。圧縮加工後のビレットの
外周部の高さは内周部の高さより小さい。つまり、この
場合もビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより大きくなるようにビレットの軸方向に圧縮加工
を施したことになる。
The third method is to perform free compression processing (compression processing 1, first method) in the axial direction of the billet so that the compression strain on the outer circumference of the billet is larger than the compression strain on the inner circumference, and then
With the outer circumference of the billet constrained and the inner circumference free, compression processing is performed in the axial direction of the billet (compression processing 2
) An example of this series of compression processing is shown in Fig. 3. FIG. 3(a) shows a cross section before processing. 1 is a billet, 2.3 is a punch, and 4 is an outer mold. Figure 3 (
As shown in a), the difference from the prior art is that the punch end faces of punches 2 and 3 are not flat but sloped. By applying pressure in the axial direction of the billet 1 using the punches 2 and 3, the billet is compressed in the axial direction and is in the state shown in FIG. 1(b) (
Compression processing 1 is completed), and if you perform further compression processing, the third
The result is as shown in Figure (C). The height of the outer periphery of the billet after compression processing is smaller than the height of the inner periphery. In other words, in this case as well, the billet was compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet was greater than the compressive strain on the inner circumferential portion.

第3の方法の別の例をビレットの断面形状をリング状と
して説明すると1、第4図(a)に第3図と同様に加工
前の状態の断面を示す。第4図(&)に示すように第3
図と異なる点は、ポンチ2およびポンチ3のポンチ端面
は平面であり、加工mTのビレットの外周部の高さが内
周部の高さより大きいことである。第4図(b)に圧縮
加工1の加工後の状態を示す。加工後のビレットはほぼ
円筒体状となり、ビレットの外周部の高さと内周部の高
さはほぼ一致する。この場合も同様に、ビレットの外周
部の圧縮ひずみが内周部の圧縮ひずみより大きくなるよ
うにビレットの軸方向に圧縮加工を施したことになる。
Another example of the third method will be described assuming that the cross-sectional shape of the billet is ring-shaped. 1. FIG. 4(a) shows a cross-section of the billet before processing, similar to FIG. 3. As shown in Figure 4 (&), the third
The difference from the figure is that the punch end faces of punches 2 and 3 are flat, and the height of the outer circumference of the billet processed mT is greater than the height of the inner circumference. FIG. 4(b) shows the state after compression processing 1. The billet after processing has a substantially cylindrical shape, and the height of the outer circumferential portion of the billet and the height of the inner circumferential portion of the billet are approximately the same. In this case as well, the billet was compressed in the axial direction so that the compressive strain at the outer circumferential portion of the billet was greater than the compressive strain at the inner circumferential portion.

さらに、圧縮加工を行なうと第4図(C)に示した状態
になる。
Further, when compression processing is performed, the state shown in FIG. 4(C) is obtained.

第4の方法は、第3の方法で得たビレソIf更に、ビレ
ットの一部分に軸方向に圧縮加工を施す方法であり、こ
の方法は前記公知技術と同じである。
The fourth method is a method in which a part of the billet obtained in the third method is further compressed in the axial direction, and this method is the same as the above-mentioned known technique.

以上述べてきた様に、本発明は前記公知技術(特開昭5
8−182205号公報)に示された圧縮加工とほとん
ど同じであるが、ビレット端面を傾斜面あるいはポンチ
端面を傾斜面にすることによって、この特定の圧縮加工
において、ビレットの外周部の圧縮ひずみが内周部の圧
縮ひずみより大きくなるようにビレットの軸方向に圧縮
加工を施すことができ、これによって、磁石の外周部で
は径方向に磁化容易方向を有し、内周部では周方向に磁
化容易方向を有する異方性構造となり、外周多極着磁に
適した磁石が得られる。
As described above, the present invention is based on the above-mentioned known technology (Japanese Unexamined Patent Publication No. 5
This is almost the same as the compression process shown in Japanese Patent No. 8-182205), but by making the billet end surface an inclined surface or the punch end surface an inclined surface, in this particular compression process, the compressive strain on the outer periphery of the billet can be reduced. The billet can be compressed in the axial direction so that the compressive strain is greater than the compressive strain on the inner circumference, and as a result, the outer circumference of the magnet has an easy magnetization direction in the radial direction, and the inner circumference has an easy magnetization direction in the circumferential direction. An anisotropic structure with an easy direction is obtained, and a magnet suitable for peripheral multi-pole magnetization can be obtained.

