JPS58206105A - Manufacture of manganese-aluminum-carbon alloy magnet - Google Patents

Manufacture of manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS58206105A
JPS58206105A JP57089144A JP8914482A JPS58206105A JP S58206105 A JPS58206105 A JP S58206105A JP 57089144 A JP57089144 A JP 57089144A JP 8914482 A JP8914482 A JP 8914482A JP S58206105 A JPS58206105 A JP S58206105A
Authority
JP
Japan
Prior art keywords
billet
magnet
magnetization
punch
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57089144A
Other languages
Japanese (ja)
Other versions
JPH0479122B2 (en
Inventor
Akihiko Ibata
昭彦 井端
Yoichi Sakamoto
洋一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57089144A priority Critical patent/JPS58206105A/en
Priority to US06/486,242 priority patent/US4579607A/en
Priority to EP83302204A priority patent/EP0092422B1/en
Priority to DE8383302204T priority patent/DE3365406D1/en
Publication of JPS58206105A publication Critical patent/JPS58206105A/en
Priority to US06/784,661 priority patent/US4648915A/en
Publication of JPH0479122B2 publication Critical patent/JPH0479122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a magnet suitable for multipole magnetization by a method wherein a part of a billet formed of polycrystalline Mn-Al-C alloy magnet undergoes the plastic deforming operation at 530-830 deg.C to impart a compressive strain in the easily magnetized direction. CONSTITUTION:A billet formed of polycrystalline Mn-Al-C alloy magnet undergoes the plastic deforming operation in a temperature range of 530-830 deg.C to impart a compressive strain not less than 0.05 in the absolute value of logarithmic strain in a direction parallel with the easily magnetized direction of the billet. The plastic deforming operation is performed by compressing a billet 1 on a lower die 4 with a punch comprising a movable punch 2 and a fixed punch 3. By so doing, there can attained a magnet in which a part of the billet has the anisotropic structure suitable for multipole magnetization and other part has the easily magnetized direction in one characteristic direction.

Description

【発明の詳細な説明】 本発明を−[、永久磁イ1の製造法に関するものである
。さらに詳細にrL,ρ結晶マンガン−アルミ−ラム−
炭素系(Mn−▲l−C系)合金磁石の製造l)、:に
関し、慣に薗’l’l i止な8極着磁川Mn− ▲l
ーG系合金系合金磁製1法を1111供するものである
、、Mn−−AI−C系合金fM イiは、主として強
磁性相である面心+l:)j晶(τ相、Llo  型規
則格子)の組織で構成さh,Cを必狛構成丸木とL. 
−C +’TむもLノ)であり、不純物以外Vこ添加J
し素を1′t−まない3 71,糸及び少litの添加
元素をτむ4几糸以1−の〉ル糸n金が知られており、
これらIg、称するものである1、捷だ、このMn−A
I−C糸付金線イ1の製造θ、と[一こは、鋳造・熱処
理によるもの以外に、押開押出加工等の温間塑性加ー1
ニ王程をf(むものか知られている。特に後者は、高い
磁気特性、機械的強度、耐候性、機械加工性等の優れた
性4j↓を有するW. 、)i ’I’l磁石の製造法
として知られている3、 多極着磁用Mn一▲l−C系合金磁石の製造法とし。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a permanent magnet 1. In more detail, rL, ρ crystalline manganese-aluminum-lamb-
Regarding the production of carbon-based (Mn-▲l-C-based) alloy magnets, it is customary to use an 8-pole magnetized Mn-▲l method.
-Mn--AI-C alloy fM ii is mainly a ferromagnetic phase, face-centered +l:)j crystal (τ phase, Llo type). It is composed of a regular lattice structure, h, C is a necessary structure of logs and L.
-C
It is known that there are 4 threads containing 371 threads and a small amount of additive elements, and
These Ig are called 1, this is Mn-A.
Manufacture of I-C threaded gold wire 1 θ, [1] In addition to casting and heat treatment, warm plastic processing such as push-open extrusion 1
In particular, the latter has excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability. 3. A method for manufacturing Mn-▲l-C alloy magnets for multipolar magnetization.

