JPH0434806B2 - - Google Patents

Info

Publication number
JPH0434806B2
JPH0434806B2 JP58168637A JP16863783A JPH0434806B2 JP H0434806 B2 JPH0434806 B2 JP H0434806B2 JP 58168637 A JP58168637 A JP 58168637A JP 16863783 A JP16863783 A JP 16863783A JP H0434806 B2 JPH0434806 B2 JP H0434806B2
Authority
JP
Japan
Prior art keywords
billet
aluminum
alloy magnet
manganese
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168637A
Other languages
Japanese (ja)
Other versions
JPS6059721A (en
Inventor
Akihiko Ibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58168637A priority Critical patent/JPS6059721A/en
Publication of JPS6059721A publication Critical patent/JPS6059721A/en
Publication of JPH0434806B2 publication Critical patent/JPH0434806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に関するものであ
る。さらに詳細には、多結晶マンガン−アルミニ
ウム−炭素(Mn−Al−C)系合金磁石の製造法
に関し、特に高性能な多極着磁用Mn−Al−C系
合金磁石の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a permanent magnet. More specifically, the present invention relates to a method of manufacturing a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet, and particularly to a method of manufacturing a high-performance Mn-Al-C alloy magnet for multipolar magnetization.

従来例の構成とその問題点 Mn−Al−C系合金磁石は、主として強磁性相
である面心正方晶(τ相、L10型既製格子)の組
織で構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。
Structure of conventional examples and their problems Mn-Al-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, L10 type ready-made lattice) structure, which is a ferromagnetic phase, and C is an essential constituent element. There are known ternary alloy magnets that contain no additive elements other than impurities, and multi-element alloy magnets that include quaternary or higher alloy magnets that contain small amounts of additive elements, and these are collectively referred to as magnets.

また、このMn−Al−C系合金磁石の製造法と
しては、鋳造・熱処理によるもの以外に、押出加
工等の塑性加工工程を含むものが知られている。
特に後者は、高い磁気特性、、機械的強度、耐候
性、機械加工性等の優れた性質を有する異方性磁
石の製造法として知られている。
Furthermore, as a manufacturing method for this Mn--Al--C alloy magnet, there are known methods that include a plastic working process such as extrusion in addition to casting and heat treatment.
In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

多極着磁用のMn−Al−C系合金磁石の製造法
としては、等方性磁石、圧縮加工によるもの、及
びあらかじめ押出加工等の公知の方法で得た一軸
異方性の多結晶Mn−Al−C系合金磁石に異方性
方向への自由圧縮加工(複合加工法)によるもの
が知られている。
Manufacturing methods for Mn-Al-C alloy magnets for multipolar magnetization include isotropic magnets, compression processing, and uniaxially anisotropic polycrystalline Mn obtained in advance by known methods such as extrusion processing. -Al-C alloy magnets subjected to free compression processing in an anisotropic direction (composite processing method) are known.

圧縮加工によるものでは、径方向に高い磁気特
性が得られているが、比較的大きい加工率が必要
であること、不均一変形が起こる場合があるこ
と、不変形帯の存在が避けられないことなどの問
題点がある。複合加工法によるものでは、小さな
圧縮ひずみで径方向、弦方向を含む平面内の全て
の方向に高い磁気特性が得られている。複合加工
法で得た磁石は、特定の平面に平行に磁化容易方
向を有し、しかも前記平面内では磁気的に等方性
であり、かつ前記平面の垂線と前記平面と平行な
直線を含む平面内では異方性であるという構造で
ある(以下このような磁石を面異方性磁石とい
う)。
Compression processing provides high magnetic properties in the radial direction, but a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed bands is unavoidable. There are problems such as: With the combined processing method, high magnetic properties are obtained in all directions within the plane, including the radial and chordal directions, with small compressive strain. The magnet obtained by the composite processing method has an easy magnetization direction parallel to a specific plane, is magnetically isotropic within the plane, and includes a line perpendicular to the plane and a straight line parallel to the plane. It has a structure that is anisotropic in a plane (hereinafter, such a magnet will be referred to as a plane anisotropic magnet).

一方、多極着磁の分野で用いられる磁石の形状
は、一般には軸対称の形状であり、一例として円
筒体がある。円筒体の磁石の外周に多極着磁した
場合の磁石内部での磁路の形成を模式的に第1図
に示した。第1図において、破線が磁路を示し、
一つの径方向(r方向)に対する弦方向(θ方
向)をも示している。円筒の径方向(r方向)と
円筒の軸方向とにそれぞれ直交する方向を弦方向
(θ方向)とする。
On the other hand, the shape of a magnet used in the field of multipolar magnetization is generally an axially symmetrical shape, and an example is a cylindrical shape. FIG. 1 schematically shows the formation of a magnetic path inside the magnet when the outer periphery of a cylindrical magnet is magnetized with multiple poles. In Figure 1, the broken line indicates the magnetic path,
The chordal direction (θ direction) with respect to one radial direction (r direction) is also shown. The direction perpendicular to the radial direction (r direction) of the cylinder and the axial direction of the cylinder is defined as the chordal direction (θ direction).

第1図に示した様に、磁路は外周部ではほぼ径
方向に沿い、それよりも内側の部分では弦方向に
沿い、さらに内側の部分では磁路が通つていな
い。磁石の形状を円筒体とした場合、前述した様
に磁石を三つの部分に分けて考えることができ、
第1は磁路が径方向に沿つている部分(A部)、
第2は磁路が弦方向に沿つている部分(B部)、
第3は磁路が通つていない部分(C部)である。
As shown in FIG. 1, the magnetic path runs approximately in the radial direction at the outer periphery, along the chord direction at the inner portion, and no magnetic path runs through the inner portion. If the shape of the magnet is cylindrical, the magnet can be divided into three parts as mentioned above.
The first is the part where the magnetic path runs along the radial direction (part A),
The second is the part where the magnetic path is along the chord direction (part B),
The third part is a part (C part) through which no magnetic path passes.

前述した面異方性磁石は、径方向と弦方向を含
む平面に平行な任意の方向に磁化容易方向を有す
る磁石であるため、このような外周着磁を施した
場合には、優れた磁気特性が得られるが、前述し
たように三つの部分に分けてみた場合、各々につ
いては望ましい異方性構造ではない。つまり、A
部では弦方向よりも径方向に高い磁気特性を有す
る方がよく、B部では径方向よりも弦方向に高い
磁気特性を有する方がよい。一方、径異方性磁石
(または、放射状に磁化容易方向を有する磁石で、
磁石の形状を中空体状とすると中空体の軸方向に
垂直な平面上の任意の一点を通る直線に平行に磁
化容易方向を有する磁石をいい、第1図に示す円
筒体であればr方向(径方向)に磁化容易方向を
有する磁石)では、A部では望ましい異方性構造
であるがB部では逆に望ましくない異方性構造で
ある。
The above-mentioned plane anisotropic magnet is a magnet that has an easy magnetization direction in any direction parallel to the plane including the radial direction and the chordal direction, so when it is magnetized on the outer periphery in this way, it has excellent magnetic properties. However, when it is divided into three parts as described above, each part does not have a desirable anisotropic structure. In other words, A
It is better to have higher magnetic properties in the radial direction than in the chordal direction in the B section, and it is better to have higher magnetic properties in the chordal direction than in the radial direction in the B section. On the other hand, a radially anisotropic magnet (or a magnet with a radial direction of easy magnetization)
When a magnet is shaped like a hollow body, it is a magnet whose direction of easy magnetization is parallel to a straight line passing through an arbitrary point on a plane perpendicular to the axial direction of the hollow body, and when it is a cylindrical body as shown in Fig. 1, the direction of easy magnetization is in the r direction. In a magnet (having an easy magnetization direction in the radial direction), part A has a desirable anisotropic structure, but part B has an undesirable anisotropic structure.