前記の二つの例の組み合わせでも、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレットの軸方向に圧縮加工を施すことができる。つま
り、第1図に示した金型(ポンチ端面が傾斜面)を用い
て、第2図に示したビレット(ビレット端面が傾斜面)
を圧縮加工する方法である。
Even in a combination of the above two examples, the billet can be compressed in the axial direction so that the compressive strain on the outer circumferential portion of the billet is larger than the compressive strain on the inner circumferential portion. In other words, using the mold shown in Fig. 1 (the punch end face is an inclined face), the billet shown in Fig. 2 (the billet end face is an inclined face) is used.
This is a method of compression processing.

前述した例では、ポンチ端面あるいはビレット端面が傾
斜面であったが他に階段状面(段付き形状)、平面+傾
斜面あるいは以上の組み合わせなどあり、さらに凹凸状
にするポンチあるいはビレット端面は両面でも片面でも
よい。必要なことはビレットの外周部の圧縮ひずみが内
周部の圧縮ひずみより大きくなるようにビレットの軸方
向に圧縮加工を施すことである。これによって、磁石の
外周部では径方向に磁化容易方向を有し、内周部では周
方向に磁化容易方向を有する異方性構造となり、外周多
極着磁に適した異方性磁石が得られる。
In the above example, the punch end face or billet end face was a sloped face, but there are also stepped faces (stepped shapes), flat + sloped faces, or a combination of the above, and the punch or billet end face that has an uneven shape has both sides. But it can be one-sided. What is necessary is to compress the billet in the axial direction so that the compressive strain on the outer circumference of the billet is greater than the compressive strain on the inner circumference. This creates an anisotropic structure in which the outer periphery of the magnet has an easy magnetization direction in the radial direction, and the inner periphery has an easy magnetization direction in the circumferential direction, resulting in an anisotropic magnet suitable for outer periphery multipole magnetization. It will be done.

前述したような圧縮加工の可能な温度範囲については、
530〜830℃の温度領域において、加工が行えたが
、780℃を越える温度では、磁気特性がかな9低下し
た。よp望ましい温度範囲としては560〜76o℃で
あった。
Regarding the possible temperature range of compression processing as mentioned above,
Processing was possible in the temperature range of 530 to 830°C, but at temperatures exceeding 780°C, the magnetic properties decreased by 9 degrees. The most desirable temperature range was 560 to 76oC.

次に本発明の更に具体的な実施例について説明する。Next, more specific embodiments of the present invention will be described.

実施例1 配合組成で69・5%のMn、29−3%のAelo、
6%のC及び0.7%のNiを溶解鋳造し、直径50層
R1長ざ4QMllの円柱ビレットを作製した。
Example 1 Blending composition: 69.5% Mn, 29-3% Aero,
6% C and 0.7% Ni were melted and cast to produce a cylindrical billet with a diameter of 50 layers R1 and a length of 4QMll.

このビレットに1100℃で2時間保持した後、600
℃まで風冷し、600 ℃で30分間保持した後、室温
まで放冷する熱処理を施した。
After holding this billet at 1100℃ for 2 hours,
After cooling with air to 600°C for 30 minutes, heat treatment was performed by cooling to room temperature.

潤滑剤を介して、720℃の温度で、直径が32朋まで
の押出加工を行った。押出棒を切断および切削加工しそ
、外径30 MM 、内径16間、外周部の長さ25顛
、内周部の長さ20MIIIの両端面が傾斜面のビレッ
トを作製した。
Extrusion processing up to a diameter of 32 mm was carried out at a temperature of 720° C. via a lubricant. The extruded rod was cut and machined to produce a billet having an outer diameter of 30 mm, an inner diameter of 16 mm, an outer circumference length of 25 mm, an inner circumference length of 20 mm, and both end faces having sloped surfaces.

次に、潤滑剤を介して、第2図に示したような金型を用
いて、ビレットの外周および内周を自由な状態にして、
680℃の温度で、長さが12flまでの圧縮加工を行
った。
Next, using a mold as shown in Figure 2, the outer and inner peripheries of the billet are made free using a lubricant.
Compression processing up to a length of 12 fl was performed at a temperature of 680°C.

このビレットを外径40flに切削加工した後外周表面
に24極の外周着磁をした。着磁は2000μFのオイ
ルコンデンサーを用い、16oovでパルス着磁した。
After cutting this billet to an outer diameter of 40 fl, the outer peripheral surface was magnetized with 24 poles. For magnetization, a 2000 μF oil capacitor was used, and pulse magnetization was performed at 16 oov.

外周表面の表面磁束密度をホール素子で測定した。The surface magnetic flux density on the outer peripheral surface was measured using a Hall element.