では、等方性磁石、圧縮加二1二によるもの、及びあら
かじめ温間押出加工等の公知の方法で{lだ一ifh異
方性の多結晶Mn−▲l−C糸合金磁石に異hPl力面
への温間自由圧縮加−[を施し/こもの(複合加1一法
Vこよるもの)が知られている。
In this case, a different hPl is applied to an anisotropic polycrystalline Mn-▲l-C thread alloy magnet using a known method such as an isotropic magnet, a compressor, or a warm extrusion process. The application of warm free compression to a force surface (combined compression method V) is known.

圧縮加工によるものでは、径方向に高い磁気ql。Compression processing has high magnetic ql in the radial direction.

性が?!}られでいるが、比較的太きl/旬+lI:・
イ、か・k−四であること、不均一変形が起こる場合か
あること、不変形帯の存在が避けら11ないこと4・と
の問題点かある、1 複合尻上法V(よるものてに1、小さな圧縮ひすみて径
方向、弦す向’L’ isむ平面円の全ての方向に高い
磁気特+/1か得らtl、でいる。前述した様に複合加
1゛法では、−軸νく方性の多結晶Mn−ムローc糸合
金磁石全体に異方性h″向へ温間自由圧縮加工を施すも
ので、磁イ1全体が前述した多極着磁に適する構造を有
する3、 多極沼磁の分野て月1いられる磁石の形状に1一般に軸
対象であり、最も多く用いられている形状11円筒であ
る。円筒磁石に多極着磁を施した場合の1円なものを第
1図と第2図に示す。第1図は円筒磁イ1の外周にに極
^’、’j 4+Htを施し7た場合の磁石内部て・の
磁路(破線で小才)の形成を模式的にボしたものであり
、第2図は同様に内)、′iに多極着磁を施しまた場合
のものである1、第1図に小しだ着磁を本明細害ては外
周着磁と称し、第2図に示し7た着磁を内周着磁と称す
る1、なお、磁石の形状を円筒と17だ場合、円筒の外
側の表面を外周と表現し、内側の表面を内周と表現4パ
る11 第1図および第2図に小しだ様Vこ、磁石Vこ多極着磁
を施した場合まったく磁路の通らない>4B分か存在す
る。少なくとも磁路の通る741(分が多極zi’i 
(iaに適した構造であれは、多極着磁を施した場合に
優れた磁気特性を示すことになる。しかも、前記の抱合
加工法では、自由圧縮加工前は、圧縮力向に異方性化し
、た磁石であり、自由圧縮加りを値イ1全体に施すこと
によ−)で、磁イ1仝体が多極/?′(磁に適する構造
に変化する。例えば応用にの一例と′シフて、多極着磁
を施しだ場合に磁路の通らないi’?l)分を前記の一
軸異方性のま捷にしておけば、その部分を用いて回転の
検出などを17ようとする」易合には、その部分の端面
をイ1効に活用することができる。
Gender? ! }Although it is relatively thick l/shun+lI:・
A, K-4, non-uniform deformation may occur, and the existence of an undeformed zone is unavoidable.4.1. 1, a small compression strain results in a high magnetic property +/1 in all directions of the plane circle in the radial direction and the chordal direction 'L'.As mentioned above, in the compound addition 1' method, , the entire polycrystalline Mn-Muro c yarn alloy magnet with -axis ν direction is subjected to warm free compression processing in the anisotropic h'' direction, and the entire magnet 1 has a structure suitable for multi-polar magnetization as described above. 3. In the field of multipolar magnetism, the shape of magnets used is generally axially symmetrical, and the most commonly used shape is cylinder. Figures 1 and 2 show 1-circle magnets. Figure 1 shows the magnetic path inside the magnet (the broken line indicates Figure 2 is a schematic diagram of the formation of the inner) and 'i' with multi-pole magnetization, and Figure 1 shows the case where the In this specification, the magnetization shown in Fig. 2 is referred to as outer circumference magnetization, and the magnetization shown in Fig. 2 is referred to as inner circumference magnetization. Expressing the inner surface as the inner periphery 4 Puru 11 In Figures 1 and 2, there is a small V-shaped magnet, and if the magnet V is multi-pole magnetized, no magnetic path will pass through >4B. At least 741 through which the magnetic path passes (minutes are multipolar zi'i
(A structure suitable for ia will exhibit excellent magnetic properties when subjected to multipolar magnetization. Furthermore, in the above-mentioned conjugation processing method, before free compression processing, the structure is anisotropic in the direction of compression force. By applying free compressive force to the entire value I1, the magnetic body becomes multi-pole/? (Changes to a structure suitable for magnetism. For example, as an example of application, when applying multi-pole magnetization, the part where the magnetic path does not pass i'?l) is replaced by the above-mentioned uniaxial anisotropy. If it is set to 17, the end face of that part can be used effectively in cases where it is easy to use that part to detect rotation, etc.

