JPH03141610A - Rare-earth magnet and its manufacture - Google Patents

Rare-earth magnet and its manufacture

Info

Publication number
JPH03141610A
JPH03141610A JP1279483A JP27948389A JPH03141610A JP H03141610 A JPH03141610 A JP H03141610A JP 1279483 A JP1279483 A JP 1279483A JP 27948389 A JP27948389 A JP 27948389A JP H03141610 A JPH03141610 A JP H03141610A
Authority
JP
Japan
Prior art keywords
rare earth
less
earth magnet
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279483A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊夫 向井
Tatsuo Fujimoto
辰雄 藤本
Toru Inaguma
徹 稲熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1279483A priority Critical patent/JPH03141610A/en
Publication of JPH03141610A publication Critical patent/JPH03141610A/en
Priority to US07/800,712 priority patent/US5201963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To impart anisotropy only by heat treatment and to reduce cost by specifying the average particle diameter and the cubical percentage of recrystal lized grains of an intermetallic compound adopting a tetragonal structure in a rare-earth magnet consisting of Nd or Pr, B with specified percentage and Fe1-xCox and inevitable impurities in the remaining. CONSTITUTION:In a rare-earth magnet consisting of 12-20atom% of R (R is a rare-earth element containing at least a kind of Nd and Pr), 2-10atom% of B, and the remaining of TM [TM=Fe1-xCox(0<=x<=0.4)] and inevitable impuri ties, 50-100% of the magnet is occupied by recrystallized grains of R2Fe14B intermetallic compound which adopts a tetragonal structure with an average particle diameter of 1-100mum, and an anisotropic degree P [P={Br()-Br(rt. angle)}/{Br ()+Br(rt. angle)}] where Br() is the residual magnetic flux density in a direction of easy magnetization and Br(rt. angle) the residual flux density in the direction orthogo nal to it. Further, the workpiece is increased in density up to over 90% and heat-treated at 750-1150 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、RzFe、B化合物(ただしRはNd又はP
rの少なくとも一種を含む希土類元素)を主相とする希
土[fff石とその製造方法に関するものである。本発
明磁石は、高性能で低価格に成りうるという可能性から
、小型モータ等各種アクチュエーターに広範に使用され
ることが期待される。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to an RzFe, B compound (where R is Nd or P
The present invention relates to a rare earth [fff stone containing at least one type of r] as a main phase and a method for producing the same. The magnet of the present invention is expected to be widely used in various actuators such as small motors because of its high performance and low cost.

〔従来の技術〕[Conventional technology]

希土類元素Rと代表的遷移金属元素FeとBとを2:1
4二1に近い割合で含む合金溶湯を単ロール法等の液体
急冷法により超急冷することにより優れた磁石特性を有
する象、冷薄帯を得ることができる(米国特許第475
6775号明細書、特開昭5964739号公報、特開
昭60−9852号公報)。
Rare earth element R and representative transition metal elements Fe and B at 2:1
A cold ribbon having excellent magnetic properties can be obtained by ultra-quenching a molten alloy containing a ratio close to 421 by a liquid quenching method such as a single roll method (US Pat. No. 475).
6775, JP-A-5964739, JP-A-60-9852).

Nd−Fe−B系の合金の溶湯を、回転する銅製のロー
ルの表面に噴射する、いわゆる単ロール法による液体象
、冷に1より、厚さ約30趨のフレーク状の薄帯が得ら
れる。急冷の程度によって、薄帯は非晶質になったり、
結晶粒径が0.01〜0.5 //I1量の微細な結晶
粒組織になったりすることが知られている。この急冷薄
帯は、その結晶粒径が0.05μm前後の時に高い保磁
力を示す。
A flake-like thin strip with a thickness of approximately 30 strands is obtained by applying a liquid phase and cooling method using the so-called single roll method, in which molten Nd-Fe-B alloy is injected onto the surface of a rotating copper roll. . Depending on the degree of rapid cooling, the ribbon may become amorphous or
It is known that a fine crystal grain structure with a crystal grain size of 0.01 to 0.5 //I1 is formed. This quenched ribbon exhibits high coercive force when its crystal grain size is around 0.05 μm.

Nd−Fe−B系合金の急冷薄帯を粉砕して得た粉末を
、熱間で圧縮成形すること(ホットプレス)により合金
の真密度に近い状態で成形バルク化することができる。
By hot compression molding (hot pressing) a powder obtained by pulverizing a rapidly solidified ribbon of an Nd-Fe-B alloy, it is possible to form a molded bulk in a state close to the true density of the alloy.

これは、米国特許第4792367号明細書、特開昭6
0−10042号公報およびR,W、Leeによる発表
論文’Hot−pressed neodymium−
4ronboron  magnets  J  (八
pplied  Physics  Letters、
Vol。
This is described in U.S. Patent No. 4,792,367,
Publication No. 0-10042 and the paper published by R, W, Lee 'Hot-pressed neodymium-
4ronboron magnets J (8pplied Physics Letters,
Vol.

46、 N(1B、pp790−791.April 
15,1985)に報告されている。上記の熱間圧縮成
形体の残留磁束密度として約8kGの値が得られること
が従来の技術として知られている。
46, N(1B, pp790-791.April
15, 1985). It is known from the prior art that a value of about 8 kG can be obtained as the residual magnetic flux density of the above-mentioned hot compression molded body.

より高い残留磁束密度を得るには磁石に異方性を付与す
る必要がある。前記のR,Wルeeは塑性変形による異
方性化法を提塞している。この方法は、Nd−Fe−B
系合金粉末の圧縮成形体の密度を、ホットプレスによっ
て合金の真密度に近い密度まで高めたのちに、その成形
体を再度据え込み加工(DieUpse t)によって
塑性変形するというものである。
In order to obtain higher residual magnetic flux density, it is necessary to impart anisotropy to the magnet. The R and W rules mentioned above obstruct the anisotropy method using plastic deformation. This method uses Nd-Fe-B
After the density of a compression molded body of alloy powder is increased to a density close to the true density of the alloy by hot pressing, the molded body is plastically deformed by die upsetting again.

この据え込み加工の程度或いは合金組成に応じて8〜1
3kGの残留磁束密度が得られることが報告されている
(例えば、Y、 Nozawa他、J、Appl、 P
hys、。
8 to 1 depending on the degree of upsetting or alloy composition.
It has been reported that a residual magnetic flux density of 3 kG can be obtained (e.g., Y., Nozawa et al., J., Appl., P.
hys,.

Vol、64. NO,IO,pp5285−5289
.November 15.1988)。
Vol, 64. NO, IO, pp5285-5289
.. November 15.1988).

このような塑性変形を与える手段によって高い磁気特性
の磁石が得られるが、製造工程が長いうえに、塑性変形
中に表面に割れが生じるなど磁石の製品形状を出しにく
いという欠点がある。
Although it is possible to obtain a magnet with high magnetic properties by means of applying such plastic deformation, there are disadvantages in that the manufacturing process is long and it is difficult to produce a finished magnet shape, such as cracks occurring on the surface during plastic deformation.