発明の目的 本発明は、高性能な多極着磁に適するMn−Al
−C系合金磁石の製造法を提供することを目的と
する。
Purpose of the Invention The present invention provides an Mn-Al material suitable for high-performance multipole magnetization.
- It is an object of the present invention to provide a method for manufacturing a C-based alloy magnet.

発明の構成 本発明は、あらかじめ異方性化した多結晶Mn
−Al−C系合金磁石からなる中空体状のビレツ
トの中空部分に、金属材料からなるビレツトが存
在する状態で、530〜830℃の温度で、前記中空体
状のビレツトの軸方向に前記二つのビレツトが接
するまでもしくはそれ以上圧縮加工して一体化す
ることを特徴とする。
Structure of the Invention The present invention provides polycrystalline Mn that has been anisotropically made in advance.
- With the billet made of a metal material present in the hollow part of the hollow billet made of an Al-C alloy magnet, the two parts are It is characterized by being compressed until the two billets touch or further until they are integrated.

あらかじめ異方性化した多結晶Mn−Al−C系
合金磁石からなる中空体状のビレツトの内側に金
属材料からなるビレツトが存在する状態で二つの
ビレツトが接するまでもしくはそれ以上圧縮加工
を行うことによつて、放射状に磁化容易方向を有
するMn−Al−C系合金磁石を得ることができ、
金属材料からなるビレツトと共に圧縮加工するこ
とによつて、磁石回転子等へ応用する場合にシヤ
フトの取り付けのための穴あけ加工をしやすくし
たり、もしくはシヤフトを共に圧縮成形したりす
ることなどができる。
Compressing a hollow billet made of a polycrystalline Mn-Al-C alloy magnet that has been made anisotropic in advance, with a billet made of a metal material present inside the billet, until the two billets come into contact with each other or further. By this, it is possible to obtain a Mn-Al-C alloy magnet having a radial direction of easy magnetization,
By compressing it together with a billet made of metal material, it can be used to make it easier to drill holes for shaft attachment when applied to magnet rotors, etc., or it can be compression molded together with the shaft. .

さらに、前記金属材料からなるビレツトが少な
くとも外周部が磁性体からなるビレツトであれ
ば、前述した外周着磁に適する二つの構造を有す
る磁石を得ることができる。
Furthermore, if the billet made of the metal material is a billet whose outer periphery is made of a magnetic material, it is possible to obtain a magnet having two structures suitable for the above-mentioned outer periphery magnetization.

Mn−Al−C系合金磁石からなる中空体状のビ
レツトが圧縮加工後、A部に適する構造を有する
磁石となり、磁性体の部分が圧縮加工後、B部に
適する構造となる。しかも、前記の二つ以上のビ
レツトを同時に圧縮加工し、両者を接触させるた
め、圧縮加工後は二種類以上の構造を有する磁石
を得ることができる。
After a hollow billet made of an Mn--Al--C alloy magnet is compressed, it becomes a magnet with a structure suitable for part A, and after compression, the magnetic body part becomes a structure suitable for part B. Moreover, since two or more billets are simultaneously compressed and brought into contact with each other, magnets having two or more types of structures can be obtained after the compression process.

実施例の説明 公知のMn−Al−C系磁石用合金、例えば68〜
73重量%(以下単に%で示す)のMnと(1/10・
Mn−6.6)〜(1/3・Mn−22.2)%のCと残部の
Alからなる合金を、530〜830℃の温度域で押出
加工等の塑性加工を施すことによつて異方性化し
た多結晶Mn−Al−C系合金磁石を得ることがで
きる。前記磁石の代表的なものとしては、前記の
塑性加工を押出加工とした場合に得られる押出方
向に磁化容易方向を有する一軸異方性磁石、前述
した面異方性磁石および径異方性磁石などがあ
る。
Description of Examples Known Mn-Al-C alloys for magnets, e.g. 68~
73% by weight (hereinafter simply expressed as %) of Mn and (1/10・
Mn−6.6) to (1/3・Mn−22.2)% of C and the remainder
By subjecting an alloy made of Al to plastic working such as extrusion in a temperature range of 530 to 830°C, an anisotropic polycrystalline Mn-Al-C alloy magnet can be obtained. Typical examples of the magnet include a uniaxial anisotropic magnet having an easy magnetization direction in the extrusion direction obtained when the plastic working is performed by extrusion, the above-mentioned planar anisotropic magnet, and radial anisotropic magnet. and so on.

前記の異方性化した多結晶Mn−Al−C系合金
磁石からなる中空体状例えば円筒体状のビレツト
の中空部分に、金属材料からなるビレツトが存在
する状態で中空体状のビレツトの軸方向に前記の
二つのビレツトが接するまでもしくはそれ以上圧
縮加工を行うことによつて、放射状に磁化容易方
向を有するMn−Al−C系合金磁石を得ることが
でき、金属材料からなるビレツトと共に圧縮加工
するため、磁石回転子等へ応用する場合にシヤフ
トの取り付けのための穴あけ加工がしやすく、ま
たシヤフトを共に圧縮成形することなどができ
る。
When a billet made of a metal material is present in the hollow part of the hollow body, for example, a cylindrical billet made of the anisotropic polycrystalline Mn-Al-C alloy magnet, the axis of the hollow billet is A Mn-Al-C alloy magnet having a radial direction of easy magnetization can be obtained by compressing the magnet until the two billets come into contact with each other or further, and compressing the magnet along with the billet made of metal material. Because it is processed, it is easy to drill holes for attaching a shaft when applied to a magnet rotor, etc., and the shaft can also be compression molded.

前記の金属材料は、Mn−Al−C系合金磁石と
530〜830℃の温度域で共に圧縮加工できる材料で
あればよい。一般にいう金属材料にこだわる必要
はない。換言すれば、ある材料からなるビレツト
であればよい。
The above metal material is a Mn-Al-C alloy magnet.
Any material may be used as long as it can be compressed in the temperature range of 530 to 830°C. There is no need to be particular about metal materials in general. In other words, it may be a billet made of a certain material.

また、さらに前記の金属材料からなるビレツト
が、少なくとも外周部が磁性体からなるビレツト
であれば、圧縮加工後のビレツトの外周部(圧縮
加工前は中空体状のビレツトにあたる部分)は径
方向に高い磁気特性を有する部分となり、それよ
りも内側の部分(磁性体の部分)は外周着磁を施
した場合に磁路が弦方向に沿うのに適した部分と
なる。これによつて、前述した外周着磁を施した
場合の三つに分けたA部とB部が形成され、外周
着磁において優れた磁気特性を示す磁石が得られ
る。
Furthermore, if the billet made of the metal material described above is a billet whose outer circumferential portion is made of a magnetic material, the outer circumferential portion of the billet after compression processing (the portion corresponding to the hollow billet before compression processing) will be radially The part has high magnetic properties, and the part inside the part (the part of the magnetic material) becomes a part suitable for the magnetic path to follow the chord direction when the outer periphery is magnetized. As a result, the three divided portions A and B are formed when the outer periphery magnetization described above is applied, and a magnet exhibiting excellent magnetic properties in the outer periphery magnetization is obtained.