本発明者らは、特定の一方向に磁化容易方向を有する多
結晶Mn−ムl−C系合金磁石からなるビレットに、6
30〜830°Cの温庶で、ビレットの一部分に、前記
の特定の方向に平行な方向に対数ひずみの絶対値でo、
05以上の圧縮ひずみを与える塑性加工を施すことによ
って前記の問題点を11Iイ決し、得にとイ)IL出し
/(。
The present inventors have developed a billet consisting of a polycrystalline Mn-Ml-C alloy magnet having an easy magnetization direction in one specific direction.
At a temperature of 30 to 830°C, a portion of the billet is subjected to an absolute value of logarithmic strain o in a direction parallel to the above-mentioned specific direction.
By performing plastic working that gives a compressive strain of 0.05 or more, the above problems can be resolved, and especially a) IL extension/(.

ずなわイハ公知のMn−Al−C系磁イ1用合金、例え
は68〜73Φ:1;%(以上r1t l/c%で7I
<す”)のMnと(’1oMn−6.e ) 〜(V3
Mn  22,2 ) %のCと残部のA/からなる合
金を、630〜830 ”(:の温度域て押出加1″等
の公知のJj法によ−)で、特5ilの−JJ向に磁化
容易方向否・イ1する多結晶Mn−4e−C系合金磁石
をflることかできるn M記の磁石からなるビレット
の−・部分に、ビレットの磁化容易ノ1向に平行なフッ
向に対数ひすみの絶対植で0.05以1−の圧縮ひずみ
’fttJえる塑性加工を施すこと(lこよ−)で、多
極着磁において優れた磁気特rl+を7J<寸磁石をイ
!することか−Cき4.l+1前記のビレットの−1”
■鋒(圧縮ひずみ4・lPXだ部分)が多極着磁に適し
5た1、+J、 、)、性構造6自(7、その他の部分
は特定の−b向0こイIR化容易)J11′IJ6・イ
、つ、前記の塑ゼ1加l:前の磁イ1の構造をlid 
(f[でいる1、 t’+il記の11.浦ri L:、h l−ノドが力
(故ひずみの絶対(111で0.06以に心安てあAの
は、実施例で詳述するように塑性加工前のどi−ソトは
圧縮ひずみを与える方向に異方性化したものであり、多
1!を着磁を施すのv(二適した異方性構造への変化に
最(1(0,06の圧縮ひ゛メーみが必要であるからで
ある1、 特定の一方向に磁化容易方向4・有する笠結晶Mn−A
7!−C糸合金磁石からなるヒレノドの一部分v(二、
特定のフッ向に平行な方向に圧縮ひずみを1.えるyv
1件加工の具体例をいくつか鯖、明すると、第1の例と
L7て、前記ビレットの形状4円柱とシ2/こ場合のf
VI性加1]の一例を第3図に小ず1、第3図it :
Y1! PI: 、Ull]二時の状態を小したもので
、(2L)は加l:前、(b)は加]二後を/Jぐす。
Zunawa Iha is a well-known Mn-Al-C alloy for magnetic alloy 1, for example, 68-73Φ:1;% (more than 7I in r1t l/c%
Mn and ('1oMn-6.e) ~(V3
An alloy consisting of Mn22,2)% C and the balance A/ is heated to 630 to 830" (by a known JJ method such as extrusion at a temperature of A polycrystalline Mn-4e-C alloy magnet having an easy magnetization direction or not can be attached to a billet made of M magnets with a hook parallel to the easy magnetization direction of the billet. By applying plastic working that produces a compressive strain of 0.05 or more than 1'fttJ with absolute logarithmic strain in the direction of ! What to do?-C 4. l+1-1” of said billet
■Front (compressive strain 4・lPX part) is suitable for multi-pole magnetization, +J, , ), magnetic structure 6 (7, other parts are 0 in specific -b direction, easy to make IR) J11'IJ6・I、Ts、Add the above plasticizer 1: Lid the structure of the previous magnet 1
(11. urari L:, h l-nod is the force (therefore, the absolute value of strain (111 is at least 0.06). As shown in the figure, the do-i-soto before plastic working is anisotropic in the direction of applying compressive strain, and magnetization is applied to the most suitable anisotropic structure (v(2)). 1 (This is because a compression dimension of 0.06 is required. 1. Kasa crystal Mn-A with easy magnetization direction 4.
7! - Part of the fin nod consisting of C thread alloy magnet v (2,
A compressive strain of 1. Eruyv
To explain some specific examples of processing, the first example and L7 are the billet shape 4 cylinder and C2/f in this case.
Figure 3 shows an example of VI Addition 1].
Y1! PI: ,Ull] is a smaller version of the two o'clock state, (2L) is +l: before, (b) is +]2 after /J.