比較のために、前述した押出棒を切断および切削加工し
て、外径30 ffff 、内径16朋、長さ22.5
朋の円筒ビレットを作製した。潤滑剤を介して、前記と
同じ金型を用い、長さが12朋までの圧縮加工を行った
。さらに前記と同様に切削加工して、着磁し、表面磁束
密度を測定した。
For comparison, the extruded rod described above was cut and machined to have an outer diameter of 30 ffff, an inner diameter of 16 mm, and a length of 22.5 mm.
I made my cylindrical billet. Using a lubricant and using the same mold as above, compression working was performed up to a length of 12 mm. Furthermore, it was cut and magnetized in the same manner as above, and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のだめに作製した磁石のそ
れの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石を第5図に示す
ような金型を用いて、680′Cの温度で、ビレットの
外周部のみを圧縮加工した。第5図(a)は加工前の状
態を示し、第5図(b)は加工後の状態を示す。5は固
定用ポンチ、6は可動ポンチ、7は下型である。固定用
ポンチ5と下型7によって、ビレットヲ固定及び拘束し
、可動ポンチ6でビレット1を加圧することにより第6
図(b)に示す状態になり、これによってビレットの外
周部のみが圧縮加工される。なおポンチ5の直径(ポン
チ6の内径)は35111111である。圧縮加工後の
外周部の長さは8朋であった。加工後のビレットを切削
加工し、外径40 MMにして前記と同様に着磁して、
この圧縮加工の前・後で表面磁束密度の値を比較すると
、加工後の方がo、2kG高くなった。
Furthermore, only the outer circumferential portion of the billet was compressed using a mold as shown in FIG. 5 at a temperature of 680'C. FIG. 5(a) shows the state before processing, and FIG. 5(b) shows the state after processing. 5 is a fixed punch, 6 is a movable punch, and 7 is a lower die. The fixing punch 5 and the lower mold 7 fix and restrain the billet, and the movable punch 6 pressurizes the billet 1 to form the sixth
The state shown in Figure (b) is reached, whereby only the outer peripheral portion of the billet is compressed. Note that the diameter of the punch 5 (inner diameter of the punch 6) is 35111111. The length of the outer periphery after compression processing was 8 mm. The processed billet was machined to an outer diameter of 40 MM and magnetized in the same manner as above.
Comparing the values of the surface magnetic flux density before and after this compression processing, the surface magnetic flux density was higher by 2 kG after processing.

実施例2 配合組成で69,4%のMn、29.3%のAe。Example 2 The blend composition is 69.4% Mn and 29.3% Ae.

0.5%のC,0,7%のNi及び0.1%のTiを溶
解鋳造し、直径50朋、長さ40朋の円柱ビレットを作
製した。このビレットに実施例1と同じ熱処理を施した
。次に潤滑剤を介して、720℃の温度で、直径が32
騎までの押出加工を行った。
A cylindrical billet having a diameter of 50 mm and a length of 40 mm was prepared by melting and casting 0.5% C, 0.7% Ni, and 0.1% Ti. This billet was subjected to the same heat treatment as in Example 1. Then, through lubricant, at a temperature of 720°C, a diameter of 32
We performed extrusion processing up to the size.

押出棒を切断および切削加工して、外径3011M。The extruded rod was cut and machined to have an outer diameter of 3011M.

内径16ffff、長さ26MMの円筒ビレットを作製
した。次に、潤滑剤を介して、第1図に示したような金
型を用いて、円筒ビレットの外周および内周を自由な状
態にして、680℃の温度で、円筒ビレットの内周部の
長さが16朋までの圧縮加工を行った。なお第1図にお
いて、ポンチ端面の傾斜角αは100である。
A cylindrical billet with an inner diameter of 16ffff and a length of 26 mm was produced. Next, using a mold as shown in Figure 1, the outer and inner circumferences of the cylindrical billet are made free using a lubricant, and the inner circumference of the cylindrical billet is heated at a temperature of 680°C. Compression processing was performed up to a length of 16 mm. In FIG. 1, the inclination angle α of the punch end face is 100.

このビレットを外径4071ffに切削加工して、実施
例1と同様に24極の外周着磁し、表面磁束密度を測定
した。比較のために、前記の押出棒を切断および切削加
工して、外径30朋、内径16朋。
This billet was cut to an outer diameter of 4071 ff, and the outer circumference was magnetized with 24 poles in the same manner as in Example 1, and the surface magnetic flux density was measured. For comparison, the extruded rod was cut and machined to have an outer diameter of 30 mm and an inner diameter of 16 mm.