前記の磁性体とは、前述した圧縮加工後に弦方
向が磁化困難方向にならない磁性体であればどの
ようなものでも良い。ここで、磁化困難方向とは
外周着磁において問題となる磁化困難方向を意味
し、例えば単結晶のFeの〔111〕方向のようにH
=500Oeでは磁化容易軸の〔100〕方向の磁化の
強さと大差がなくなる場合には、外周着磁におけ
る磁化の困難な方向とはいえない。前記の磁性体
としては、圧縮加工後に面異方性構造のMn−Al
−C系合金磁石になりうる合金、広くはMn−Al
−C系磁石合金(Mn−Al−C系磁石用合金と
Mn−Al−C系合金磁石との総称)、等方性Mn−
Al−C系合金磁石、純鉄、電磁軟鉄、Fe−Co合
金などの高透磁率材料などがある。
The above-mentioned magnetic material may be any magnetic material as long as the chord direction does not become the difficult-to-magnetize direction after the above-described compression process. Here, the difficult magnetization direction means the direction in which magnetization is difficult in outer circumferential magnetization, such as the [111] direction of single crystal Fe.
= 500 Oe, if there is no significant difference in magnetization strength from the [100] direction of the easy axis of magnetization, it cannot be said that it is a difficult direction for magnetization in outer circumference magnetization. The above-mentioned magnetic material is Mn-Al with a planar anisotropic structure after compression processing.
- Alloys that can be made into C-based alloy magnets, broadly known as Mn-Al
-C-based magnet alloy (Mn-Al-C-based magnet alloy)
Mn-Al-C alloy magnet), isotropic Mn-
Examples include high magnetic permeability materials such as Al-C alloy magnets, pure iron, electromagnetic soft iron, and Fe-Co alloys.

前記の中空体状のビレツトが、中空体の軸方向
に磁化容易方向を有する多結晶Mn−Al−C系合
金磁石(一軸異方性磁石)からなる場合には、前
記の圧縮加工によつて中空体状のビレツトの軸方
向に対数ひずみの絶対値で0.05以上の圧縮ひずみ
を与える必要がある。これは実施例で詳述するよ
うに、圧縮加工前は軸方向に異方性化したもので
あり、径方向に高い磁気特性を示す構造への変化
に最低0.05の圧縮ひずみが必要であるためであ
る。
When the hollow billet is made of a polycrystalline Mn-Al-C alloy magnet (uniaxially anisotropic magnet) having an easy magnetization direction in the axial direction of the hollow body, the above-mentioned compression process It is necessary to apply a compressive strain of 0.05 or more in the absolute value of logarithmic strain in the axial direction of the hollow billet. This is because, as detailed in the examples, the structure is anisotropic in the axial direction before compression processing, and a compression strain of at least 0.05 is required for the structure to exhibit high magnetic properties in the radial direction. It is.

前記の中空体状のビレツトが、中空体の軸方向
に垂直な平面に平行に磁化容易方向を有する多結
晶Mn−Al−C系合金磁石(面異方性磁石)から
なる場合には、圧縮加工前はすでに径方向と弦方
向を含む平面内のすべての方向に高い磁気特性を
示しているが、前記の圧縮加工を施すことによつ
て磁化容易方向が径方向に沿うように変化する。
When the hollow billet is made of a polycrystalline Mn-Al-C alloy magnet (planar anisotropic magnet) having an easy magnetization direction parallel to a plane perpendicular to the axial direction of the hollow body, compression Before processing, it already exhibits high magnetic properties in all directions within the plane including the radial direction and the chordal direction, but by applying the compression processing described above, the direction of easy magnetization changes to follow the radial direction.

前記の中空体状のビレツトが、中空体の軸方向
に垂直な平面上の任意の一点を通る直線に平行に
磁化容易方向を有する多結晶Mn−Al−C系合金
磁石(径異方性磁石又は放射状に磁化容易方向を
有する磁石)からなる場合には、圧縮加工によつ
てさらに径方向に高い磁気特性を示すようにな
り、中空部分に存在する金属材料からなるビレツ
トと接触させることができる。
A polycrystalline Mn-Al-C alloy magnet (radially anisotropic magnet) in which the hollow billet has an easy magnetization direction parallel to a straight line passing through an arbitrary point on a plane perpendicular to the axial direction of the hollow body In the case of a magnet having a radial direction of easy magnetization), it will show even higher magnetic properties in the radial direction by compression processing, and can be brought into contact with a billet made of a metal material existing in the hollow part. .

前述した圧縮加工は必ずしも連続的な圧縮加工
である必要はなく、複数回に分割して与えても良
い。また、前記の圧縮加工を施したビツトをさら
にビレツトの一部分(例えば外周部)に軸方向に
圧縮加工を施しても良い。
The compression process described above does not necessarily have to be continuous compression process, and may be divided into multiple times. Furthermore, the bit subjected to the above-mentioned compression processing may be further subjected to compression processing in the axial direction on a portion of the billet (for example, the outer peripheral portion).

前述した圧縮加工の一例を中空体状のビレツト
(ビレツトA)の形状を円筒体とし、中空体状の
中空部分に存在する金属材料からなるビレツト
(ビレツトB)の形状を円筒体もしくは円柱体と
していくつかの例を説明する。第2図には圧縮加
工前の状態の6つの例を示す。第2図において、
1があらかじめ異方性化した多結晶Mn−Al−C
系合金磁石からなる円筒体状のビレツト(ビレツ
トA)であり、2および3が金属材料からなるビ
レツト(ビレツトB)である。ビレツト3を有す
るものは、二種類の金属材料からなる場合であ
る。例えば、bにおいて、2がMn−Al−C系合
金磁石で、3が黄銅などの組合せである。4およ
び5がポンチで、軸方向に自由に移動することが
でき、しかもある位置に固定することもできる。
6が外型で固定している。
As an example of the above-mentioned compression processing, a hollow billet (billet A) is made into a cylindrical shape, and a billet made of a metal material existing in the hollow part of the hollow body (billet B) is made into a cylindrical or cylindrical shape. Let me explain some examples. FIG. 2 shows six examples of states before compression processing. In Figure 2,
1 is anisotropic polycrystalline Mn-Al-C
The billet is a cylindrical billet (billet A) made of a series alloy magnet, and the billet 2 and 3 are made of a metal material (billet B). The billet 3 is made of two types of metal materials. For example, in b, 2 is a Mn-Al-C alloy magnet, 3 is a combination of brass, etc. 4 and 5 are punches, which can be moved freely in the axial direction and can also be fixed at a certain position.
6 is fixed by the outer mold.

まずaでは、ビレツトAの外周を拘束した状態
で圧縮加工し、ビレツトBを自由圧縮加工する。
圧縮加工の進行に伴つてビレツトAの内径は小さ
くなり、ビレツトBの直径が大きくなつて両ビレ
ツトが接触するようになる。圧縮加工は空間の部
分がほぼなくなり、ビレツトAおよびBによつて
ほぼ満たされた状態まで行うことができる。bは
aとほぼ同様であるが、ビレツトBは3の部分を
有する点が異なる。cは圧縮加工前、すでにビレ
ツトAとBが接触した状態であるが、これは容易
に分割できる程度の接触でしかないが、圧縮加工
を行うことによつてビレツトAの内径が小さくな
り(しかもビレツトAがない場合にはビレツトB
は圧縮加工によつて外径が大きくなる方向に変形
する)より強い接触になる。dでは圧縮加工の進
行に伴つてビレツトAの内径が小さくなりビレツ
トBの外径が大きくなつて、ついには接触するよ
うになる。eはcと同様である。fはこれまでの
a〜eと異なりビレツトAの外周は外型6と接触
していない。つまり、ビレツトAの外周は自由な
状態で拘束されていない。しかし、圧縮加工の進
行に伴つてビレツトAの外径が大きくなり、やが
ては外型6の内壁に接触し、それ以後は前述した
(b)などと同様である。
First, in step a, billet A is compressed while its outer periphery is constrained, and billet B is freely compressed.
As the compression process progresses, the inner diameter of billet A becomes smaller and the diameter of billet B becomes larger, so that both billets come into contact with each other. Compression processing can be carried out until the empty space is almost completely eliminated and the billets A and B are almost filled. b is almost the same as a, except that billet B has three parts. c is a state in which billets A and B are already in contact before the compression process, but this is only a contact that can be easily separated, but by performing the compression process, the inner diameter of billet A becomes smaller (and If billet A is not available, billet B
deforms in the direction of increasing the outer diameter due to compression processing) resulting in stronger contact. At d, as the compression process progresses, the inner diameter of billet A becomes smaller and the outer diameter of billet B becomes larger, and eventually they come into contact. e is the same as c. Unlike the previous cases a to e, the outer periphery of the billet A is not in contact with the outer mold 6. In other words, the outer periphery of billet A is free and unrestricted. However, as the compression process progresses, the outer diameter of billet A increases, and eventually it comes into contact with the inner wall of outer mold 6, and from then on, the billet A becomes larger in diameter.
This is similar to (b) etc.