第3図において、1がピレノI・、21111J′動ボ
/チで2方向に移動することができる。3は固定用ポン
チで、ポンチ2と同様にZ方向に移動することができる
。4は固定された下型である。
In FIG. 3, Pireno I/21111J' can move in two directions. 3 is a fixing punch which, like punch 2, can be moved in the Z direction. 4 is a fixed lower mold.

下型4の上にビレット14・のせた後、ポンチ2と3を
2方向(図においてF向き)に移動させてビレット1に
接近させた状態が図(Ljであり、ポンチ2を図におい
て下向きに移動させることによ−)て加工する。加工中
はポンチ3は下型4に対し7て、相対的に移動[7ない
ように同定する。こうしてビレット1をポ、・チ3とト
型4によって固定および拘束し7、ポンチ2によってビ
レットの外周BBのみを圧縮加圧することにより(b)
に示した状態になる11、J=、 2 (7) (+l
lとし7て、II!l ′、3eビレットの形状を円筒
とし7た場合の塑性加1−の一例を第4図に示す1、(
IL)は加1°前の状(I峡を小11、(b)は加圧後
の状態を示す3゜第4図においで、1′がビレット、4
は固定τ入れたl−1−IJである。611外j〜11
で、下型4に固定されている。6はホ/チーCZh向に
移動することができる。
After placing the billet 14 on the lower die 4, the punches 2 and 3 are moved in two directions (direction F in the figure) to approach the billet 1 (Lj), with the punch 2 facing downward in the figure. It is processed by moving it to (-). During processing, the punch 3 is identified so as not to move relative to the lower mold 4. In this way, the billet 1 is fixed and restrained by the punches 3 and 4, and only the outer periphery BB of the billet is compressed and pressurized by the punch 2 (b).
11, J=, 2 (7) (+l
As l and 7, II! Figure 4 shows an example of plastic deformation 1- when the shape of the billet is a cylinder.
IL) is the state before application of pressure (I isthmus is 11, (b) is 3° showing the state after application of pressure. In Figure 4, 1' is billet, 4
is l-1-IJ with fixed τ. 611 outside j~11
and is fixed to the lower mold 4. 6 can move in the Ho/Chi CZh direction.