長さ25朋の円筒ビレットを作製した。潤滑剤を介して
、実施例1で使用した金型を用いて、長さが15朋まで
の圧縮加工を行った。さらに前記と同様に切削加工した
後、着磁し、表面磁束密度を測定した。
A cylindrical billet with a length of 25 mm was produced. Compression processing up to a length of 15 mm was performed using the mold used in Example 1 via a lubricant. Furthermore, after cutting in the same manner as described above, it was magnetized and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石に実施例1と同
様に、外周部のみを長さが7羽までの圧縮加工を施した
。加工後のビレットを外径40朋に切削加工して前記と
同様に着磁し、この圧縮加工の前・後で表面磁束密度の
値を比較すると、加工後の方がo、2kG高くなった。
Furthermore, in the same manner as in Example 1, only the outer circumferential portion of the previously magnetized magnet of the present invention was compressed to a length of up to 7 wings. The processed billet was cut to an outer diameter of 40 mm and magnetized in the same manner as above, and when comparing the surface magnetic flux density values before and after this compression processing, it was found that the value after processing was 2 kG higher. .

実施例3 実施例1で得た押出棒を切断および切削加工して、外径
30ffff、内径16朋、外周部の長さ26朋1内周
部の長さ20ffffの両端面が階段状で段付き部の境
界の径が23朋のビレットを作製した。
Example 3 The extruded rod obtained in Example 1 was cut and machined to have an outer diameter of 30 ffff, an inner diameter of 16 mm, an outer periphery length of 26 mm, and an inner periphery length of 20 ffff, with both end surfaces having a stepped shape. A billet with a diameter of 23mm at the border of the attached part was produced.

このビレットを用いて実施例1と同じ圧縮加工を行った
。加工後のビレットの長さは12MMであった。このビ
レットを外径40ffllrに切削加工して、実施例1
と同様に24極の外周着磁後、表面磁束密度を測定し、
実施例1で比較のために作製した磁石と比較した。
The same compression process as in Example 1 was performed using this billet. The length of the billet after processing was 12 mm. This billet was cut to an outer diameter of 40ffllr, and Example 1
After magnetizing the outer periphery of 24 poles in the same way as above, measure the surface magnetic flux density,
A comparison was made with the magnet produced for comparison in Example 1.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1.3倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.3 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石に実施例1と同
様に、外周部のみを長さが8朋までの圧縮加工を施した
。加工後のビレット全外径4 Q Mlに切削加工した
後、前記と同様に着磁し、この圧縮加工の前・後で表面
磁束密度の値を比較すると、加工後の方が0・2kG高
くなった。
Further, in the same manner as in Example 1, only the outer peripheral portion of the magnet of the present invention, which had just been magnetized, was compressed to a length of up to 8 mm. After cutting the billet after processing to a total outer diameter of 4 Q Ml, it was magnetized in the same manner as above, and when comparing the surface magnetic flux density values before and after this compression processing, the value after processing was 0.2 kG higher. became.

実施例4 実施例2で得だ押出棒を切断および切削加工して、外径
30朋、内径16朋、長さ2571ffの円筒ビレ2ト
を作製した。次に、潤滑剤を介して、第6図に示したよ
うな金型を用いて円筒ビレットの外周および内周を自由
な状態にして、680℃の温度で、円筒ビレットの内周
部の長さが17朋までの圧縮加工を行った。なお第6図
において、ポンチ端面の段付き部の径は30羽1段差は
2.5朋である。
Example 4 The extruded rod obtained in Example 2 was cut and machined to produce two cylindrical fillets with an outer diameter of 30 mm, an inner diameter of 16 mm, and a length of 2571 ff. Next, the outer and inner peripheries of the cylindrical billet were made free using a mold as shown in Fig. 6 using a lubricant, and the length of the inner periphery of the cylindrical billet was heated at a temperature of 680°C. Compression processing was performed up to 17 mm. In FIG. 6, the diameter of the stepped portion on the end face of the punch is 30 holes, and one step is 2.5 mm.

このビレットを外径40朋に切削加工した後、実施例1
と同様に24極の外周着磁をして、表面磁束密度を測定
し、実施例2:c比較のために作製した磁石と比較した
After cutting this billet to an outer diameter of 40mm, Example 1
The outer periphery of 24 poles was magnetized in the same manner as above, and the surface magnetic flux density was measured and compared with the magnet prepared for comparison in Example 2:c.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1.3倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.3 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石に実施例1と同
様に、外周部のみを長さが8朋までの圧縮加工を施した
。ビレットを外径40MMに切削加工し、前記と同様に
着磁して、この圧縮加工の萌・後で表面磁束密度の値を
比較すると、加工後の方が0・2kG高くなった。
Further, in the same manner as in Example 1, only the outer peripheral portion of the magnet of the present invention, which had just been magnetized, was compressed to a length of up to 8 mm. A billet was machined to an outer diameter of 40 MM, magnetized in the same manner as described above, and when the surface magnetic flux density values were compared before and after the compression process, the value after the process was 0.2 kG higher.