異方性焼結磁石の製造方法においては、通常の合金鋳片
から粉砕により単結晶サイズ以下(例えば3μm)の微
粉末を得たのち、その粉末を磁場中で配向させてプレス
成形し、焼結を行う。この方法によって高い磁気特性の
Nd−Fe−B系焼結磁石が得られることが知られてい
る(特公昭61−34242号公報)。この方法の場合
には、非常に活性な微粉末を取り扱うという製造上の困
難さがある。また、焼結は通常の常圧焼結であるので焼
結による寸法収縮及び変形があり、製品形状を出すため
に必ず後加工が必要である。
In the manufacturing method of anisotropic sintered magnets, a fine powder of a size smaller than a single crystal (for example, 3 μm) is obtained by pulverizing a normal alloy slab, and then the powder is oriented in a magnetic field, press-formed, and then sintered. Perform a knot. It is known that a Nd-Fe-B based sintered magnet with high magnetic properties can be obtained by this method (Japanese Patent Publication No. 34242/1983). This method has the manufacturing difficulty of handling highly active fine powders. Furthermore, since the sintering is normal pressureless sintering, there is dimensional shrinkage and deformation due to sintering, and post-processing is always required to obtain the product shape.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

希土類磁石を安価に製造するには、量産性のある方法で
、なおかつ成形後に切断又は研会を省略できるような方
法、いわゆるニアネットシヱイプ(Near−Net−
5hape)成形法、が望ましい。
In order to manufacture rare earth magnets at low cost, there is a method that can be mass-produced and also eliminates cutting or grinding after forming, the so-called near-net type (near-net type).
5hape) molding method is desirable.

本発明は、Nd−Fe−B系急冷合金粉末から、熱処理
のみによる異方性化法により高い残留磁束密度を有する
磁石を提供することを目的とする。
An object of the present invention is to provide a magnet having a high residual magnetic flux density by an anisotropy method using only heat treatment from a rapidly solidified Nd-Fe-B alloy powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、原子百分率で12%以上で20%以下のR(
ただしRはNd又はPrの少、なくとも一種を含む希土
類元素)、2%以上で10%以下のB、及び残部がTM
 (ただし、 TM=Fe+−x Cox、(0≦x≦0.4))なら
びに不可選的不純物からなる希土類磁石において、平均
粒径が1〜100nの正方晶構造をとるR2Fe+ a
B金属間化合物の再結晶粒が体積百分率で上記希土類磁
石の50〜100%を占め、異方性化度P(P = (
Br(‖)−BrCL)) / (Br(‖)+Br(
13) 、ただしB r (I I]は磁化容易方向の
残留磁束密度でBr(1)は磁化容易方向と直交する方
向の残留磁束密度)が0.1以上であることを特徴とす
る希土類磁石を要旨とするものであり、さらに、前記組
成範囲の合金粉末を液体急冷法で作製し、前記合金粉末
から熱間圧縮成形により合金の真密度の90%以上にま
で高密度化された成形体を得たのち、前記成形体を75
0℃以上1150℃以下の温度で加熱し、その後、必要
に応じて450℃以上750℃以下の温度で時効処理す
ることを特徴とする希土類磁石の製造方法を要旨とする
ものである。
The present invention provides R(
However, R is a rare earth element containing at least one type of Nd or Pr), B of 2% or more and 10% or less, and the balance is TM.
(However, TM=Fe+-x Cox, (0≦x≦0.4)) and in a rare earth magnet consisting of unselectable impurities, R2Fe+ a has a tetragonal structure with an average grain size of 1 to 100n.
The recrystallized grains of the B intermetallic compound account for 50 to 100% of the rare earth magnet in terms of volume percentage, and the degree of anisotropy P (P = (
Br(‖)-BrCL)) / (Br(‖)+Br(
13) A rare earth magnet characterized in that Br (II) is the residual magnetic flux density in the direction of easy magnetization and Br (1) is the residual magnetic flux density in the direction orthogonal to the easy magnetization direction) is 0.1 or more. Further, a molded body produced by producing an alloy powder having the above composition range by a liquid quenching method, and densifying the alloy powder to 90% or more of the true density of the alloy by hot compression molding. After that, the molded body was heated to 75
The gist of the invention is a method for producing a rare earth magnet, which is characterized by heating at a temperature of 0° C. or higher and 1150° C. or lower, and then, if necessary, aging treatment at a temperature of 450° C. or higher and 750° C. or lower.

熱間圧縮成形を加圧下における通電加熱により行うこと
により高い生産性をもって本発明の希土類磁石を製造す
ることができる。
The rare earth magnet of the present invention can be manufactured with high productivity by performing hot compression molding by electrical heating under pressure.

ここで、原子百分率で5%以下のCuを添加すること、
全R3lの20%以下の割合をayにすること、又はそ
の両方によって磁石の高保磁力化がなされる。
Here, adding 5% or less of Cu in atomic percentage,
The coercive force of the magnet can be increased by setting ay to 20% or less of the total R3l, or both.

(作用〕 液体急冷法によって作製した微細結晶からなるNd−F
e−B系合金粉末は、600〜900℃における熱間圧
縮成形によって合金の真密度に近い状態で容易に固化で
きる。この粉末を固めてできた成形体は磁気的にはほと
んど等方性である。本発明者らは、その成形体に適当な
熱処理を加え、微細結晶からなる組織を再結晶させるこ
とにより成形体を磁気的に異方性化できることを見出し
た。
(Function) Nd-F made of microcrystals produced by liquid quenching method
The e-B alloy powder can be easily solidified in a state close to the true density of the alloy by hot compression molding at 600 to 900°C. The compact formed by solidifying this powder is almost magnetically isotropic. The present inventors have discovered that it is possible to make the molded body magnetically anisotropic by subjecting the molded body to an appropriate heat treatment and recrystallizing the microcrystalline structure.

以下本発明の詳細について説明する。原子百分率で77
.5%Fe−16%Nd−5%B−1,5%Cuの組成
(以下Nd+aF’ett、 5B5cu+、 sと記
す)の超急冷粉末は、加圧下における通電加熱により容
易に成形固化できる。その成形体の減磁曲線を加圧方向
(11)と加圧方向に垂直な方向(1)に測定した結果
が第1図(a)に示されている。図かられかるように両
方向の残留磁束密度の差は小さくほとんど等方性である
。この成形体を1000℃まで加熱して再結晶を起こさ
せると、その成形体は磁気的に強い異方性を示し、第1
図ら)に示すような:‖i磁曲線が得られる。
The details of the present invention will be explained below. 77 in atomic percentage
.. The ultra-quenched powder having a composition of 5%Fe-16%Nd-5%B-1,5%Cu (hereinafter referred to as Nd+aF'ett, 5B5cu+, s) can be easily molded and solidified by electrical heating under pressure. The demagnetization curve of the compact was measured in the pressing direction (11) and in the direction (1) perpendicular to the pressing direction, and the results are shown in FIG. 1(a). As can be seen from the figure, the difference in residual magnetic flux density in both directions is small and almost isotropic. When this molded body is heated to 1000°C to cause recrystallization, the molded body exhibits strong magnetic anisotropy, and the first
A magnetic curve ‖i as shown in Fig. 7 is obtained.