下型4のトvこビレット1をのせた後、外J〜す6の中
にビレット1′か入る」、。うにし7て外’1151 
)’ I(” 4に固定する1、次にボンデ、6をZ方
向(図上向き)に移動さ也ビシノド1′に接近させた状
態が図(a)である。加1−はホンチロを図において下
向きに移動させることによ−・て行う。こうしてビレッ
ト1を下型4と外型5によ−)て固定および拘束し、ポ
ンチ6によ一〕でビレットの内周部のみを圧縮加■:す
ることにより、(b)に示しだ状態になる。なお、第1
および第2の例の円柱および円筒の1111方向と前記
の特定の方向は平行である。
After placing the billet 1 on the bottom mold 4, place the billet 1' into the outer mold 6. Sea urchin 7 outside '1151
)'I(" Figure (a) shows the state in which 1 is fixed at 4, then Bonde and 6 are moved in the Z direction (upward in the figure) and brought closer to Bishinode 1'. The billet 1 is thus fixed and restrained by the lower mold 4 and the outer mold 5), and only the inner periphery of the billet is compressed by the punch 6). ■: By doing so, the state shown in (b) is reached.In addition, the first
And the cylinder in the second example and the 1111 direction of the cylinder are parallel to the above-mentioned specific direction.

前述し7た第1の例では、円柱ビレットの外周部のみに
圧縮加工を施したため、外周部のみが、¥極着磁に適し
た異方性構造にイ]L−1第1図にンJ’: L、た外
周着磁を施すのに適し7た磁石である。第2の例では、
円筒ビレットの内周部のみに圧縮加工音節したため、内
周部のみが多極着磁に適した異方f1構造を有し、第2
図に丞した内周着磁を施すのC/(適した磁石である。
In the first example described above, only the outer periphery of the cylindrical billet was compressed, so only the outer periphery had an anisotropic structure suitable for polar magnetization. J': This is a magnet suitable for external magnetization. In the second example,
Because the syllables were compressed only on the inner circumference of the cylindrical billet, only the inner circumference had an anisotropic f1 structure suitable for multipolar magnetization, and the second
C/(This is a suitable magnet for applying the inner periphery magnetization as shown in the figure.

前記の例では、ビレットの一部分を外周部と内周部と1
2だが、特殊な用途に対してはそflぞ)1に適したi
’tlS分にすれは良い。また、tijl記の圧縮加1
゜には連続的に圧縮加圧を行う方法と複数回に分割して
行う方法々どがある。
In the above example, a portion of the billet is divided into an outer circumference and an inner circumference.
2, but for special purposes it can be used.) i suitable for 1.
'tlS is fine. Also, compression 1 of tijl
There are two methods for compressing and pressurizing: one method is to perform compression pressurization continuously, and the other method is to perform it in multiple steps.

公知技術として、−軸性の角柱状磁石の軸力向へ温間圧
縮加工を施した例があるが、その目的−一軸異方性から
それに垂直な一軸への磁化容易方向の転換で、加工後も
一軸異方性の角柱状磁石である。前記公知技術による磁
化容易方向の一方向−\の転換にvL、約60〜70%
以トの加にを要し7、こ7′1−は対数ひJ−みの絶対
111′1として約0.9〜1.21J1−という入き
な(I白である1゜ 前述し7たような塑イ/1加にの6」能な温度範囲につ
いてt−1,630〜830 ”Cの温度領域において
、加1.が行えたか、780″Cを越える温度で11、
磁気時f1かかなり低トし7た。より’?ftL、い温
度範囲とし7てtま669〜760°Cであ−2だ。
As a known technique, there is an example in which warm compression processing is applied to an axial prismatic magnet in the direction of axial force. The latter is also a uniaxially anisotropic prismatic magnet. According to the known technique, vL is about 60 to 70% when the direction of easy magnetization is changed in one direction -\.
7, and this 7'1- is approximately 0.9 to 1.21J1- as the absolute 111'1 of the logarithmic scale (I white is 1°, as mentioned above). Regarding the temperature range that can be applied to such plasticity/1 addition, in the temperature range of t-1, 630 to 830"C, the addition 1. was performed, or 11 at a temperature exceeding 780"C.
When magnetic, f1 was considerably lower than 7. Than'? ftL is -2 in the temperature range of 769 to 760°C.