実施例5 実施例1で得た押出棒を切断および切削加工して、外径
30朋、内径16朋、外周部の長さ26朋、内周部の長
さ20朋の両端面が傾斜面のビレットを作製した2次に
、潤滑剤を介して、第4図に示したような金型を用いて
、ビレットの外周および内周を自由な状態にして、68
0℃の温度で、長さが157ffffまでの圧縮加工を
行った。なお第4図において、外型4の内径は34MM
である。
Example 5 The extruded rod obtained in Example 1 was cut and machined to have an outer diameter of 30 mm, an inner diameter of 16 mm, an outer circumference length of 26 mm, and an inner circumference length of 20 mm, with both end surfaces being inclined surfaces. Next, using a mold as shown in Fig. 4, the outer and inner circumferences of the billet were made free using a lubricant.
Compression processing up to a length of 157ffff was performed at a temperature of 0°C. In Fig. 4, the inner diameter of the outer mold 4 is 34MM.
It is.

このビレットを外径33Mに切削加工した後、実施例1
と同様に24゛極の外周着磁を行い、表面磁束密度を測
定した。
After cutting this billet to an outer diameter of 33M, Example 1
The outer periphery of the 24-pole was magnetized in the same manner as above, and the surface magnetic flux density was measured.

比較のために、前述した押出棒を切断および切削加工し
て、外径30MM、内径16朋、長さ22.5朋の円筒
ビレットを作製した。次に、潤滑剤を介して、前記と同
様に長さが約16朋までの圧縮加工を行い、切削加工し
て、着磁し、表面磁束密度を測定した。
For comparison, the extruded rod described above was cut and machined to produce a cylindrical billet having an outer diameter of 30 mm, an inner diameter of 16 mm, and a length of 22.5 mm. Next, through a lubricant, compression processing was performed to a length of about 16 mm in the same manner as described above, cutting was performed, magnetization was performed, and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本発明の方法で得だ磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1・2倍であったっさらに、本発明のさきほど着
磁した磁石を実施例1と同様に、外周部のみを圧縮加工
した。なおポンチ6の直径は29朋であり、外周部の長
さは10朋であった。加工後のビレットを外径33朋に
切削加工した後、前記と同様に着磁して、この、圧縮加
工の前・後で表面磁束密度の値を比較すると、加工後の
方が0・2kG高くなった。
Comparing the above two values, it was found that the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison. As in Example 1, only the outer peripheral portion of the magnet was compressed. The diameter of the punch 6 was 29 mm, and the length of the outer circumference was 10 mm. After cutting the processed billet to an outer diameter of 33 mm, it was magnetized in the same manner as above, and when comparing the surface magnetic flux density before and after compression processing, the value after processing was 0.2 kG. It got expensive.

実施例6 実施例1で得た押出棒を切断および切削加工して、外径
3QM11.内径16門、長さ25騎の円筒ビレットを
作製した。次に、潤滑剤を介して、第3図に示したよう
な金型を用いてビレットの外周および内周を自由な状態
にして、680℃の温度で、ビレットの外周部の長さが
13・3闘までの圧縮加工を行った。なお第1図におい
て、ポンチ端面の傾斜角αは100、外型4の内径は3
4朋である。
Example 6 The extruded rod obtained in Example 1 was cut and machined to have an outer diameter of 3QM11. A cylindrical billet with an inner diameter of 16 and a length of 25 was produced. Next, the outer and inner peripheries of the billet were made free using a mold as shown in Figure 3 using a lubricant, and the length of the outer periphery of the billet was reduced to 13 mm at a temperature of 680°C. - Compression processing was performed up to 3 fights. In Fig. 1, the inclination angle α of the punch end face is 100, and the inner diameter of the outer die 4 is 3.
There are 4 friends.

この圧縮加工を施したビレットを外径33朋に切削加工
した後、実施例1と同様に24極の外周着磁を行い、表
面磁束密度を測定し、実施例5で比較のために作製した
磁石と比較した。
After cutting the compressed billet to an outer diameter of 33 mm, the outer circumference was magnetized with 24 poles in the same manner as in Example 1, the surface magnetic flux density was measured, and a billet was prepared for comparison in Example 5. compared to magnets.

以上の両者の値を比較すると、本発明の方法で得た磁石
の表面磁束密度の値は、比較のために作製した磁石のそ
れの約1・2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of the present invention was about 1.2 times that of the magnet produced for comparison.

さらに、本発明のさきほど着磁した磁石に実施例1と同
様に、外周部のみを長さが10朋までの圧縮加工を施し
た。加工後のビレットを外径33絹に切削加工した後、
前記と同様に着磁して、この圧縮加工の前・後で表面磁
束密度の値を比較すると、加工後の方が0.2 k G
高くなった。
Further, in the same manner as in Example 1, only the outer circumferential portion of the previously magnetized magnet of the present invention was compressed to a length of up to 10 mm. After cutting the processed billet into an outer diameter of 33 silk,
Magnetized in the same way as above, and comparing the surface magnetic flux density values before and after this compression processing, the value after processing is 0.2 k G
It got expensive.