なお、第3図および第4図に、第2図aおよび
dの圧縮加工前・後の状態を模式的に示す。各図
共、aが加工前を示し、bが加工後の状態を示
す。
Note that FIGS. 3 and 4 schematically show the states before and after the compression processing shown in FIGS. 2a and d. In each figure, a shows the state before processing, and b shows the state after processing.

第2図において、aではビレツトA1の外周は
外型6によつて拘束されているが、内周は自由な
状態である。cではビレツトA1の外周はaと同
様で外型6によつて拘束されており、内周はビレ
ツトB2の外周と接触している。しかし、ビレツ
トBの内周は自由な状態であるため、ビレツトA
の内径は圧縮加工の進行と共に小さくなることが
できるために、ビレツトAの内周は自由な状態で
あるとみなせる。fではビレツトA1の外周は外
型6と接触していないため自由な状態であるとみ
なせる。
In FIG. 2, the outer periphery of billet A1 is restrained by the outer mold 6 at point a, but the inner periphery is free. In c, the outer periphery of billet A1 is restrained by the outer mold 6, as in a, and the inner periphery is in contact with the outer periphery of billet B2. However, since the inner circumference of billet B is free, billet A
Since the inner diameter of billet A can be reduced as the compression process progresses, the inner circumference of billet A can be considered to be in a free state. At f, the outer periphery of the billet A1 is not in contact with the outer mold 6, so it can be considered to be in a free state.

第2図に示した圧縮加工では、ビレツト全体を
圧縮加工しているが、局部的に圧縮加工しない領
域をつくる方法でも良い。例えば、ビレツトAを
局部的に圧縮加工せずに加工前の構造を保存する
方法などがある。具体的には、例えば第2図cに
おいて、ポンチ5にビレツトAの内径に合う段を
もうけてその分だけビレツトBの長さを短くして
ビレツトAの内周の一部分を拘束すると、その拘
束された部分(圧縮変形しない部分)は加工前の
構造を保存する。
In the compression process shown in FIG. 2, the entire billet is compressed, but a method may also be used in which a region that is not compressed locally is created. For example, there is a method of preserving the structure before processing without locally compressing billet A. Specifically, for example, in Fig. 2c, if a step is provided on the punch 5 that matches the inner diameter of billet A, and the length of billet B is shortened by that amount, and a part of the inner circumference of billet A is restrained, the constraint will be The part that has been compressed (the part that is not compressed and deformed) preserves the structure before processing.

第2図に示した圧縮加工の例では圧縮加工工程
のなかで少なくともビレツトAの外周を拘束した
状態で圧縮加工を行う領域が存在しているが、必
ずしもこのようなビレツトAの外周を拘束した状
態で圧縮加工を行う部分を有する必要はない。例
えば第2図cまたはeにおいて、外型6がない状
態で圧縮加工しても、圧縮加工後はビレツトAと
Bとを接触の状態にすることができる。また、圧
縮加工後、ビレツトAとBとを接触状態にする圧
縮加工であれば、ビレツトAは圧縮加工後、径方
向に磁化容易方向を有する構造になる。しかし、
前述したビレツトAの外周を拘束した状態で圧縮
加工を行う部分を有する方が、二つのビレツトの
結合性(接触の強さ)が良く、しかもビレツトA
が圧縮加工によつて径方向により強く異方性化す
ることができる。
In the example of compression processing shown in Fig. 2, there is a region during the compression processing where at least the outer periphery of billet A is constrained, but it is not always necessary to constrain the outer periphery of billet A. It is not necessary to have a part that undergoes compression processing in the state. For example, in FIG. 2c or e, even if compression is performed without the outer mold 6, billets A and B can be brought into contact after compression. Further, if the compression process brings billets A and B into contact after the compression process, the billet A will have a structure having an easy magnetization direction in the radial direction after the compression process. but,
It is better to have a part where the compression process is performed while the outer periphery of billet A is constrained as described above, so that the bonding property (strength of contact) between the two billets is better.
can be made more strongly anisotropic in the radial direction by compression processing.

また、あらかじめ異方性化した多結晶Mn−Al
−C系合金磁石からなる中空体状のビレツトの中
空部分に存在する金属材料からなるビレツトが、
前記中空部分の全域を占める場合には、圧縮加工
を施すことによつて面異方性磁石を得ることがで
きる。この場合でも磁石の中心部は金属材料から
なるため、穴あけ加工がしやすくなる。例えば具
体的な一例としては、第2図bに示す2,3だけ
を圧縮加工する場合である。ここで2があらかじ
め異方性化した多結晶Mn−Al−C系合金磁石か
らなる円筒体状のビレツトであり、3が金属材料
からなるビレツトである。
In addition, polycrystalline Mn-Al that has been made anisotropic in advance
- A billet made of a metal material existing in the hollow part of a hollow billet made of a C-based alloy magnet,
When occupying the entire area of the hollow portion, a plane anisotropic magnet can be obtained by compression processing. Even in this case, since the center part of the magnet is made of metal material, drilling becomes easier. For example, a specific example is a case where only parts 2 and 3 shown in FIG. 2b are compressed. Here, 2 is a cylindrical billet made of a polycrystalline Mn-Al-C alloy magnet which has been made anisotropic in advance, and 3 is a billet made of a metal material.

第2図に示した例では、ビレツトAおよびBの
圧縮加工前の高さほぼ等しい。しかし、必ずしも
等しい必要はない。例えばビレツトAの方が高く
ても良い。また、本発明によつて得られる磁石を
磁石回転子などに用いる場合、シヤフトの取り付
けが必要なときは、圧縮加工時に同時にシヤフト
の取り付けを行つてもよい。さらに、ビレツトA
もしくはBは一つのものから成つている必要はな
く、二ないし三以上のものから成つていてもよ
い。つまり、例えば第2図aにおいて、ビレツト
Aが三つに分かれていて、三つを組み合わせるこ
とによつて円筒形状になつてもよい。
In the example shown in FIG. 2, the heights of billets A and B before compression are approximately equal. However, they do not necessarily have to be equal. For example, billet A may be higher. Furthermore, when the magnet obtained according to the present invention is used in a magnet rotor or the like, if a shaft needs to be attached, the shaft may be attached at the same time as the compression process. Furthermore, billet A
Alternatively, B does not need to consist of one thing, but may consist of two or three or more things. That is, for example, in FIG. 2a, the billet A is divided into three parts, and by combining the three parts, the billet A may be formed into a cylindrical shape.

圧縮加工後もほぼ円筒体状の試料が得たい場合
には、内周面を成形する目的でマンドレル等を用
いてもよい。例えば第2図cの場合では、マンド
レル等を用いると、圧縮加工後もほぼきれいな円
筒体を得ることができる。
If a substantially cylindrical sample is desired to be obtained even after compression processing, a mandrel or the like may be used to shape the inner peripheral surface. For example, in the case of FIG. 2c, if a mandrel or the like is used, a substantially clean cylindrical body can be obtained even after compression processing.

