JPH0362507A - Manufacture of anisotropic rare earth magnet - Google Patents

Manufacture of anisotropic rare earth magnet

Info

Publication number
JPH0362507A
JPH0362507A JP19817289A JP19817289A JPH0362507A JP H0362507 A JPH0362507 A JP H0362507A JP 19817289 A JP19817289 A JP 19817289A JP 19817289 A JP19817289 A JP 19817289A JP H0362507 A JPH0362507 A JP H0362507A
Authority
JP
Japan
Prior art keywords
punch
rare earth
earth magnet
sleeve
anisotropic rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19817289A
Other languages
Japanese (ja)
Other versions
JP2830125B2 (en
Inventor
Makoto Saito
誠 斎藤
Teruo Watanabe
渡辺 輝夫
Yasumasa Kasai
葛西 靖正
Hiyoshi Yamada
山田 日吉
Norio Yoshikawa
紀夫 吉川
Yutaka Yoshida
裕 吉田
Toshiya Kinami
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1198172A priority Critical patent/JP2830125B2/en
Priority to DE69003720T priority patent/DE69003720T3/en
Priority to EP90303835A priority patent/EP0392799B2/en
Priority to AT90303835T priority patent/ATE95627T1/en
Priority to US07/507,438 priority patent/US4963320A/en
Publication of JPH0362507A publication Critical patent/JPH0362507A/en
Application granted granted Critical
Publication of JP2830125B2 publication Critical patent/JP2830125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain an anisotropic rare earth magnet of a high magnetic characteristic by shaping an anisotropic super quench magnet with a sleeve-shaped or ring-shaped cross section by one heating. CONSTITUTION:A preformed material 1 of an Nd-Fe-B magnet shaped by cold dust shaping is prepared. The same material is compressed with a double-action punch 5 having a core punch 3 and a sleeve punch 4. That is, as shown in Figures (a) and (b), the material at 650-900 deg.C is pressurized and compressed uniformly with the integrated punches 3 and 4 in the first step to obtain a raw material 9 made by dust shaping and composed of a magnetically isotropic solid or solid shaped body having theoretical density of 99% or higher. In the second step, extrusion molding in the same die is performed only with the core punch 3 without re-heating to obtain an anisotropic rare earth magnet raw material 10 with a sleeve-shaped or ring-shaped cross section.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、異方性希土類磁石の製造方法に係わり、さら
に詳しくは、Nd−Fe−B系磁石で代表されるR−F
e−B系(RはLa系の希土類金属、Feは遷移金属を
代表して示す、Bは他の特性改善金属を代表して示す、
)の異方性永久磁石の製造方法に関する。 (従来の技術) R−Fe−B系永久磁石には、 (イ)母材合金を溶融し、型に鋳込んで鋳塊とし、これ
を粉砕して極微細粉末とし、この粉末を磁場中において
金型を用いて成形圧粉し、焼結して異方性とした焼結磁
石と、 (ロ)母材合金の溶湯を超急冷して薄帯とし、その粗粉
砕粉末をそのままあるいは例えば第4図(a)に示すよ
うに、いったん冷間圧粉成形(成形圧力例えば、4t 
on/cm2)して理論密度比的80%の予備成形体5
1とし、この予備成形体51を用いて、wS4図(b)
に示すダイス52と上パンチ53とにより温度的700
℃でホットプレス(プレス圧力例えば、1ton/Cm
2)して等方磁性の素材54とし、この素材54を第4
図(C)に示す別のダイス55と、上バンチ56とによ
り900℃以下の温度で減面率40%以上の塑性変形加
工(押出し圧力例えば、4ton/Cm2)を施して異
方化した超急冷磁石素材5を用いた超急冷磁石と、 がある。 (発明が解決しようとする課題) これらの高磁気特性磁石は、特にOA 、FA機器用の
小型モーター類に適用できれば、モーターの小型化、軽
量化を図る上で極めて有用であるにも拘わらず、現時点
では実用化技術上の問題があって、モーターへの適用が
十分になされていないのが実情である。 上記希土類磁石をこれらのモーター類に適用するには、
半径方向に磁気異方化した薄肉のスリーブ状ないしリン
グ状磁石とするのが最も望ましいが、上記前者の焼結磁
石では、粉末を磁場中で成形する際に半径方向の磁場を
付与するのが難しく、そのため異方化の程度は板状磁石
の場合に比べて50〜60%程度と低くなること、およ
び異方化したものは焼結時の加熱・冷却で熱膨張の異方
化によって割れが生じやすいという問題がある。 他方、後者の超急冷磁石では、磁場中での成形を必要と
せず、塑性変形によって異方化を行うため、上記スリー
ブ状ないしはリング状磁石にあってもその異方化は最大
限になし得るものの、例えば第4図(b)に示したダイ
ス52と、上パンチ53とによる等方性で理論密度比9
9%以上の素材54の成形と第4図(C)に示したダイ
ス55と上パンチ56とにより塑性変形加工を施して異
方化する成形の2ヒートが必要であり、かつまた、この
材料はその磁性が結晶粒に敏感であり、長時間加熱で結
晶粒が粗大化すると磁性が低下してしまう問題がある。 加えてこの材料は極めて脆性であるため、押出し成形で
素材をスリーブ状。 リング状に成形する場合に第4図(C)に示すような大
きな成形割れ58を生じてしまう。 (発明の目的) 本発明は、上記後者の超急冷磁石において、これをスリ
ーブ状ないしはリング状の横断面環状に成形するに際し
て、1ヒート加熱により高い磁性の異方性磁石を得、か
つまた1セツトの成形型によって型費を安くし、さらに
は成形割れを防止することを目的としている。
(Industrial Application Field) The present invention relates to a method for manufacturing an anisotropic rare earth magnet, and more specifically, the present invention relates to a method for manufacturing an anisotropic rare earth magnet, and more specifically, the present invention relates to a method for manufacturing an anisotropic rare earth magnet.
e-B series (R is a La-based rare earth metal, Fe is representative of a transition metal, B is representative of other property-improving metals,