この場合には加圧方向に9.16 kGの高い残留磁束
密度が得られている。成形体の保磁力は再結晶化熱処理
により低下するが、引き続< 600 ℃における時効
処理によりある程度まで増加する(第1図(C)参照)
。このような熱処理による成形体の減磁曲線の変化は、
Nd−Fe−83元系、Cu添加Nd−Fe−B−Cu
 4元系、Dy添加Nd−Dy−Fe−84元系、Cu
とDyの複合添加Nd−Dy−Fe−B−Cu5元系の
いずれにおいても認めらる。ただし、Cu及び/又はD
yの添加は異方性化された成形体の保磁力の向上に著し
い効果がある。
In this case, a high residual magnetic flux density of 9.16 kG was obtained in the pressurizing direction. The coercive force of the compact decreases due to recrystallization heat treatment, but increases to a certain extent by subsequent aging treatment at <600°C (see Figure 1 (C)).
. Changes in the demagnetization curve of the compact due to such heat treatment are as follows:
Nd-Fe-83 element system, Cu added Nd-Fe-B-Cu
4-element system, Dy-added Nd-Dy-Fe-84-element system, Cu
It is observed in any of the Nd-Dy-Fe-B-Cu five-element systems with composite addition of and Dy. However, Cu and/or D
Addition of y has a remarkable effect on improving the coercive force of the anisotropic molded body.

磁石の異方性の度合いを表すパラメーターとして、異方
性化度Pを次の様に定義する。
As a parameter representing the degree of anisotropy of a magnet, the degree of anisotropy P is defined as follows.

P= (Br(‖)  Br(⊥)) / (Br(‖
)+ (BrCIJ)ここで、Br((‖)は加圧方向
の残留磁束密度、Br(11は加圧方向に垂直な方向の
残留磁束密度である。
P= (Br(‖) Br(⊥)) / (Br(‖
)+ (BrCIJ) Here, Br((‖) is the residual magnetic flux density in the pressing direction, and Br(11 is the residual magnetic flux density in the direction perpendicular to the pressing direction.

P=Oのときには完全等方性でP=量のときには完全異
方性である。成形直後の第1図(a)の場合にはP=0
.04で、再結晶化熱処理後の第1図(b)の場合には
0.37で、時効処理後の第1図(C)の場合には0.
35である。P = 0.1以上の異方性化度は熱間圧
縮成形体を再結晶化熱処理することによって容易に達成
される。
When P=O, it is completely isotropic, and when P=quantity, it is completely anisotropic. In the case of FIG. 1(a) immediately after molding, P=0
.. 04, 0.37 in the case of FIG. 1(b) after the recrystallization heat treatment, and 0.37 in the case of FIG. 1(C) after the aging treatment.
It is 35. A degree of anisotropy of P = 0.1 or more can be easily achieved by subjecting the hot compression molded body to recrystallization heat treatment.

上記の再結晶は、成分によっても異なるが、750℃以
上の温度に成形体を加熱するときに顕著である。第2図
に成形体を700℃から順次高温に上げていったときの
残留磁束密度と保磁力の変化を示す。この例では、80
0℃でB r (l l)とBr(1)の差が開き始め
、より高温でさらにその差が大きくなる。その効果は1
000℃附近で飽和し、溶融点の1150℃以下まで持
続する。第3図(a)に(Ndo、 qDyo、 +)
+6FetJ6の成分の粉末の熱間圧縮成形直後の組織
写真を示し、第3図(1))及び(C)にそれぞれ80
0℃七1000″Cで各10m1n保持したときの組織
写真を示す。第3図(b)に観察されるように薄片状粉
末の中から1〜100μmの大きな再結晶粒が生まれて
いる。この再結晶粒は熱処理前に存在する微細結晶粒と
同じ結晶構造を有する正方晶R2Fe14B金属間化合
物である。この再結晶粒の磁化容易軸方向が優先的に加
圧方向に向くために成形体に異方性が誘起されるのであ
る(第8図のX線回折の結果を参照)。十分に高い異方
性をもった磁石を得るには、平均粒径1〜1OOp[I
+の再結晶粒が体積百分率で成形体の50〜100%を
占める必要がある。
The above recrystallization is noticeable when the molded body is heated to a temperature of 750° C. or higher, although it varies depending on the components. Figure 2 shows the changes in residual magnetic flux density and coercive force when the temperature of the compact was raised from 700°C to high temperature. In this example, 80
The difference between B r (l l) and Br (1) begins to widen at 0° C., and the difference becomes even larger at higher temperatures. The effect is 1
It reaches saturation at around 000°C and persists up to the melting point of 1150°C or lower. In Figure 3 (a) (Ndo, qDyo, +)
Figures 3 (1) and (C) show photographs of the structure of the powder containing the components of +6FetJ6 immediately after hot compression molding.
The microstructure photographs are shown when each sample was held at 0°C and 1000"C for 10ml. As observed in Figure 3(b), large recrystallized grains of 1 to 100μm were formed from the flaky powder. The recrystallized grains are a tetragonal R2Fe14B intermetallic compound that has the same crystal structure as the fine crystal grains that exist before heat treatment.The easy axis of magnetization of these recrystallized grains preferentially points in the pressing direction, so that they do not form in the compact. Anisotropy is induced (see the X-ray diffraction results in Figure 8).In order to obtain a magnet with sufficiently high anisotropy, an average particle size of 1 to 1OOp [I
It is necessary that the positive recrystallized grains occupy 50 to 100% of the compact by volume.

この体積百分率は、第3図(C)に示すような光学顕微
鏡による再結晶組織写真上で再結晶粒の占める面積百分
率を測定し、その値から容易に換算して求めることがで
きる。
This volume percentage can be determined by measuring the area percentage occupied by recrystallized grains on a photograph of the recrystallized structure taken by an optical microscope as shown in FIG. 3(C), and easily converting it from that value.

この再結晶化熱処理は、1分以上1000分以下が望ま
しく、1000分を越える長時間の熱処理は異方性の向
上が期待できない。
This recrystallization heat treatment is desirably performed for 1 minute or more and 1000 minutes or less, and a long time heat treatment exceeding 1000 minutes cannot be expected to improve the anisotropy.

再結晶化熱処理によって保磁力が低下するが、これは引
き続く時効処理によっである程度回復する。第4図に示
すように、特にCuを添加した成分系では再結晶化熱処
理後の450〜750℃における時効処理により十分に
高い保磁力が得られる。
Although the coercive force decreases due to the recrystallization heat treatment, this is recovered to some extent by the subsequent aging treatment. As shown in FIG. 4, a sufficiently high coercive force can be obtained by aging treatment at 450 to 750° C. after recrystallization heat treatment, especially in the case of a component system to which Cu is added.

特に500〜700℃における時効処理が望ましく、処
理時間は1分以上100分以下で十分である。
In particular, aging treatment at 500 to 700°C is desirable, and a treatment time of 1 minute or more and 100 minutes or less is sufficient.

本発明の成分の限定理由は以下の通りである。The reasons for limiting the components of the present invention are as follows.

希土類元素Rの構成は特に限定されないが、高特性の磁
石を得るには全R中の少なくとも60%がNd及び/又
はPrであることが望ましい。本発明は熱処理による異
方性化を骨子とするが、その異方性化処理により高特性
の磁石を得るには、Rの量としては原子百分率で12%
以上で20%以下である必要がある。Rの量が12%未
満では十分な保磁力が得られず、Rの量が20%を越え
ると残留磁束密度の低下を無視できない。保磁力を向上
させるためには、前記のRの一部を全R量の20%を越
えない範囲でDyにするのが有効である。R中のDyの
占める割合が20%を越えると残留磁束密度の低下を無
視できない。
Although the composition of the rare earth element R is not particularly limited, it is desirable that at least 60% of the total R be Nd and/or Pr in order to obtain a magnet with high characteristics. The main feature of the present invention is anisotropy by heat treatment, but in order to obtain a magnet with high characteristics through the anisotropy treatment, the amount of R must be 12% in atomic percentage.
The above must be 20% or less. If the amount of R is less than 12%, a sufficient coercive force cannot be obtained, and if the amount of R exceeds 20%, the decrease in residual magnetic flux density cannot be ignored. In order to improve the coercive force, it is effective to make a portion of the above-mentioned R Dy within a range not exceeding 20% of the total R amount. If the proportion of Dy in R exceeds 20%, the decrease in residual magnetic flux density cannot be ignored.