圧縮加工は530〜830℃の温度域で行うため、ビ
レツトA,BまたはおよびCの材質が異なるた
め、加工後室温まで冷却すると、熱膨張率の差に
よつて、焼ばめの状態になつたり、逆にビレツト
間にすきまが生じたりするため、Mn−Al−C系
磁石合金以外の材料を用いる場合には、Mn−Al
−C系磁石合金の熱膨張率との大小関係を考慮す
る必要がある。
Since compression processing is performed in a temperature range of 530 to 830℃, billets A, B, and C are made of different materials, so when they are cooled to room temperature after processing, they will become a shrink fit due to the difference in thermal expansion coefficient. Otherwise, gaps may occur between the billets, so when using materials other than Mn-Al-C magnet alloys, Mn-Al
- It is necessary to consider the magnitude relationship with the coefficient of thermal expansion of the C-based magnet alloy.

第2図の例においては、中空体状のビレツト
(ビレツトA1)の外側には別のビレツトがない
状態のものを示したが、他の金属からなるビレツ
トが存在してもよい。例えば第2図eにおいて、
1が金属(例えば鋼)からなるビレツト、2があ
らかじめ異方性化したMn−Al−C系合金磁石か
らなる中空体状のビレツト、3が金属材料からな
るビレツトとする場合である。
In the example shown in FIG. 2, there is no other billet outside the hollow billet (billet A1), but a billet made of another metal may be present. For example, in Figure 2e,
In this case, 1 is a billet made of metal (for example, steel), 2 is a hollow billet made of an Mn--Al--C alloy magnet which has been made anisotropic in advance, and 3 is a billet made of a metal material.

さらに、前記の金属材料からなるビレツト(ビ
レツトB2)が、少なくとも外周部が磁性体から
なるビレツトであれば、ビレツトAが圧縮加工
後、放射状に磁化容易方向を有する磁石となり、
前述した外周着磁におけるA部に適する部分とな
る。磁性体の部分がB部に適する部分となつて、
2種以上の構造を有する磁石を得ることができ
る。例えば、第2図aにおいて、ビレツトAおよ
びBを共に、円筒又は円柱軸方向に磁化容易方向
を有する一軸異方性磁石からなるとすると、圧縮
加工後、Aは径異方性磁石になり、Bは前述した
面異方性磁石になる。
Furthermore, if the billet (billet B2) made of the metal material described above is a billet made of a magnetic material at least at the outer circumferential portion, billet A becomes a magnet having a radial direction of easy magnetization after compression processing,
This is a part suitable for the part A in the outer circumferential magnetization described above. The magnetic material part becomes the part suitable for part B,
A magnet having two or more types of structures can be obtained. For example, in FIG. 2a, if billets A and B are both uniaxially anisotropic magnets having easy magnetization directions in the cylinder or cylinder axis direction, after compression processing, A becomes a radially anisotropic magnet, and B becomes the planar anisotropic magnet mentioned above.

前述した様な圧縮加工の可能な温度範囲につい
ては、530〜830℃の温度領域について行えたが、
780℃を越える温度では磁気特性がかなり低下し
た。より望ましい温度範囲としては560〜760℃で
あつた。
Regarding the possible temperature range of compression processing as mentioned above, it was possible to perform it in the temperature range of 530 to 830℃, but
At temperatures above 780°C, the magnetic properties deteriorated considerably. A more desirable temperature range was 560 to 760°C.

次に本発明の更に具体的な実施例について説明
する。
Next, more specific embodiments of the present invention will be described.

実施例 1 配合組成で69.5%のMn、29.3%のAl、0.5%の
C及び0.7%のNiを溶解鋳造し、直径50mm、長さ
40mmの円柱ビレツトを作製した。このビレツトを
1100℃で2時間保持した後、室温まで放冷する熱
処理を行つた。次に潤滑剤を介して、720℃の温
度で直径30mmまで押出加工した。この押出棒を長
さ20mmに切断し、切削加工して、外径30mm、内径
24mm、長さ20mmの円筒ビレツト(ビレツトA)を
作製した。
Example 1 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C and 0.7% Ni, diameter 50 mm, length
A 40 mm cylindrical billet was made. This billet
After holding at 1100° C. for 2 hours, heat treatment was performed by allowing it to cool to room temperature. Next, it was extruded using a lubricant at a temperature of 720°C to a diameter of 30 mm. This extruded rod was cut to a length of 20 mm and machined to create a shape with an outer diameter of 30 mm and an inner diameter of 30 mm.
A cylindrical billet (billet A) with a diameter of 24 mm and a length of 20 mm was prepared.

次に黄銅の棒材を切断・切削加工して、外径24
mm、内径20mm、長さ20mmの円筒ビレツト(ビレツ
トB)を作製した。
Next, we cut and machined the brass bar material to create an outer diameter of 24 mm.
A cylindrical billet (billet B) with a diameter of 20 mm, an inner diameter of 20 mm, and a length of 20 mm was prepared.

ビレツトAの中空部分にビレツトBを入れ、第
2図cに示した状態で、第2図cに示した様な金
型を用いて、潤滑剤を介して680℃の温度で圧縮
加工を行つた。なお第2図cにおいて、外型6の
内径は30mmである。加工後のビレツトの高さは10
mmであつた。
Billet B is placed in the hollow part of billet A, and in the state shown in Fig. 2c, compression processing is performed at a temperature of 680°C using lubricant using a mold as shown in Fig. 2c. Ivy. In addition, in FIG. 2c, the inner diameter of the outer mold 6 is 30 mm. The height of the billet after processing is 10
It was warm in mm.

加工後のビレツトの外周部(加工前のビレツト
Aにあたる部分)から各辺が径方向、弦方向及び
軸方向に沿うようにして一辺が4mmの立方体試料
を切り出し、磁気特性を測定した。
A cubic sample with a side of 4 mm was cut out from the outer periphery of the processed billet (corresponding to billet A before processing) with each side along the radial, chordal, and axial directions, and the magnetic properties were measured.

磁気特性は、径方向ではBr=5.9kG、Hc=
2.7kOe、(BH)nax=6.4MG・Oe、弦方向ではBr
=3.0kG、Hc=2.2KOe、(BH)nax=1.8MG・Oe、
軸方向ではBr=2.8kG、Hc=2.1kOe、(BH)nax
=1.6MG・Oeであつた。径方向に磁化容易方向
を有する磁石であつた。
The magnetic properties are B r = 5.9kG in the radial direction, Hc =
2.7kOe, (BH) nax = 6.4MG・Oe, B r in chord direction
=3.0kG, H c =2.2KOe, (BH) nax =1.8MG・Oe,
In the axial direction, B r = 2.8kG, Hc = 2.1kOe, (BH) nax
= 1.6MG・Oe. The magnet had an easy magnetization direction in the radial direction.

また加工後のビレツトは内周部が黄銅であるた
め、円筒状に切削加工が容易にでき、しかも寸法
精度が非常にだしやすいものであつた。
Furthermore, since the inner periphery of the processed billet was made of brass, it was easy to cut into a cylindrical shape, and it was also easy to achieve dimensional accuracy.