以上、Mn−Ae−C系合金磁石の組成については、N
i添加の4元系とNi、Ti添加の5元系のものについ
てのみ示したが、Mn−Ae−C系合金磁石の基本組成
である3元系あるいは前記以外の添加元素を添加した多
元系についても磁石の磁気特性に若干の差は認められた
が、公知の圧縮加工による方法より前述したような磁気
特性の向上が認められた。
As mentioned above, regarding the composition of the Mn-Ae-C alloy magnet, N
Although only the quaternary system with i addition and the quinary system with Ni and Ti additions are shown, the ternary system, which is the basic composition of Mn-Ae-C alloy magnets, or the multi-component system with addition elements other than those mentioned above are shown. Although some differences were observed in the magnetic properties of the magnets, improvements in the magnetic properties as described above were observed compared to the known compression processing method.

あらかじめ異方性化したMn−Ae−C系合金磁石とし
て一軸異方性磁石を用いた例を示したが面異方性磁石、
径異方性磁石などを用いても同様であった。
Although we have shown an example in which a uniaxial anisotropic magnet is used as an Mn-Ae-C alloy magnet that has been made anisotropic in advance, a planar anisotropic magnet,
The same result was obtained even when a diameter anisotropic magnet was used.

また、ビレットの一部分への圧縮加工については、ビレ
ットの外周部のみを圧縮加工する例のみ示したが、内周
部のみ圧縮加工する場合でもよいが、この場合は、磁石
全体を径方向に磁化容易方向を有するようにしたい場合
に有効である。
Furthermore, regarding the compression processing of a portion of the billet, only the example in which only the outer circumference of the billet is compressed is shown, but it is also possible to compress only the inner circumference, but in this case, the entire magnet is magnetized in the radial direction. This is effective when you want to have an easy direction.

さらに、ビレットおよびポンチ端面の形状にっ ・いて
は傾斜面および階段状の段付き形状の例を示したが平面
十傾斜面あるいは以上の組み合わせなどでも従来の圧縮
加工に比べて磁気特性の向上が認められた。また、凹凸
状端面ば片端面でも両端面でもよい。
Furthermore, regarding the shape of the billet and punch end faces, we have shown examples of inclined surfaces and stepped shapes, but even flat surfaces, inclined surfaces, or a combination of the above can improve magnetic properties compared to conventional compression processing. Admitted. Further, the uneven end face may be one end face or both end faces.

発明の効果 本発明は、実施例によって述べたように、あらかじめ異
方性化した多結晶Mn−Ae−C系合金磁石からなる中
空体状のビレットに、少なくともビレットの外周および
内周の一部分を自由にした状態で、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレットの軸方向に圧縮加工を施すことによって外周多
極着磁を施した場合に高い磁気特性を示す磁石を得るも
のである。
Effects of the Invention As described in the examples, the present invention provides a hollow billet made of a polycrystalline Mn-Ae-C alloy magnet that has been made anisotropic in advance, and at least a portion of the outer and inner circumferences of the billet. By compressing the billet in the axial direction so that the compressive strain on the outer periphery of the billet is greater than the compressive strain on the inner periphery in the free state, high magnetic properties can be achieved when the outer periphery is multipole magnetized. The magnet shown is obtained.

この方法によって、磁石の外周部では径方向に磁化容易
方向を有し、内周部では周方向に磁化容易方向を有し、
内周部では周方向に磁化容易方向を有する磁石を得るこ
とができる。
With this method, the outer circumference of the magnet has an easy magnetization direction in the radial direction, and the inner circumference has an easy magnetization direction in the circumferential direction,
A magnet having an easy magnetization direction in the circumferential direction can be obtained at the inner circumference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はそれぞれ本発明の圧縮加工の−例を示
す金型の一部の断面図である。 1・・・・・ビレット、2,3 ・・・・ポンチ、4・
・・・・・外型、5・・・・・・固定用ポンチ、6・・
・・・可動ポンプ、7・・・・・・下型。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (す Cb) 第 2 図      (久ジ 第5図 (ス) Cb)
1 to 6 are sectional views of a part of a mold showing an example of compression processing according to the present invention. 1...Billet, 2,3...Punch, 4.
...Outer mold, 5...Fixing punch, 6...
...Movable pump, 7...Lower mold. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (S Cb) Figure 2 (Kuji Figure 5 (S) Cb)

Claims (12)