以ト、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail by way of examples.

配合組成て69.5%(1)Mn 、29.3 %のム
l 、0.5%のC1及び0.7%のNii、溶解鋳造
し1、直径7o朋、長さ50朋の円[1゛ビレツトを作
製しまた。このビレ、トロ110σにで211.11間
保持し7だ抜、室温−ま−C放冷する熱処Jlllt 
?r−・た。次に潤滑剤を介し、て720(Hの温度で
直f% 45 mm′までの押出加−1を行った。さら
V(、潤滑剤を介して680℃の温度で直径311N−
までの押出加1.4行・た1、この押出棒を長さ20朋
に切断した後、切削IJII LL、て外径31朋、内
径10〜22閂、長さ20間の円筒ビレットを数個作製
し、た。このビレ、トに第4図に示す金型を月1いて、
680″Cの温度で内周部のみに用表白ひずみ介θII
えた圧縮加11を施した。第4図に:1・・いてボッチ
6の外径は26闘である。
The composition was 69.5% (1) Mn, 29.3% Mul, 0.5% C1 and 0.7% Ni, melted and cast 1, a circle with a diameter of 7 mm and a length of 50 mm [ 1. Make a billet. This fillet was heated to a temperature of 110σ, held for 211.11 minutes, removed, and left to cool at room temperature.
? r-・ta. Next, extrusion was carried out to a diameter of 45 mm at a temperature of 720 (H) using a lubricant.
The extrusion process was performed up to 1.4 lines/1, and after cutting this extruded rod into lengths of 20 mm, cutting IJII LL was performed to make several cylindrical billets with an outer diameter of 31 mm, an inner diameter of 10 to 22 bars, and a length of 20 mm. I made one piece. The mold shown in Figure 4 is placed on this fillet and top once a month.
At a temperature of 680″C, the white strain θII is applied only to the inner circumference.
11 compressions were applied. In Figure 4: 1... and the outer diameter of Bocchi 6 is 26 strokes.

加工後のビレットの圧縮加1−を施した部分から一辺約
6闘の立方体試料をりJり出し7、磁気4;+’(’l
l測測定た。なお、立方体の各辺(r、[11+方向、
径)J向および!技方向に平行に々るようにした。ll
−1tiひずみ(Ez)に対する残留磁束密度(Br)
の変化を第6図に示す。第5図に示す様に62が0.0
5で径方向のBrにt軸方向のBrに比して友きくなり
、Ezがさらに大きくなるとさらに径方向のBr1l増
加する。この図かられかるように、軸力向から径方向へ
の磁化容易方向の転換がEz = 0.064での範囲
で著しく進行する。第5図に示す様に、公知の圧縮加工
によるものに比較すると、非常に小さな圧縮ひずみで高
い磁気特性を示している。
From the compressed part of the billet after processing, take out a cubic sample of about 6 mm on each side.
I measured it. Note that each side of the cube (r, [11+ direction,
Diameter) towards J and! I made it run parallel to the technique direction. ll
-Residual magnetic flux density (Br) for 1ti strain (Ez)
Figure 6 shows the changes in . As shown in Figure 5, 62 is 0.0
5, the Br in the radial direction becomes friendlier than the Br in the t-axis direction, and as Ez further increases, Br1l in the radial direction further increases. As can be seen from this figure, the change in the direction of easy magnetization from the axial direction to the radial direction progresses significantly in the range of Ez = 0.064. As shown in FIG. 5, compared to the known compression process, it exhibits high magnetic properties with a very small compressive strain.