実施例 2 配合組成で69.5%のMn、29.3%のAl、0.5%の
C及び0.7%のNiを溶解鋳造し、直径70mm、長さ
60mmの円柱ビレツトを作製した。このビレツトを
1100℃で2時間保持した後、室温まで放冷する熱
処理を行つた。次に潤滑剤を介して720℃の温度
で直径45mmまでの押出加工を行つた。さらに潤滑
剤を介して680℃の温度で直径31mmまでの押出加
工を行つた。この押出棒を長さ20mmに切断し、切
削加工して外径30mm、内径15〜24mm、長さ20mmの
円筒ビレツト(ビレツトA)を作製した。
Example 2 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C and 0.7% Ni, diameter 70 mm, length
A 60 mm cylindrical billet was made. This billet
After holding at 1100° C. for 2 hours, heat treatment was performed by allowing it to cool to room temperature. Next, extrusion processing up to a diameter of 45 mm was performed at a temperature of 720°C via a lubricant. Furthermore, extrusion processing up to a diameter of 31 mm was performed at a temperature of 680°C using a lubricant. This extruded rod was cut to a length of 20 mm and machined to produce a cylindrical billet (billet A) having an outer diameter of 30 mm, an inner diameter of 15 to 24 mm, and a length of 20 mm.

次に前記の31mmの押出棒をさらに潤滑剤を介し
て680℃の温度で直径15mmまでの押出加工を行つ
た。この押出棒を長さ20mmに切断し、切削加工し
て外径11〜13mm、内径5mmの円筒ビレツト(ビレ
ツトB)を数個作製した。このビレツトBの中空
部分に黄銅(直径5mm、長さ20mm)を挿入した。
Next, the 31 mm extruded rod was further extruded using a lubricant at a temperature of 680° C. to a diameter of 15 mm. This extruded rod was cut to a length of 20 mm and machined to produce several cylindrical billets (billet B) having an outer diameter of 11 to 13 mm and an inner diameter of 5 mm. A piece of brass (diameter 5 mm, length 20 mm) was inserted into the hollow part of billet B.

これらのビレツトAとビレツトBを各々1個ず
つ用いて、ビレツトAの中空部分にビレツトBを
入れ、実施例1と同じ金型を用いて第2図bに示
した状態で、潤滑剤を介して680℃の温度で圧縮
ひずみを変えた圧縮加工を行つた。なお、圧縮加
工は外径6とポンチ4,5、ビレツト1,2,3
で形成される空間の部分がなくなるまで行つた。
Using one billet A and one billet B, put billet B into the hollow part of billet A, and press it with lubricant in the same mold as in Example 1 and in the state shown in Figure 2b. Compression processing was performed at a temperature of 680°C with varying compressive strains. In addition, compression processing is performed using outer diameter 6, punches 4 and 5, and billets 1, 2, and 3.
The process continued until there was no space left.

加工後のビレツトの外周部(加工前のビレツト
Aにあたる部分)から、実施例1と、同様に立方
体試料を切り出し、磁気特性を測定した。
A cubic sample was cut out from the outer periphery of the processed billet (corresponding to billet A before processing) in the same manner as in Example 1, and its magnetic properties were measured.

圧縮ひずみ(εz)に対する残留時磁束密度
(Br)の変化が第5図に示す。第5図に示すよう
に、εzが0.05で径方向のBrは軸方向のBrに比して
大きくなり、εzがさらに大きくなるとさらに径方
向のBrは増加する。この図からわかるように、
軸方向から径方向への磁化容易方向の転換はεz
0.05までの範囲で著しく進行する。
FIG. 5 shows the change in residual magnetic flux density (B r ) with respect to compressive strain (ε z ). As shown in FIG. 5, when ε z is 0.05, B r in the radial direction becomes larger than B r in the axial direction, and as ε z becomes further larger, B r in the radial direction further increases. As you can see from this figure,
The change in the direction of easy magnetization from the axial direction to the radial direction is caused by ε z
It progresses significantly in the range up to 0.05.

さらに、εz=0.69の加工を施したビレツトの内
周部(圧縮加工前のビレツトBにあたる部分で、
黄銅でない部分)から前記と同様に一辺4mmの立
方体試料を取り出し、磁気特性を測定した。磁気
特性は径方向と弦方向との磁気特性はほぼ等し
く、Br=4.6kG、Hc=2.8kOe、(BH)nax
4.0MG・Oe、軸方向はBr=2.8kG、Hc=2.1kOe、
(BH)nax=1.5MG・Oeであつた。
Furthermore, the inner circumference of the billet processed with ε z = 0.69 (the part corresponding to billet B before compression processing),
A cubic sample of 4 mm on a side was taken out from the non-brass part in the same manner as described above, and its magnetic properties were measured. The magnetic properties in the radial and chordal directions are almost equal, B r = 4.6kG, H c = 2.8kOe, (BH) nax =
4.0MG・Oe, axial direction B r = 2.8kG, H c = 2.1kOe,
(BH) nax = 1.5MG・Oe.

このようにして、圧縮加工後の試料は外周部で
は径方向が磁化容易方向であり、内周部では面異
方性構造となつている。
In this way, the sample after compression processing has an easy magnetization direction in the radial direction at the outer periphery, and a planar anisotropic structure at the inner periphery.

次にεz=0.69の加工を施したビレツトを外径23
mmに切削加工した後、12極の外周着磁を施した。
着磁は2000μFのオイルコンデンサーを用いて、
2000Vでパルス着磁した。外周の表面磁束密度を
ホール素子で測定したところ3.1kGであつた。き
わめて高性能な外周着磁に適する磁石である。
Next, the billet processed with ε z = 0.69 has an outer diameter of 23
After cutting to mm, the outer periphery was magnetized with 12 poles.
Magnetization is done using a 2000μF oil capacitor.
Pulse magnetization was performed at 2000V. The surface magnetic flux density at the outer periphery was measured with a Hall element and was 3.1 kG. This is a magnet suitable for extremely high performance outer circumferential magnetization.

実施例 3 実施例2で得た直径31mmの押出棒を長さ20mmに
切断した後、切削加工して直径24mm、長さ20mmの
円柱ビレツトを2個作製した。このビレツトを潤
滑剤を介して680℃の温度で長さ10mmまで自由圧
縮加工した。加工後の二つのビレツトを切削加工
して外径30mm、内径24mm、長さ10mmの円筒体にし
て、二個重ね合わせて長さ20mmの円筒ビレツト
(ビレツトA)を作製した。
Example 3 The extruded rod with a diameter of 31 mm obtained in Example 2 was cut into a length of 20 mm, and then machined to produce two cylindrical billets with a diameter of 24 mm and a length of 20 mm. This billet was freely compressed to a length of 10 mm at a temperature of 680°C using a lubricant. The two billets after processing were cut into a cylindrical body with an outer diameter of 30 mm, an inner diameter of 24 mm, and a length of 10 mm, and the two billets were overlapped to produce a cylindrical billet (billet A) with a length of 20 mm.

次に実施例2で得た直径15mmの押出棒を長さ20
mmに切断した後、切削加工して直径11mm、長さ20
mmの円柱ビレツト(ビレツトB)を作製した。
Next, the extruded rod with a diameter of 15 mm obtained in Example 2 was
After cutting to mm, it is machined to a diameter of 11 mm and a length of 20 mm.
A cylindrical billet (billet B) of mm was prepared.

ビレツトAの中空部分にビレツトBを入れて、
第2図aの状態で、潤滑剤を介して680℃の温度
で圧縮加工した。圧縮加工に用いた金型を実施例
1と同じものである。圧縮加工後のビレツトは直
径30mm、長さ10mmのほぼ円柱体状であつた。この
ビレツトを実施例2と同様に外径23mmに切削加工
し、12極の外周着磁を施した後、外周の表面磁束
密度を測定した。外周の表面磁束密度は3.1kGで
あつた。
Insert billet B into the hollow part of billet A,
Compression processing was carried out at a temperature of 680°C using a lubricant in the state shown in Fig. 2a. The mold used for compression processing was the same as in Example 1. The billet after compression processing was approximately cylindrical with a diameter of 30 mm and a length of 10 mm. This billet was cut to an outer diameter of 23 mm in the same manner as in Example 2, and the outer periphery was magnetized with 12 poles, and then the surface magnetic flux density of the outer periphery was measured. The surface magnetic flux density at the outer periphery was 3.1 kG.