【特許請求の範囲】[Claims] (1)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空本体状のビレット
に、530〜830℃の温度で、少なくともビレットの
外周および内周の一部分を自由にした状態で、ビレット
の外周部の圧縮ひずみより大きくなるようにビレットの
軸方向に圧縮加工を施すことを特徴とするマンガン−ア
ルミニウム−炭素系合金磁石の製造法。
(1) A state in which a hollow body-shaped billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance is kept free at least part of the outer and inner circumferences of the billet at a temperature of 530 to 830°C. A method for manufacturing a manganese-aluminum-carbon alloy magnet, characterized in that the billet is compressed in the axial direction so that the compressive strain is greater than the compressive strain at the outer periphery of the billet.
(2)ビレットが、中空体の軸方向に磁化容易方向を有
し、しかも前記圧縮ひずみが対数ひずみの絶対値で0.
05以上である特許請求の範囲第1項記載のマンガン−
アルミニウム−炭素系合金磁石の製造法。
(2) The billet has a direction of easy magnetization in the axial direction of the hollow body, and the compressive strain is 0.0 as the absolute value of the logarithmic strain.
Manganese according to claim 1, which is 05 or more.
A method for producing an aluminum-carbon alloy magnet.
(3)ビレットが、中空体の軸方向に垂直な平面に平行
に磁化容易方向を有し、しかも前記平面内では磁気的に
等方性であり、かつ前記軸方向と前記平面に平行な直線
を含む平面内では異方性である多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる特許請求の範囲第1項
記載のマンガン−アルミニウム−炭素系合金磁石の製造
法。
(3) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is a straight line parallel to the axial direction and the plane. 2. A method for producing a manganese-aluminum-carbon alloy magnet according to claim 1, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing the .
(4)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状のビレットに
、530〜830℃の温度で、少なくともビレットの外
周および内周の一部分を自由にした状態で、ビレットの
外周部の圧縮ひずみが内周部の圧縮ひずみより大きくな
るようにビレットの軸方向に圧縮加工を施した後、さら
にビレットの一部分に圧縮加工を施すことを特徴とする
マンガン−アルミニウム−炭素系合金磁石の製造法。
(4) A state in which a hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance is heated at a temperature of 530 to 830°C, with at least a portion of the outer periphery and inner periphery of the billet free. The manganese-aluminum material is characterized in that the billet is compressed in the axial direction so that the compressive strain at the outer circumference of the billet is greater than the compressive strain at the inner circumference, and then a part of the billet is further compressed. -Production method of carbon-based alloy magnet.
(5)ビレットが、中空体の軸方向に磁化容易方向を有
し、しかも前記の少なくともビレットの外周および内周
の一部分を自由にした状態で、ビレットの外周部の圧縮
ひずみが内周部の圧縮ひずみより大きくなるようにビレ
ットの軸方向への圧縮ひずみが対数ひずみの絶対値で0
.05以上である特許請求の範囲第4項記載のマンガン
−アルミニウム−炭素系合金磁石の製造法。
(5) With the billet having an easy magnetization direction in the axial direction of the hollow body and with at least a portion of the outer circumference and inner circumference of the billet being free, the compressive strain on the outer circumference of the billet is equal to that on the inner circumference. The compressive strain in the axial direction of the billet is greater than the compressive strain, so that the absolute value of the logarithmic strain is 0.
.. 5. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 4, wherein the magnet is 0.05 or more.
(6)ビレットが、中空体の軸方向に垂直な平面に平行
に磁化容易方向を有し、しかも前記平面内では磁気的に
等方性であり、かつ前記軸方向と前記平面に平行な直線
を含む平面内では異方性である多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる特許請求の範囲第4項
記載のマンガン−アルミニウム−炭素系合金磁石の製造
法。
(6) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is a straight line parallel to the axial direction and the plane. 5. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 4, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing the .
(7)あらかじめ異方性化した多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる中空体状のビレットに
、530〜830℃の温度で、少なくとも外周および内
周の一部分を自由にした状態で、ビレットの外周部の圧
縮ひずみが内周部の圧縮ひずみより大きくなるようにビ
レットの軸方向に圧縮加工を施し、さらにビレットの外
周を拘束した状態で、しかも少なくとも内周の一部分を
自由にした状態で、ビレットの軸方向に圧縮加工を施す
ことを特徴とするマンガン−アルミニウム−炭素系合金
磁石の製造法。
(7) A hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance, at a temperature of 530 to 830°C, with at least a portion of the outer circumference and inner circumference free; The billet is compressed in the axial direction so that the compressive strain on the outer periphery of the billet is greater than the compressive strain on the inner periphery, and the outer periphery of the billet is constrained, while at least a portion of the inner periphery is free. A method for manufacturing a manganese-aluminum-carbon alloy magnet, which comprises compressing a billet in the axial direction.
(8)ビレットが、中空体の軸方向に磁化容易方向を有
し、しかも前記圧縮加工が終了時には軸方向の圧縮ひず
みを対数ひずみの絶対値で0.05以上施すものである
特許請求の範囲第7項記載のマンガン−アルミニウム−
炭素系合金磁石の製造法。