本発明の熱処理による異方性化処理を受けた磁石におい
ては、Cuの添加が保磁力の向上に極めて有効である。
In the magnet that has undergone the anisotropy treatment by the heat treatment of the present invention, the addition of Cu is extremely effective in improving the coercive force.

保磁力の向上のためにCuは原子百分率で5%を越えな
い範囲で添加するのが有効である。Cuの添加量が5%
を越えると再結晶化熱処理による異方性化の程度が低下
するために、残留磁束密度の低下を無視できない。残留
磁束密度の低下を出来るかぎり少なくして保磁力の向上
を計るためには、前記の有効組成範囲でDyとCuを複
合添加するのが有効である。
In order to improve the coercive force, it is effective to add Cu in an amount not exceeding 5% in atomic percentage. Added amount of Cu is 5%
If the value exceeds 1, the degree of anisotropy caused by the recrystallization heat treatment decreases, and the decrease in residual magnetic flux density cannot be ignored. In order to minimize the decrease in the residual magnetic flux density and improve the coercive force, it is effective to add Dy and Cu in combination within the above effective composition range.

Bの量が原子百分率で2%未満の場合にはRzFe+□
相が多量に出現し、10%を越えるとBr1ch相が多
量に出現する。いずれの相も熱間圧縮による粉体の緻密
化を阻害する。したがって、Bの量は2%以上で10%
以下に限定される。
If the amount of B is less than 2% in atomic percentage, RzFe+□
A large amount of Br1ch phase appears, and when it exceeds 10%, a large amount of Br1ch phase appears. Either phase inhibits densification of the powder by hot compression. Therefore, the amount of B is 2% or more and 10%
Limited to:

合金のキュリー温度をあげて使用温度における磁束密度
の温度変化を小さくするために、Feの一部をCoで置
換することがある。本発明磁石においても、全遷移金属
元素(付)の40%以下の割合をCoにする(すなわら
、TM=Fe+−x COX  (0≦x≦0.4 )
 )ことが可能である。Goの置換量が40%を越える
と保磁力が低下する。
In order to raise the Curie temperature of the alloy and reduce the temperature change in magnetic flux density at the operating temperature, a portion of Fe may be replaced with Co. Also in the magnet of the present invention, Co accounts for 40% or less of the total transition metal elements (i.e., TM=Fe+-x COX (0≦x≦0.4)
)Is possible. When the Go substitution amount exceeds 40%, the coercive force decreases.

上記のように限定した成分の合金粉末は、液体急冷法で
製造される。以下液体急冷法について説明する。まず、
上記成分を有する合金を溶解し、通常の単ロール法によ
って薄帯を製造する。また、他の双ロール法もしくはガ
スアトマイズ法を用いてもよい。単ロール法の場合には
、厚さ20〜30 pm、幅1.5〜2 mm、長さ1
0〜20Mのフレーク状の薄帯が得られる:単ロール法
による急冷薄帯の磁気特性は、ロールの回転速度によっ
て制御される急冷度に依存して変化する。最適の急冷条
件では、大きさ0.01〜0.1μmの微細な結晶粒か
らなる薄帯が得られ、その薄帯は優れた磁石特性を示す
。一方、過急冷の条件では、非晶質に近い状態の薄帯が
得られるが、その薄帯は熱処理によって結晶化し、高い
磁石特性を示すようになる。いずれの薄帯も粉砕して合
金粉末とする。粉末の粒径としては、10〜500μm
が好適である。粉末粒径が10μm未満のときには粉末
が酸化しやすいばかりでなく、熱処理による異方性化の
度合が少ない(実施例5参照)。また、粒径が500μ
mを越えると熱間圧縮成形においてダイのキャビティー
に粉末を充填するのが困難になる。
The alloy powder having the limited components as described above is produced by a liquid quenching method. The liquid quenching method will be explained below. first,
An alloy having the above components is melted and a ribbon is produced by a conventional single roll method. Alternatively, other twin roll methods or gas atomization methods may be used. In the case of a single roll method, the thickness is 20 to 30 pm, the width is 1.5 to 2 mm, and the length is 1
0-20 M flake-like ribbons are obtained: The magnetic properties of the single-roll quenched ribbons vary depending on the degree of quenching, which is controlled by the rotational speed of the roll. Under optimal quenching conditions, a ribbon consisting of fine crystal grains with a size of 0.01 to 0.1 μm is obtained, and the ribbon exhibits excellent magnetic properties. On the other hand, under superquenching conditions, a nearly amorphous ribbon is obtained, but the ribbon is crystallized by heat treatment and exhibits high magnetic properties. Both ribbons are ground into alloy powder. The particle size of the powder is 10 to 500 μm.
is suitable. When the powder particle size is less than 10 μm, not only the powder is easily oxidized, but also the degree of anisotropy caused by heat treatment is low (see Example 5). In addition, the particle size is 500μ
If it exceeds m, it becomes difficult to fill the cavity of the die with powder during hot compression molding.

熱間圧縮成形は、500〜900℃の温度範囲において
、0.1〜5 ton/cJの圧力下で行われる。
Hot compression molding is performed at a temperature range of 500 to 900°C under a pressure of 0.1 to 5 ton/cJ.

これは高周波誘導加熱による通常のホットプレス機によ
って容易に行われる。また、生産性を高めるために、通
電焼結機を用いて加圧下で通電加熱により粉末を急速に
加熱し、短時間(1〜5分)で目的とする熱間成形を完
了させることができる。
This is easily done in a conventional hot press using high frequency induction heating. In addition, in order to increase productivity, an electric sintering machine is used to rapidly heat the powder by electric heating under pressure, making it possible to complete the desired hot forming in a short time (1 to 5 minutes). .

通電加熱は象、速であるので生産性に富む。Electric heating is extremely fast and highly productive.

成形体の再結晶化熱処理は750℃以上の最適の温度で
行われるが、その温度までの加熱速度は通常0.1〜1
00°(:/minであり、その温度での保持時間は1
分以上1000分以下である。また、高保磁力化のため
の時効処理は、450℃以上の最適の温度で行われ、そ
の温度までの加熱速度は通常1〜100 ℃/minで
あり、その温度での保持時間は1分以上100分以下で
ある。上記の二種の熱処理は、通常の熱処理炉で真空中
またはAr等の不活性ガス雰囲気中で行われる。これら
の熱処理によっては成形体の寸法変化はほとんど無く、
磁石の製品形状を確保するための研磨等の後加工をほと
んど必要としない。
Recrystallization heat treatment of the molded body is carried out at an optimal temperature of 750°C or higher, but the heating rate to reach that temperature is usually 0.1 to 1
00° (:/min, and the holding time at that temperature is 1
The duration is not less than 1000 minutes. In addition, aging treatment to increase coercive force is performed at an optimal temperature of 450°C or higher, the heating rate to that temperature is usually 1 to 100°C/min, and the holding time at that temperature is 1 minute or more. It is 100 minutes or less. The above two types of heat treatments are performed in a normal heat treatment furnace in vacuum or in an inert gas atmosphere such as Ar. Due to these heat treatments, there is almost no dimensional change in the molded product,
There is almost no need for post-processing such as polishing to ensure the product shape of the magnet.