実施例 4 実施例2で得た直径31mmの押出棒を長さ20mmに
切断し、切削加工して外径30mm、内径25mm、長さ
20mmの円筒ビレツト(ビレツトA)を作製した。
Example 4 The extruded rod with a diameter of 31 mm obtained in Example 2 was cut to a length of 20 mm, and was machined to have an outer diameter of 30 mm, an inner diameter of 25 mm, and a length of 20 mm.
A 20 mm cylindrical billet (billet A) was prepared.

次に配合組成で72%のMn、27%のAl及び1%
のCを溶解鋳造し、直径50mm、長さ60mmの円柱ビ
レツトを作製した。このビレツトを1150℃で2時
間保持した後、1150℃から5700℃まで、平均20
℃/分の冷却速度で冷却し、700℃で30分間保持
する熱処理を行つた。次に720℃の温度で潤滑剤
を介して直径28mmまでの押出加工を行つた。この
押出棒を長さ20mmに切断し、切削加工して外径25
mm、内径22mm、長さ20mmの円筒ビレツト(ビレツ
トB)を作製した。
Next, the compound composition is 72% Mn, 27% Al and 1%
C was melted and cast to produce a cylindrical billet with a diameter of 50 mm and a length of 60 mm. After holding this billet at 1150℃ for 2 hours, it was heated from 1150℃ to 5700℃ for an average of 20℃.
Heat treatment was carried out by cooling at a cooling rate of °C/min and holding at 700 °C for 30 minutes. Next, extrusion processing up to a diameter of 28 mm was performed at a temperature of 720°C using a lubricant. This extruded rod was cut to a length of 20 mm and machined to an outer diameter of 25 mm.
A cylindrical billet (billet B) with a diameter of 22 mm, an inner diameter of 22 mm, and a length of 20 mm was prepared.

ビレツトAの中空部分にビレツトBを入れ、実
施例1と同じ金型を用いて第2図cに示した状態
にセツトして680℃の温度で潤滑剤を介して圧縮
加工を行つた。加工後のビレツトの高さは10mmで
あつた。このビレツトを外径22mmに切削加工し
て、実施例2と同様に外周に8極の着磁を施し
た。外周の表面磁束密度を測定した。外周の表面
磁束密度は2.9kGであつた。
Billet B was placed in the hollow part of billet A, set in the state shown in FIG. 2c using the same mold as in Example 1, and compressed at a temperature of 680 DEG C. using a lubricant. The height of the billet after processing was 10 mm. This billet was cut to an outer diameter of 22 mm, and the outer periphery was magnetized with 8 poles in the same manner as in Example 2. The surface magnetic flux density of the outer periphery was measured. The surface magnetic flux density at the outer periphery was 2.9kG.

実施例 5 純鉄で外径22mm、内径18mm、長さ20mmの円筒ビ
レツト(ビレツトB)を作製した。
Example 5 A cylindrical billet (billet B) having an outer diameter of 22 mm, an inner diameter of 18 mm, and a length of 20 mm was prepared from pure iron.

実施例4のビレツトAと同じものをビレツトA
として、ビレツトAの中空部分にビレツトBを入
れて、実施例1と同じ金型を用いて第2図dの状
態にして潤滑剤を介して680℃の温度で圧縮加工
を行つた。圧縮加工後のビレツト(高さは10mm)
を外径24mmに切削加工して、実施例2と同様に外
周に18極の着磁を施した後、外周の表面磁束密度
を測定した。外周の表面磁束密度は3.2kGであつ
た。
Billet A is the same as billet A in Example 4.
Then billet B was put into the hollow part of billet A, and using the same mold as in Example 1, compression working was performed at a temperature of 680° C. using a lubricant in the state shown in FIG. 2d. Billet after compression processing (height is 10mm)
was cut to an outer diameter of 24 mm, the outer periphery was magnetized with 18 poles in the same manner as in Example 2, and the surface magnetic flux density of the outer periphery was measured. The surface magnetic flux density at the outer periphery was 3.2 kG.

実施例 6 実施例2で得た直径31mmの押出棒を長さ20mmに
切断し、切削加工して外径27mm、内径21.8mm、長
さ20mmの円筒ビレツト(ビレツトA)を作製し
た。
Example 6 The extruded rod with a diameter of 31 mm obtained in Example 2 was cut into a length of 20 mm and machined to produce a cylindrical billet (billet A) with an outer diameter of 27 mm, an inner diameter of 21.8 mm, and a length of 20 mm.

次に配合組成で69.4%のMn、29.3%のAl、0.5
%のC、0.7%のNi及び0.1%のTiを溶解鋳造し
て、外径14mm、内径8mm、長さ20mmの円筒ビレツ
トを作製した。このビレツトを1100℃で2時間保
持した後、室温まで風冷した。このビレツトの中
空部分に直径8mm、長さ20mmの銅を入れて円柱ビ
レツト(ビレツトB)を作製した。
Next, the compound composition is 69.4% Mn, 29.3% Al, 0.5
A cylindrical billet with an outer diameter of 14 mm, an inner diameter of 8 mm, and a length of 20 mm was prepared by melting and casting % C, 0.7% Ni, and 0.1% Ti. This billet was held at 1100° C. for 2 hours and then air-cooled to room temperature. A cylindrical billet (billet B) was prepared by putting copper with a diameter of 8 mm and a length of 20 mm into the hollow part of this billet.

ビレツトAの中空部分にビレツトBを入れて第
2図fに示す状態にセツトして実施例1と同じ金
型を用いて、潤滑剤を介して680℃の温度で圧縮
加工を行つた。圧縮加工後のビレツトは高さ10cm
であつた。
Billet B was put into the hollow part of billet A and set in the state shown in FIG. 2f, and compression working was carried out at a temperature of 680 DEG C. using a lubricant using the same mold as in Example 1. Billet height after compression processing is 10cm.
It was hot.

圧縮加工後のビレツトを外径26mmに切削加工し
て、実施例2と同様に外周に12極の着磁を施し
た。外周の表面磁束密度を測定したところ3.1kG
であつた。
The compressed billet was cut to an outer diameter of 26 mm, and the outer periphery was magnetized with 12 poles in the same manner as in Example 2. When we measured the surface magnetic flux density on the outer periphery, it was 3.1kG.
It was hot.

以上の実施例は、第2図に示した代表的な具体
例であるが、ビレツトA(第2図において1)と
ビレツトB(第2図において2または2と3)の
長さは必ずしも同じである必要はない。例えば一
方のビレツトが加工前・後で長さがわずかに変化
する場合でもよい。また、ビレツトAの外側にも
金属材料からなるビレツトが存在してもよい。さ
らに、ビレツト全体を圧縮加工するのではなく、
ビレツトの一部分を変形させない方法でもよい。
また場合によつてはビレツトA(又はビレツトB)
が二つ以上に分かれたものからなつていてもよ
い。
The above embodiment is a typical example shown in Fig. 2, but the lengths of billet A (1 in Fig. 2) and billet B (2 or 2 and 3 in Fig. 2) are not necessarily the same. It doesn't have to be. For example, the length of one billet may vary slightly before and after processing. Further, a billet made of a metal material may also exist outside billet A. Furthermore, rather than compressing the entire billet,
A method that does not deform part of the billet may also be used.
In some cases, billet A (or billet B)
may consist of two or more parts.