前記の直径31MWIの押出棒を長さ20#Iinに切
断した後、第3図に示す金型を用いて680 ”Cの?
l’lA度で、外周部のみに圧縮加工を行−・た。第3
図においてポンチ2の内径は14酎である。加圧後のビ
レットの圧縮加工を施した部分から前記と同様に一辺約
5朋の立方体試料を切り出し、磁気特性を測定した。A
il記の圧縮加工を施したもので同じ6zのものと比較
すると両者に大きな差はなか−・た。
After cutting the aforementioned extruded rod with a diameter of 31 MWI into a length of 20 #Iin, it was cut into a 680"C diameter using the mold shown in Fig. 3.
Compression processing was performed only on the outer periphery at 1'1A degree. Third
In the figure, the inner diameter of the punch 2 is 14 mm. A cubic sample of approximately 5 mm on a side was cut out from the compressed portion of the billet after pressurization in the same manner as described above, and its magnetic properties were measured. A
When I compared it with the same 6z model that had been subjected to the compression process described in Ill., there was no big difference between the two.

本発明は実施例Vこよ−)て述べた様に、特定の−・方
向に磁化容易方向を有する多結晶Mn−ムJ−C系合金
磁石からなるビレットに、ビレットの一部分に特定方向
に・ト行な方向に対数ひずみの絶対値で0.05以1.
の圧縮ひずみ合与える塑性加工を施すことによ−)て寥
極尤磁に適した構造を有する磁石を得るものである。ま
だ、特定の一方向に磁化容易方向を、保育シアノこ部分
を有するため、前述し7た様にその部分を回転の検出な
どに用いることができる。
As described in Example V, the present invention provides a billet made of a polycrystalline Mn-J-C alloy magnet having an easy magnetization direction in a specific direction. The absolute value of the logarithmic strain in the horizontal direction is 0.05 or more.
A magnet having a structure suitable for polar magnetism is obtained by applying plastic working to give a compressive strain of (-). Still, since it has a cyanoscopic portion which is easily magnetized in one specific direction, that portion can be used for detecting rotation as described in 7 above.

本発明によって得られる永久磁石は、尚性能な多極着磁
に適する磁石であり、モータ、ジェネレータ、メータ類
など多方面への応用が可能である。
The permanent magnet obtained by the present invention is a magnet suitable for high-performance multi-pole magnetization, and can be applied to many fields such as motors, generators, and meters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒磁石の外周に多極着磁を施した場合の磁石
内部での磁路の形成を模式的に示す図、第2図は円筒磁
石の内周に多極着磁を施した場合の磁石内部での磁路の
形成を模式的に示す図、第3図、および第4図は本発明
の塑性加工の一例を示す金型の一部分の断面図、第5図
は実施例での圧縮ひずみに対する残留磁束密度Brの変
化を示す図である。 1.1・・・・・・ビレット、2・・・・・・可動ポン
チ、3・・・・・・固定用ポンチ、4・・・・・・下型
、5・・・・・・外型、6・・・・・・可動ポンチ。
Figure 1 is a diagram schematically showing the formation of a magnetic path inside the magnet when the outer circumference of a cylindrical magnet is multipolar magnetized, and Figure 2 is a diagram showing the formation of a magnetic path inside the magnet when multipolar magnetization is applied to the inner circumference of a cylindrical magnet. FIGS. 3 and 4 are cross-sectional views of a part of a mold showing an example of plastic working of the present invention, and FIG. It is a figure which shows the change of the residual magnetic flux density Br with respect to the compressive strain of. 1.1... Billet, 2... Movable punch, 3... Fixed punch, 4... Lower mold, 5... Outside Type, 6...Movable punch.