〔実施例〕〔Example〕

実施例1 原子百分率で77.5%Fe −16%Nd−5%B1
.5%Cu (Nd+6Fet7.5BsCu+、s 
)の組成の合金を高周波誘導加熱により溶解し、直径‖
IT[1量の穴を持つ石英ノズルからその溶湯を回転す
る銅製ロールの表面上に噴射した。この時のロールの表
面速度は25m/secで、微細な結晶粒の得られる最
適の急冷条件である。得られた薄帯の厚さは20〜30
μm、幅は約1.5 mm、長さは10〜20mmであ
る。この薄帯を355μm以下に粉砕した。
Example 1 77.5%Fe-16%Nd-5%B1 in atomic percentage
.. 5%Cu (Nd+6Fet7.5BsCu+,s
) is melted by high-frequency induction heating, and the diameter ‖
The molten metal was injected from a quartz nozzle with one hole onto the surface of a rotating copper roll. The surface speed of the roll at this time was 25 m/sec, which is the optimum rapid cooling condition for obtaining fine crystal grains. The thickness of the obtained ribbon is 20-30
μm, width is approximately 1.5 mm, and length is 10-20 mm. This ribbon was pulverized to 355 μm or less.

上記の手順により得た粉末を通電焼結機を用いて熱間で
圧縮成形した。この実験においては、粉末をカーボン製
のダイのキャビティーに装填し、粉末に400kg/c
+flの圧力を加えた状態で、1500Aの通電により
粉末を加熱した。ここでキャビティーは、直径20Mの
円柱状である。上記の圧力下では試料の実測温度が約8
00℃に到達した時点で粉末の密度は合金の真密度に近
い7.5 g /caに達した。加熱開始から焼結終了
までに要した時間は2〜3 minであった。得られた
成形体を熱処理し、5QkOeのパルス着磁を行った後
に自記磁束計により磁気特性を測定した。
The powder obtained by the above procedure was hot compression molded using an electric current sintering machine. In this experiment, the powder was loaded into the cavity of a carbon die, and the powder was loaded at 400 kg/cm.
The powder was heated by applying a current of 1500 A while applying a pressure of +fl. Here, the cavity has a cylindrical shape with a diameter of 20M. Under the above pressure, the actual temperature of the sample was approximately 8
When the temperature reached 00°C, the density of the powder reached 7.5 g/ca, which is close to the true density of the alloy. The time required from the start of heating to the end of sintering was 2 to 3 minutes. The obtained compact was heat-treated and subjected to pulse magnetization of 5 QkOe, and then its magnetic properties were measured using a self-recording magnetometer.

第1図(a)に熱間圧縮成形後未処理の成形体の減磁曲
線を示す。再結晶化熱処理として、成形体を600℃ま
で急速に加熱後に(ここの加熱速度は特性にそれほど影
響しない)600℃から1000’cまで0.5℃/m
inで昇温し、その温度で10w1n保持する熱処理を
行った。この熱処理を受けた成形体の減磁曲線を第1図
(b)に示す。第1図(C)には再結晶化熱処理後に6
00℃10m1nの時効処理を行った成形体の減磁曲線
を示す。それぞれの場合に加圧方向(11)と加圧方向
に対して垂直な方向(1)の減磁曲線を示した。第1図
(a)の場合には異方性化度P=0.04で、再結晶化
熱処理後の第1図(b)の場合にはP=0.37で、時
効処理後の第1図(C)の場合にはP=0.35である
。加圧方向の磁気特性は、時効後の場合に、Br−9,
16kG + s Hc =9、0 koe 、 (B
H)max= 17.6 MGOeである。
FIG. 1(a) shows a demagnetization curve of an untreated molded product after hot compression molding. As a recrystallization heat treatment, after rapidly heating the molded body to 600°C (the heating rate here does not have much effect on the properties), it is heated at 0.5°C/m from 600°C to 1000'c.
A heat treatment was performed in which the temperature was raised at in and maintained at that temperature for 10w1n. The demagnetization curve of the molded body subjected to this heat treatment is shown in FIG. 1(b). Figure 1 (C) shows 6
The demagnetization curve of a molded article subjected to aging treatment at 00° C. for 10 ml is shown. In each case, demagnetization curves in the pressing direction (11) and in the direction (1) perpendicular to the pressing direction are shown. In the case of Fig. 1(a), the degree of anisotropy P = 0.04, in the case of Fig. 1(b) after recrystallization heat treatment, P = 0.37, and the degree of anisotropy after aging treatment is P = 0.04. In the case of Figure 1 (C), P=0.35. The magnetic properties in the pressing direction are Br-9,
16kG + s Hc = 9, 0 koe, (B
H) max=17.6 MGOe.

実施例2 磁気特性の熱処理温度による変化を測定した。Example 2 Changes in magnetic properties due to heat treatment temperature were measured.

合金組成はNdの10%をDyで置換した(Ndo、 
qD’!o、 l)+6Pe14B6と(Ndo、 9
D3’O,IL bF(3qq、 5BSCLI+、 
5 である。
In the alloy composition, 10% of Nd was replaced with Dy (Ndo,
qD'! o, l)+6Pe14B6 and (Ndo, 9
D3'O,IL bF(3qq, 5BSCLI+,
It is 5.

実施例1に記述した製造方法に従い、上記組成の超象、
冷粉末を作製し、熱間圧縮成形体を作製した。
According to the manufacturing method described in Example 1, a superzoon of the above composition,
A cold powder was produced and a hot compression molded body was produced.

それらの成形体に700℃から1100℃までの各温度
で10m1nの熱処理を施した。ここで、つのサンプル
について段階的に温度を上げて、各温度で熱処理を行っ
た後に室温で磁気特性を測定した。尚、各温度までの昇
温速度は60°(:/minである。
These molded bodies were subjected to heat treatment for 10 ml at each temperature from 700°C to 1100°C. Here, the temperature of each sample was raised stepwise, and after heat treatment at each temperature, the magnetic properties were measured at room temperature. Note that the rate of temperature increase to each temperature is 60° (:/min).

第2図に、加圧方向の残留磁束密度Br(‖)、加圧方
向に対して垂直方向の残留磁束密度Br(1)及び加圧
方向に計って得られる保磁力iHcを示す。図かられか
るように、s o o ’cからB r (l l)と
Br(1)の差が開きはじめ、より高温でその差が大き
くなり、この熱処理により大きな異方性が誘起されてい
る。
FIG. 2 shows the residual magnetic flux density Br (|) in the pressing direction, the residual magnetic flux density Br (1) in the direction perpendicular to the pressing direction, and the coercive force iHc measured in the pressing direction. As can be seen from the figure, the difference between B r (l l) and Br (1) begins to widen from so o 'c, and the difference becomes larger at higher temperatures, indicating that a large anisotropy is induced by this heat treatment. There is.