発明の効果 以上のように、本発明によれば、多極着磁にお
いて優れた磁気特性を示す磁石を得ることができ
る。また、本発明の方法では、例えば円筒体状に
切削加工する場合には、磁石の中心部に切削性の
よい材料からなるようにすれば、穴あけ加工がし
やすく、しかも精度をだしやすくすることができ
る。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a magnet that exhibits excellent magnetic properties in multipolar magnetization. Furthermore, in the method of the present invention, when cutting into a cylindrical shape, for example, if the center part of the magnet is made of a material with good machinability, it becomes easier to drill holes and to achieve accuracy. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒状磁石の外周に多極着磁を施した
場合の磁石内部での磁路の形成を模式的に示す
図、第2図は本発明の圧縮加工前の状態のいくつ
かの例を示す金型の一部の断面図、第3図及び第
4図は本発明の圧縮加工の一例を示す金型の一部
の断面図、第5図は実施例2での圧縮ひずみに対
する残留磁束密度(Br)の変化を示す図である。 1……ビレツトA、2,3……ビレツトB、
4,5……ポンチ、6……外型。
Fig. 1 is a diagram schematically showing the formation of a magnetic path inside the magnet when the outer periphery of the cylindrical magnet is subjected to multipolar magnetization, and Fig. 2 is a diagram showing several states before compression processing of the present invention. FIGS. 3 and 4 are cross-sectional views of a part of a mold showing an example of compression processing of the present invention. FIG. 5 is a cross-sectional view of a part of a mold showing an example of compression processing of the present invention. FIG. 3 is a diagram showing changes in residual magnetic flux density (B r ). 1... Billet A, 2, 3... Billet B,
4, 5... punch, 6... outer mold.

Claims (1)

【特許請求の範囲】 1 あらかじめ異方性化した多結晶マンガン−ア
ルミニウム−炭素系合金磁石からなる中空体状の
ビレツトの中空部分に前記合金磁石とは材料の異
なる金属材料からなるビレツトを挿入し、この二
つのビレツトを、530〜830℃の温度で前記中空体
状のビレツトの軸方向に前記二つのビレツトが互
いに接するまでまたはそれ以上圧縮加工して一体
化することを特徴とするマンガン−アルミニウム
−炭素系合金磁石の製造法。 2 金属材料からなるビレツトが、少なくとも外
周部が磁性体からなつている特許請求の範囲第1
項記載のマンガン−アルミニウム−炭素系合金磁
石の製造法。 3 中空体状のビレツトが、中空体の軸方向に磁
化容易方向を有する多結晶マンガン−アルミニウ
ム−炭素系合金磁石からなり、しかも圧縮加工の
中空体の軸方向の圧縮ひずみが対数ひずみの絶対
値で0.05以上である特許請求の範囲第1項または
第2項記載のマンガン−アルミニウム−炭素系合
金磁石の製造法。 4 中空体状のビレツトが、中空体の軸方向に垂
直な平面に平行に磁化容易方向を有し、しかも前
記平面内では磁気的に等方性であり、かつ前記軸
方向と前記平面に平行な直線を含む平面内では異
方性である多結晶マンガン−アルミニウム−炭素
系合金磁石からなる特許請求の範囲第1項または
第2項記載のマンガン−アルミニウム−炭素系合
金磁石の製造法。 5 中空体状のビレツトが、中空体の軸方向に垂
直な平面上の任意の一点を通る直線に平行に磁化
容易方向を有する多結晶マンガン−アルミニウム
−炭素系合金磁石からなる特許請求の範囲第1項
または第2項記載のマンガン−アルミニウム−炭
素系合金磁石の製造法。 6 圧縮加工が、中空体状のビレツトの外周を拘
束した状態で、しかも少なくとも内周の一部分を
自由にした状態で行う加工である特許請求の範囲
第1項または第2項記載のマンガン−アルミニウ
ム−炭素系合金磁石の製造法。 7 圧縮加工が、中空体状のビレツトの外周およ
び内周の少なくとも一部分を自由にした状態で行
つた後、さらに前記ビレツトの外周を拘束した状
態で、しかも少なくとも内周の一部分を自由にし
た状態で加工である特許請求の範囲第1項または
第2項記載のマンガン−アルミニウム−炭素系合
金磁石の製造法。 8 中空体状が円筒体状であり、さらに金属材料
からなるビレツトが円柱体状である特許請求の範
囲第1項または第2項記載のマンガン−アルミニ
ウム−炭素系合金磁石の製造法。 9 中空体状が円筒体状であり、さらに金属材料
からなるビレツトが円筒体状である特許請求の範
囲第1項または第2項記載のマンガン−アルミニ
ウム−炭素系合金磁石の製造法。
[Scope of Claims] 1. A billet made of a metal material different from that of the alloy magnet is inserted into a hollow portion of a hollow billet made of a polycrystalline manganese-aluminum-carbon alloy magnet that has been made anisotropic in advance. , the two billets are integrated by compression processing in the axial direction of the hollow billet at a temperature of 530 to 830° C. until the two billets touch each other or further. -Production method of carbon-based alloy magnet. 2. Claim 1, wherein the billet made of a metal material is made of a magnetic material at least at the outer peripheral part.
A method for producing a manganese-aluminum-carbon alloy magnet as described in 2. 3 The hollow body-shaped billet is made of a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in the axial direction of the hollow body, and the compressive strain in the axial direction of the hollow body during compression processing is the absolute value of the logarithmic strain. 0.05 or more, the method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2. 4. A hollow body-shaped billet has a direction of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic within said plane, and is parallel to said axial direction and said plane. A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, which comprises a polycrystalline manganese-aluminum-carbon alloy magnet that is anisotropic in a plane containing a straight line. 5. Claim No. 5, wherein the hollow body-shaped billet is a polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction parallel to a straight line passing through an arbitrary point on a plane perpendicular to the axial direction of the hollow body. A method for manufacturing a manganese-aluminum-carbon alloy magnet according to item 1 or 2. 6. The manganese-aluminum according to claim 1 or 2, wherein the compression processing is performed with the outer periphery of the hollow billet restrained and at least a portion of the inner periphery free. -Production method of carbon-based alloy magnet. 7. After the compression process is performed with at least a portion of the outer and inner circumferences of the hollow billet free, the billet is further constrained with its outer circumference and at least a portion of its inner circumference free. A method for manufacturing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, which is processed by: 8. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the hollow body has a cylindrical shape and the billet made of a metal material has a cylindrical shape. 9. The method for producing a manganese-aluminum-carbon alloy magnet according to claim 1 or 2, wherein the hollow body has a cylindrical shape and the billet made of a metal material has a cylindrical shape.
JP58168637A 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet Granted JPS6059721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168637A JPS6059721A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168637A JPS6059721A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS6059721A JPS6059721A (en) 1985-04-06
JPH0434806B2 true JPH0434806B2 (en) 1992-06-09

Family

ID=15871728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168637A Granted JPS6059721A (en) 1983-09-13 1983-09-13 Preparation of manganese-aluminium-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS6059721A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS5830729A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Dimming body
JPS58130263A (en) * 1982-01-28 1983-08-03 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminium-carbon alloy magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS5830729A (en) * 1981-08-18 1983-02-23 Asahi Glass Co Ltd Dimming body
JPS58130263A (en) * 1982-01-28 1983-08-03 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminium-carbon alloy magnet

Also Published As

Publication number Publication date
JPS6059721A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
US4648915A (en) Permanent Mn-Al-C alloy magnets
JPH0311522B2 (en)
JPH0434806B2 (en)
JPH0434804B2 (en)
JPH0434807B2 (en)
JPH0479122B2 (en)
JPS6210260A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311521B2 (en)
JPH0434805B2 (en)
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS5972701A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143405A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS60133703A (en) Permanent magnet
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0311523B2 (en)
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0639673B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0311524B2 (en)
JPS58192303A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH037748B2 (en)
JPS61187213A (en) Manufacture of alloy magnet