(8) The billet has a direction of easy magnetization in the axial direction of the hollow body, and furthermore, when the compression process is completed, a compressive strain in the axial direction is applied to the billet by an absolute value of logarithmic strain of 0.05 or more. Manganese-aluminum- according to item 7
Manufacturing method for carbon-based alloy magnets.
(9)ビレットが、中空体の軸方向に垂直な平面に平行
に磁化容易方向を有し、しかも前記平面内では磁気的に
等方性であり、かつ前記軸方向と前記平面に平行な直線
を含む平面内では異方性である多結晶マンガン−アルミ
ニウム−炭素系合金磁石からなる特許請求の範囲第7項
記載のマンガン−アルミニウム−炭素系合金磁石の製造
法。
(9) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is a straight line parallel to the axial direction and the plane. 8. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 7, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing the .
(10)あらかじめ異方性化した多結晶マンガン−アル
ミニウム−炭素系合金磁石からなる中空体状のビレット
に、530〜830℃の温度で、少なくともビレットの
外周および内周の一部分を自由にした状態で、ビレット
の外周部の圧縮ひずみが内周部の圧縮ひずみより大きく
なるようにビレットの軸方向に圧縮加工を施し、さらに
ビレットの外周を拘束した状態で、しかも少なくとも内
周の一部分を自由にした状態で、ビレットの軸方向に圧
縮加工を施した後、さらにビレットの一部分に、ビレッ
トの軸方向に圧縮加工を施すことを特徴とするマンガン
−アルミニウム−炭素系合金磁石の製造法。
(10) A hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance, at a temperature of 530 to 830°C, with at least a portion of the outer and inner circumferences of the billet free. Then, the billet is compressed in the axial direction so that the compressive strain on the outer periphery of the billet is greater than the compressive strain on the inner periphery, and furthermore, while the outer periphery of the billet is constrained, at least a part of the inner periphery is free. 1. A method for manufacturing a manganese-aluminum-carbon alloy magnet, which comprises compressing the billet in the axial direction, and then compressing a portion of the billet in the axial direction of the billet.
(11)ビレットが、中空体の軸方向に磁化容易方向を
有し、しかも前記ビレットの外周を拘束した状態で、し
かも少なくとも内周の一部分を自由にした状態で、ビレ
ットの軸方向に圧縮加工が、終了時には軸方向の圧縮ひ
ずみを対数ひずみの絶対値で0.05以上施すものであ
る特許請求の範囲第10項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。
(11) The billet has an easy magnetization direction in the axial direction of the hollow body, and is compressed in the axial direction of the billet while the outer periphery of the billet is restrained and at least a part of the inner periphery is free. The method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 10, wherein compressive strain in the axial direction is applied at the end of the process by 0.05 or more in absolute value of logarithmic strain.
(12)ビレットが、中空体の軸方向に垂直な平面に平
行に磁化容易方向を有し、しかも前記平面内では磁気的
に等方性であり、かつ前記軸方向と前記平面に平行な直
線を含む平面内では異方性である多結晶マンガン−アル
ミニウム−炭素系合金磁石からなる特許請求の範囲第1
0項記載のマンガン−アルミニウム−炭素系合金磁石の
製造法。
(12) The billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within the plane, and is a straight line parallel to the axial direction and the plane. Claim 1 consisting of a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing
A method for producing a manganese-aluminum-carbon alloy magnet according to item 0.
JP60284890A 1985-12-18 1985-12-18 Manufacture of manganese-aluminum-carbon alloy magnet Pending JPS62143406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284890A JPS62143406A (en) 1985-12-18 1985-12-18 Manufacture of manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284890A JPS62143406A (en) 1985-12-18 1985-12-18 Manufacture of manganese-aluminum-carbon alloy magnet

Publications (1)

Publication Number Publication Date
JPS62143406A true JPS62143406A (en) 1987-06-26

Family

ID=17684363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284890A Pending JPS62143406A (en) 1985-12-18 1985-12-18 Manufacture of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS62143406A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972701A (en) * 1982-10-20 1984-04-24 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972701A (en) * 1982-10-20 1984-04-24 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Similar Documents

Publication Publication Date Title
JPS62143406A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247055A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0479122B2 (en)
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247053A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311521B2 (en)
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247051A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143410A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247059A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62247056A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243753A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0673327B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS58192303A (en) Manufacture of manganese-aluminum-carbon alloy magnet