異方性化度Pは、熱処理前に0.04〜0.05で、8
50℃以上で0.1以上になり、最大0.20〜0.2
1に達する。保磁力は800〜850℃の温度で急激に
低下するが、それ以上の温度では10〜14kOeの比
較的一定の値を取る。
The degree of anisotropy P is 0.04 to 0.05 before heat treatment, and is 8
It becomes 0.1 or more at 50℃ or higher, and the maximum is 0.20 to 0.2.
Reach 1. The coercive force decreases rapidly at a temperature of 800 to 850°C, but takes a relatively constant value of 10 to 14 kOe at higher temperatures.

第3図に、(Ndo、 JVo、 +)+hFeteB
6の組成の熱間圧縮成形体をエツチングし、光学顕微鏡
によって観察した加圧方向を含む断面組織写真を示す。
In Figure 3, (Ndo, JVo, +) + hFeteB
A photograph of the cross-sectional structure including the pressing direction, which was obtained by etching the hot compression molded product having the composition No. 6 and observing it with an optical microscope, is shown.

第3図(a)は熱間圧縮成形後未処理のもの、(b)は
800℃で10m1nの熱処理を施したもの、及び(C
)は1000℃で10m1nの熱処理を施したものであ
る。第3図(b)かられかるように、薄帯状の粉末の内
部から際立った晶癖面をもったR、Fe、4Bの新しい
結晶粒(再結晶粒、写真中Xで代表例を示す)が出現し
ている。第3図(C)の1000℃においては、成形体
の殆どが再結晶粒によって占められている。磁気異方性
は、この再結晶粒の磁化容易軸が加圧方向に向く傾向が
あるために生じる。
Figure 3 (a) shows the untreated product after hot compression molding, (b) shows the product heat-treated at 800°C for 10 m1n, and (C
) was heat treated at 1000°C for 10ml. As can be seen from Figure 3(b), new crystal grains of R, Fe, and 4B with distinct habit planes from inside the ribbon-shaped powder (recrystallized grains, a typical example is shown by X in the photo) has appeared. At 1000° C. in FIG. 3(C), most of the compact is occupied by recrystallized grains. Magnetic anisotropy occurs because the axis of easy magnetization of these recrystallized grains tends to be oriented in the direction of pressure.

る。Ru.

上記の二つの組成の熱間圧縮成形体に1000℃でlQ
minの再結晶化熱処理を施した後、急冷し、400 
”Cから800℃まで段階的に各温度で10sinの時
効処理を施した。各温度で時効後の磁気特性を室温で測
定し、加圧方向の保磁力(iHc)を第4図に示した。
lQ at 1000℃ for hot compression molded bodies of the above two compositions.
After being subjected to recrystallization heat treatment for 400 min, it was rapidly cooled and
Aging treatment was performed stepwise for 10 sins at each temperature from "C to 800 °C.The magnetic properties after aging at each temperature were measured at room temperature, and the coercive force (iHc) in the pressing direction is shown in Figure 4. .

Cuを添加した成分系では、時効温度が500〜700
℃のときに保磁力が著しく増加する。
In the component system containing Cu, the aging temperature is 500 to 700.
The coercive force increases significantly at ℃.

実施例3 再結晶化熱処理における加熱速度の影響を調べた。用い
た合金の組成はNdの10%をDyで置換した(Ndo
、 qDVo、 +) IbFet−t、 5Bscu
+、 sである。実施例1に記述した製造方法に基づい
て上記組成の超急冷粉末を作製し、実施例1と同じ条件
で熱間圧縮成形した。成形体を0.5〜60℃/min
の範囲の種々の加熱速度で1000℃まで加熱し、その
温度で10m1n保持後に急冷した。急冷後に磁気特性
を室温で測定した。
Example 3 The influence of heating rate in recrystallization heat treatment was investigated. The composition of the alloy used was 10% of Nd replaced with Dy (Ndo
, qDVo, +) IbFet-t, 5Bscu
+, s. An ultra-quenched powder having the above composition was produced based on the manufacturing method described in Example 1, and hot compression molded under the same conditions as in Example 1. The molded body is heated at 0.5 to 60°C/min.
The sample was heated up to 1000° C. at various heating rates in the range of 1000° C., held at that temperature for 10 ml, and then rapidly cooled. After quenching, the magnetic properties were measured at room temperature.

第5図に加熱速度に対する残留磁束密度Br(It)と
Br(1)の値を示した。図から加熱速度が遅いほどB
r(11)とBr(1)の差が開き、異方性化の度合が
大きくなっているのがわかる。
FIG. 5 shows the values of residual magnetic flux density Br(It) and Br(1) with respect to the heating rate. From the figure, the slower the heating rate, the B
It can be seen that the difference between r(11) and Br(1) widens, and the degree of anisotropy increases.

実施例4 Cuの含有量の異なる組成Nd16FetsBaとNd
+bFe7q−xBscux (x=1.5.3.0.
4.5.6.0)の超急冷粉末からなる熱間圧縮成形体
を作製し、実施例1に詳述した条件と同一の再結晶化熱
処理と時効処理を施した。
Example 4 Compositions Nd16FetsBa and Nd with different Cu contents
+bFe7q−xBscux (x=1.5.3.0.
4.5.6.0) was produced, and subjected to recrystallization heat treatment and aging treatment under the same conditions as detailed in Example 1.

第6図に時効処理まで施した成形体の磁気特性をCu含
有量に対して示す。図かられかるように、1.5〜4.
5%のCu添加によって保磁力が向上する。
FIG. 6 shows the magnetic properties of the molded body subjected to the aging treatment with respect to the Cu content. As you can see from the figure, 1.5 to 4.
Coercive force is improved by adding 5% Cu.

6%に及ぶCuの添加によっては残留磁束密度の絶対値
が低下するばかりか、異方性化の度合も小さくなる。異
方性化度Pは、0,1.5,3.0,4.5゜6、 O
%Cu合金に対して、それぞれ0.39,0.35゜0
.25.0.15.0.06であった。
Addition of up to 6% Cu not only reduces the absolute value of the residual magnetic flux density, but also reduces the degree of anisotropy. The degree of anisotropy P is 0, 1.5, 3.0, 4.5°6, O
%Cu alloy, respectively 0.39 and 0.35゜0
.. It was 25.0.15.0.06.

実施例5 Ndの5%をDyで置換した(Ndo、 qsDyo、
。、)1゜Fe77、5Bscu+、 sについて再結
晶化熱処理の効果を調べた。実施例1に記述した製造方
法に基づいて上記組成の超2.冷薄帯を作製し、その薄
帯を粉砕して粒径が平均200μmの粉末を用意した。
Example 5 5% of Nd was replaced with Dy (Ndo, qsDyo,
. , ) 1°Fe77,5Bscu+,s The effect of recrystallization heat treatment was investigated. Based on the manufacturing method described in Example 1, super 2. A cold ribbon was produced and the ribbon was pulverized to prepare a powder having an average particle size of 200 μm.

ここでは、比較のためにさらに微粉砕を行い粒径が5n
の粉末も用意した。これらの粉末を実施例1と同じ条件
で熱間圧縮成形し、同じ〈実施例1に詳述したものと同
一の再結晶化熱処理と時効処理を施した。
Here, for comparison, further fine pulverization was performed to obtain a particle size of 5n.
A powder was also prepared. These powders were hot compression molded under the same conditions as in Example 1, and subjected to the same recrystallization heat treatment and aging treatment as detailed in Example 1.