Claims (1)

【特許請求の範囲】[Claims] 毛足の−JJ向に磁化容易方向をもする多結晶マンカン
一つ′ルミニウノ、−炭素系合金磁石からなるビレ、ト
に、630〜830 ”C’/) +A−A度で、+i
il記ビレノビレット分に前+tl 4 ’I”F ’
tilの方向に平行な力面に、灯数ひすみの絶灯イ(1
゛ビC0,06以1.の月S縮ひずみ合rjえる塑性加
1をかIIJ−ことを訪徴とするマ〜)Jノ−アルミニ
−ラム−炭素系合金線イlの製造法2.
A polycrystalline mankan with an easy magnetization direction in the -JJ direction of the bristles, - a fin made of a carbon-based alloy magnet, 630 to 830 ``C'/) +A-A degrees, +i
+tl 4 'I"F'
On the force plane parallel to the direction of til, the number of lights is out of sight (1
゛BIC0.06 or later 1. 2. Manufacturing method of aluminum-laminated carbon-based alloy wire 2.
JP57089144A 1982-04-19 1982-05-26 Manufacture of manganese-aluminum-carbon alloy magnet Granted JPS58206105A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57089144A JPS58206105A (en) 1982-05-26 1982-05-26 Manufacture of manganese-aluminum-carbon alloy magnet
US06/486,242 US4579607A (en) 1982-04-19 1983-04-18 Permanent Mn-Al-C alloy magnets and method for making same
EP83302204A EP0092422B1 (en) 1982-04-19 1983-04-19 Permanent mn-al-c alloy magnets and method for making same
DE8383302204T DE3365406D1 (en) 1982-04-19 1983-04-19 Permanent mn-al-c alloy magnets and method for making same
US06/784,661 US4648915A (en) 1982-04-19 1985-09-30 Permanent Mn-Al-C alloy magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089144A JPS58206105A (en) 1982-05-26 1982-05-26 Manufacture of manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS58206105A true JPS58206105A (en) 1983-12-01
JPH0479122B2 JPH0479122B2 (en) 1992-12-15

Family

ID=13962667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089144A Granted JPS58206105A (en) 1982-04-19 1982-05-26 Manufacture of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS58206105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133703A (en) * 1983-12-21 1985-07-16 Matsushita Electric Ind Co Ltd Permanent magnet
JPS60134402A (en) * 1983-12-23 1985-07-17 Matsushita Electric Ind Co Ltd Permanent magnet
JP2006073741A (en) * 2004-09-01 2006-03-16 Daido Steel Co Ltd Manufacturing method for ring-shaped magnet raw material and production device used for its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119762A (en) * 1980-02-27 1981-09-19 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119762A (en) * 1980-02-27 1981-09-19 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
JPS56146868A (en) * 1980-04-14 1981-11-14 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133703A (en) * 1983-12-21 1985-07-16 Matsushita Electric Ind Co Ltd Permanent magnet
JPS60134402A (en) * 1983-12-23 1985-07-17 Matsushita Electric Ind Co Ltd Permanent magnet
JP2006073741A (en) * 2004-09-01 2006-03-16 Daido Steel Co Ltd Manufacturing method for ring-shaped magnet raw material and production device used for its manufacturing method
JP4561974B2 (en) * 2004-09-01 2010-10-13 大同特殊鋼株式会社 Manufacturing method of ring magnet material

Also Published As

Publication number Publication date
JPH0479122B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US4579607A (en) Permanent Mn-Al-C alloy magnets and method for making same
JPS58206105A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311522B2 (en)
JPS58182206A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPS62247057A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0434804B2 (en)
JPH0663071B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58182208A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPH0311524B2 (en)
JPH037748B2 (en)
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS5972701A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62112764A (en) Production of manganese-aluminum-carbon alloy magnet
JPS62143408A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS58192303A (en) Manufacture of manganese-aluminum-carbon alloy magnet
SU428812A1 (en) METHOD OF MANUFACTURING PERMANENT MAGNETS
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58130262A (en) Manufacture of isotropic manganese-aluminum-carbon alloy magnet
JPS58189355A (en) Permanent magnet
JPH0340922B2 (en)
JPS62112765A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0665743B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS61213356A (en) Production of manganese-aluminum-carbon alloy magnet
JPS6144941B2 (en)
JPH0434805B2 (en)