第7図に加圧方向(11)と加圧方向に対して垂直方向
(1)の減磁曲線を示す。粒径が200μmの場合に大
きな異方性が付き、粒径が5−の場合には異方性化の度
合が小さいのがわかる。
FIG. 7 shows the demagnetization curve in the pressing direction (11) and the direction (1) perpendicular to the pressing direction. It can be seen that when the particle size is 200 μm, there is a large anisotropy, and when the particle size is 5-μm, the degree of anisotropy is small.

第8図に、上記の粒径が20onの成形体の場合につい
て、加圧方向に垂直な面にX線(CuKα)を入射して
得られたX線回折の強度プロファイルを示す。第8図(
a)は再結晶化熱処理前のもので、第8図(b)は再結
晶化熱処理後のものである。両プロファイルのほとんど
すべてのピークが正方晶のR2Fe+J金属間化合物か
らくる回折線として指数づけされる。また、熱処理前に
比較して熱処理後には006反射のピークが著しく強く
なっているのが確認される。これは加圧方向に向いてい
る磁化容易軸(C軸)の割合が再結晶化熱処理により増
加したことを示している。すなわち、これは再結晶化熱
処理により異方性が誘起されたことを証明している。
FIG. 8 shows the intensity profile of X-ray diffraction obtained when X-rays (CuKα) are incident on a plane perpendicular to the pressing direction for the case of the molded body having a particle size of 20 on. Figure 8 (
FIG. 8(a) is before the recrystallization heat treatment, and FIG. 8(b) is after the recrystallization heat treatment. Almost all peaks in both profiles are indexed as diffraction lines coming from the tetragonal R2Fe+J intermetallic compound. Furthermore, it is confirmed that the peak of 006 reflection becomes significantly stronger after the heat treatment compared to before the heat treatment. This indicates that the proportion of the easy axis of magnetization (C axis) oriented in the pressing direction was increased by the recrystallization heat treatment. That is, this proves that anisotropy was induced by the recrystallization heat treatment.

実施例6 種々の組成の超急冷粉末からなる熱間圧縮成形体を作製
し、実施例1に詳述した条件と同一の再結晶化熱処理と
時効処理を施した。第1表に、合金組成と時効処理後の
磁気特性(iHc、 Br(‖)、 Br(1)、異方
性化度P)を示す。表からCo含有合金及び希土類元素
としてPrを用いた合金においても、再結晶化熱処理に
より異方性が誘起されているのがわかる。
Example 6 Hot compression molded bodies made of ultra-quenched powders of various compositions were prepared and subjected to recrystallization heat treatment and aging treatment under the same conditions as detailed in Example 1. Table 1 shows the alloy composition and the magnetic properties (iHc, Br(‖), Br(1), degree of anisotropy P) after aging treatment. It can be seen from the table that anisotropy is induced by recrystallization heat treatment in Co-containing alloys and alloys using Pr as the rare earth element.

〔発明の効果〕〔Effect of the invention〕

本発明の異方性希土類磁石の特性は縦磁場成形の釦−G
o焼結磁石の特性に匹敵する。本発明の場合、原料の希
土類として主に安価なNdを用い、異方性化は熱処理の
みにより行われるので低コストの磁石の提供が可能であ
る。異方性化熱処理による磁石の形状変化はほとんど無
く、磁石の形状は熱間圧縮成形に用いるダイのキャビテ
ィーの形状に近いものになる。これによって、研磨等の
後加工を必要とする通常の常圧焼結によるNd−Fe−
B(i石に対してもコスト的に有利な立場を取りうる。
The characteristics of the anisotropic rare earth magnet of the present invention are the button-G of vertical magnetic field forming.
o Comparable to the characteristics of sintered magnets. In the case of the present invention, inexpensive Nd is mainly used as the rare earth material, and anisotropy is achieved only by heat treatment, so it is possible to provide a low-cost magnet. There is almost no change in the shape of the magnet due to the anisotropy heat treatment, and the shape of the magnet becomes close to the shape of the cavity of the die used in hot compression molding. As a result, Nd-Fe-
It can also be advantageous in terms of cost compared to B (i-stone).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間圧縮成形後の成形体の加圧方向の残留磁束
密度B r (l Itと加圧方向と直交する方向の残
留磁束密度Br(1)の減磁曲線の変化を示す図であり
、(a)は熱間圧縮成形後未処理Q減磁曲線、(b)は
再結晶化熱処理後の減磁曲線、(C)は時効処理後の減
磁曲線を示す。第2図は熱処理温度に対する磁気特性の
変化を示す。第3図は熱間圧縮成形後の成形体の断面組
織を示す光学顕微鏡写真図であり、(a)は熱間圧縮成
形後未処理のミクロ組織、(b)は800℃で熱処理後
のミクロ組織、(C)は1000 ℃で熱処理後のミク
ロ組織を示す。第4図は保磁力の時効温度に対する変化
を示す。第5図は、再結晶化熱処理における1000“
Cまでの加熱速度に対する残留磁束密度の変化を示す。 第6図は磁気特性の添加Cul依存性を示す。第7図は
粉末のサイズが異なる場合の再結晶化熱処理・時効処理
後の減磁曲線を示す。第8図は成形体のX線回折の強度
プロファイルを示す図であり、(a)は再結晶化熱処理
前のX線回折プロファイルを示し、(b)は再結晶化熱
処理後のX線回折プロファイルを示す。 4πI(々C) 第3図 第2図 Tl(’c) 兜1灯1里ノ4度、TfC”ご) 第4図 Tz (C) 時効温度、TzCc) 第5図 力0 熱 迷 a (℃/min ) H(kOe) 第6図 u (αtZ) 第8図 ((1) 手続補正書(自発) 平成 2年3 月 1
Figure 1 is a diagram showing the change in the demagnetization curve of the residual magnetic flux density Br (l It) in the pressing direction and the residual magnetic flux density Br (1) in the direction perpendicular to the pressing direction of the compact after hot compression molding. (a) shows the untreated Q demagnetization curve after hot compression molding, (b) shows the demagnetization curve after recrystallization heat treatment, and (C) shows the demagnetization curve after aging treatment. 3 shows the change in magnetic properties with respect to heat treatment temperature. FIG. 3 is an optical micrograph showing the cross-sectional structure of the molded product after hot compression molding, and (a) shows the microstructure after hot compression molding and untreated microstructure; (b) shows the microstructure after heat treatment at 800°C, and (C) shows the microstructure after heat treatment at 1000°C. Figure 4 shows the change in coercive force with aging temperature. Figure 5 shows the recrystallization 1000" in heat treatment
The change in residual magnetic flux density with respect to the heating rate up to C is shown. FIG. 6 shows the dependence of magnetic properties on added Cul. FIG. 7 shows demagnetization curves after recrystallization heat treatment and aging treatment for powders of different sizes. FIG. 8 is a diagram showing the intensity profile of X-ray diffraction of the molded body, (a) shows the X-ray diffraction profile before recrystallization heat treatment, and (b) shows the X-ray diffraction profile after recrystallization heat treatment. shows. 4πI (C) Fig. 3 Fig. 2 Tl ('c) Kabuto 1 lamp 1 Rino 4 degrees, TfC'') Fig. 4 Tz (C) Aging temperature, TzCc) Fig. 5 °C/min ) H (kOe) Figure 6 u (αtZ) Figure 8 ((1) Procedural amendment (voluntary) March 1, 1990

Claims (9)

【特許請求の範囲】[Claims] (1)原子百分率で12%以上で20%以下のR(ただ
しRはNd又はPrの少なくとも一種を含む希土類元素
)、2%以上で10%以下のB、及び残部がTM(ただ
し、TM=Fe_1_−_xCo_x、(0≦x≦0.
4))ならびに不可避的不純物からなる希土類磁石にお
いて、平均粒径が1〜100μmの正方晶構造をとるR
_2Fe_1_4B金属間化合物の再結晶粒が体積百分
率で上記希土類磁石の50〜100%を占め、磁石の異
方性化度P (P =(Br(‖)−Br(⊥)/(Br(‖)+B
r(⊥)、ただしBr(‖)は磁化容易方向の残留磁束
密度でBr(⊥)は磁化容易方向と直交する方向の残留
磁束密度)が0.1以上であることを特徴とする希土類
磁石。
(1) R in an atomic percentage of 12% or more and 20% or less (R is a rare earth element containing at least one of Nd or Pr), B is 2% or more and 10% or less, and the balance is TM (however, TM= Fe_1_−_xCo_x, (0≦x≦0.
4)) In rare earth magnets consisting of unavoidable impurities, R has a tetragonal structure with an average grain size of 1 to 100 μm.
The recrystallized grains of the _2Fe_1_4B intermetallic compound account for 50 to 100% of the rare earth magnet in terms of volume percentage, and the degree of anisotropy of the magnet is P (P = (Br (‖) - Br (⊥) / (Br (‖)) +B
A rare earth magnet characterized in that r (⊥), where Br (‖) is the residual magnetic flux density in the direction of easy magnetization, and Br (⊥) is the residual magnetic flux density in the direction orthogonal to the easy magnetization direction) is 0.1 or more. .
(2)原子百分率で5%以下のCuを添加することを特
徴とする請求項1記載の希土類磁石。
(2) The rare earth magnet according to claim 1, wherein Cu is added in an amount of 5% or less by atomic percentage.
(3)全R量の20%以下の割合がDyであることを特
徴とする請求項1記載の希土類磁石。
(3) The rare earth magnet according to claim 1, wherein 20% or less of the total R amount is Dy.
(4)原子百分率で5%以下のCuを添加し、かつ全R
量の20%以下の割合がDyであることを特徴とする請
求項1記載の希土類磁石。
(4) Addition of 5% or less Cu in atomic percentage and total R
2. The rare earth magnet according to claim 1, wherein 20% or less of the amount is Dy.
(5)原子百分率で12%以上で20%以下のR(ただ
しRはNd又はPrの少なくとも一種を含む希土類元素
)、2%以上で10%以下のB、及び残部がTM(ただ
し、TH=Fe_1_−_xCo_x、(0≦x≦0.
4))ならびに不可避的不純物からなる合金粉末を液体
急冷法で作製し、前記合金粉末から熱間圧縮成形により
合金の真密度の90%以上にまで高密度化された成形体
を得たのち、前記成形体を750℃以上1150℃以下
の温度で加熱し、その後、必要に応じて450℃以上7
50℃以下の温度で時効処理することを特徴とする希土
類磁石の製造方法。
(5) R in an atomic percentage of 12% or more and 20% or less (R is a rare earth element containing at least one of Nd or Pr), B is 2% or more and 10% or less, and the balance is TM (however, TH= Fe_1_−_xCo_x, (0≦x≦0.
After producing an alloy powder consisting of 4)) and unavoidable impurities by a liquid quenching method, and obtaining a compact with a high density of 90% or more of the true density of the alloy by hot compression molding from the alloy powder, The molded body is heated at a temperature of 750°C or more and 1150°C or less, and then heated at a temperature of 450°C or more and 7
A method for producing a rare earth magnet, characterized by aging treatment at a temperature of 50°C or lower.
(6)原子百分率で5%以下のCuを添加することを特
徴とする請求項5記載の希土類磁石の製造方法。
(6) The method for producing a rare earth magnet according to claim 5, characterized in that Cu is added in an atomic percentage of 5% or less.
(7)全R量の20%以下の割合がDyであることを特
徴とする請求項5記載の希土類磁石の製造方法。
(7) The method for producing a rare earth magnet according to claim 5, wherein Dy accounts for 20% or less of the total R amount.
(8)原子百分率で5%以下のCuを添加し、かつ全R
量の20%以下の割合がDyであることを特徴とする請
求項5記載の希土類磁石の製造方法。
(8) Addition of 5% or less Cu in atomic percentage and total R
6. The method for producing a rare earth magnet according to claim 5, wherein 20% or less of the amount is Dy.
(9)熱間圧縮成形を加圧下における通電加熱により行
うことを特徴とする請求項5、6、7または8記載の希
土類磁石の製造方法。
(9) The method for producing a rare earth magnet according to claim 5, 6, 7 or 8, wherein the hot compression molding is carried out by electrical heating under pressure.
JP1279483A 1989-10-26 1989-10-26 Rare-earth magnet and its manufacture Pending JPH03141610A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1279483A JPH03141610A (en) 1989-10-26 1989-10-26 Rare-earth magnet and its manufacture
US07/800,712 US5201963A (en) 1989-10-26 1991-12-04 Rare earth magnets and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279483A JPH03141610A (en) 1989-10-26 1989-10-26 Rare-earth magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH03141610A true JPH03141610A (en) 1991-06-17

Family

ID=17611677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279483A Pending JPH03141610A (en) 1989-10-26 1989-10-26 Rare-earth magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH03141610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692231B2 (en) * 2010-07-16 2015-04-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171209A (en) * 1987-12-25 1989-07-06 Seiko Epson Corp Manufacture of permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171209A (en) * 1987-12-25 1989-07-06 Seiko Epson Corp Manufacture of permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692231B2 (en) * 2010-07-16 2015-04-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet

Similar Documents

Publication Publication Date Title
JP5933535B2 (en) Rare earth magnet manufacturing method
KR101548274B1 (en) Method of manufacturing rare-earth magnets
JP2016032116A (en) Manganese-bismuth based magnetic material, manufacturing method thereof, manganese-bismuth based sintered magnet, and manufacturing method thereof
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
JPH02288305A (en) Rare earth magnet and manufacture thereof
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP6613730B2 (en) Rare earth magnet manufacturing method
JPH01219143A (en) Sintered permanent magnet material and its production
US5201963A (en) Rare earth magnets and method of producing same
JPH0831385B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH03194906A (en) Manufacture of rare earth magnet
JP2000003808A (en) Hard magnetic material
JPH01100242A (en) Permanent magnetic material
KR102632582B1 (en) Manufacturing method of sintered magnet
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH0411703A (en) Manufacture of rare earth magnet
US20190311851A1 (en) Method of producing nd-fe-b magnet
JPH03141610A (en) Rare-earth magnet and its manufacture
JP2003257764A (en) Manufacturing method for rare earth permanent magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2000144345A (en) Silicon steel, its production, production of rolled silicon steel sheet and electric apparatus provided with the silicon steel
JPH02138706A (en) Anisotropic permanent magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP3138927B2 (en) Rare earth magnet manufacturing method