) relates to a method of manufacturing an anisotropic permanent magnet. (Conventional technology) R-Fe-B permanent magnets are made by (a) melting a base alloy, casting it into a mold to form an ingot, pulverizing it into ultrafine powder, and placing this powder in a magnetic field. (b) A sintered magnet that is compacted using a mold and sintered to make it anisotropic; (b) The molten base alloy is ultra-quenched into a thin ribbon, and the coarsely ground powder is used as it is or, for example, As shown in FIG. 4(a), once cold compaction is performed (forming pressure:
on/cm2) and a preformed body 5 with a theoretical density ratio of 80%
1, and using this preformed body 51, wS4 figure (b)
The die 52 and upper punch 53 shown in Fig.
Hot press at ℃ (press pressure e.g. 1 ton/Cm
2) to make an isotropic magnetic material 54, and this material 54 is
The anisotropic superstructure is made by plastic deformation processing (extrusion pressure, e.g., 4 ton/Cm2) with an area reduction rate of 40% or more at a temperature of 900°C or less using another die 55 shown in Figure (C) and an upper bunch 56. There is an ultra-quenched magnet using a rapidly cooled magnet material 5. (Problems to be Solved by the Invention) Although these magnets with high magnetic properties are extremely useful in reducing the size and weight of motors, especially if they can be applied to small motors for OA and FA equipment. However, at present, there are problems in practical application technology, and the actual situation is that it has not been fully applied to motors. To apply the above rare earth magnets to these motors,
It is most desirable to use a thin sleeve-shaped or ring-shaped magnet with magnetic anisotropy in the radial direction, but in the case of the former sintered magnet, it is best to apply a radial magnetic field when molding the powder in a magnetic field. Therefore, the degree of anisotropy is about 50 to 60% lower than that of plate magnets, and those that have become anisotropic will crack due to anisotropy of thermal expansion during heating and cooling during sintering. The problem is that it is easy for this to occur. On the other hand, the latter super-quenched magnet does not require forming in a magnetic field, and anisotropy is achieved through plastic deformation, so even if the sleeve-shaped or ring-shaped magnet is used, the anisotropy can be maximized. However, due to the isotropy of the die 52 and the upper punch 53 shown in FIG. 4(b), the theoretical density ratio is 9.
9% or more of the material 54, and plastic deformation processing using the die 55 and upper punch 56 shown in FIG. 4(C) to make it anisotropic, two heats are required. The problem is that its magnetism is sensitive to crystal grains, and if the crystal grains become coarse due to long-term heating, the magnetism decreases. Additionally, this material is extremely brittle, so the material is extruded into a sleeve. When molding into a ring shape, large molding cracks 58 as shown in FIG. 4(C) occur. (Object of the Invention) The present invention aims to obtain an anisotropic magnet with high magnetism by one heat heating when forming the latter super-quenched magnet into a sleeve-like or ring-like cross-sectional annular shape. The aim is to reduce mold costs and prevent mold cracks by using a set of molds.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係わる異方性希土類磁石の製造方法は、請求項
第(1)項に記載のように、希土類磁石の母材合金溶湯
を超急冷して薄帯とし、前記薄帯を粉砕した粉末を冷間
圧粉成形した予備成形体を650〜900℃に加熱して
、コアパンチとスリーブパンチとを有する複動パンチに
より一様に7111圧圧縮して圧粉成形素材の理論密度
を99%以上に高めた後にスリーブパンチを後退させて
コアパンチにより押出し成形することによって横断面環
状の異方性希土類磁石を1ヒート加工で製造する構成と
したことを特徴としている。また、請求項第(2)項に
記載された発明では、請求項第(1)項に記載の方法に
おいて、冷間圧粉成形した予備成形体を用いる代りに、
粉末を直接加熱して、コアパンチとスリーブパンチとを
有する複動パンチにより一様に加圧圧縮する構成とした
ことを特徴としている。さらに、請求項第(3)項に記
載された発明では、請求項第(1)項または第(2)項
に記載の方法において、スリーブパンチを後退させる代
りに、スリーブパンチで軽く一定圧力の圧縮応力を加工
材端面に付与した状態でコアパンチにより押出し成形す
る構成としたことを特徴としている。さらにまた、請求
項第(4)項に記載された発明では、請求項第(1)項
、第(2)項または第(3)項に記載の方法において、
加圧圧縮および押出し成形をITo r rよりも低圧
の真空下または不活性ガス雰囲気下で行う構成としたこ
とを特徴としている。さらにまた、請求項第(5)項に
記載された発明では、請求項第(1)項、第(3)項ま
たは第(4)項に記載の方法において、素材粉末を冷間
圧粉成形するにあたり、成形用型および粉末粒相互の潤
滑能を向上させるためにステアリン酸リチウムなどの潤
滑剤を2重量%以下混合することによってその圧粉密度
を向上させた予備成形体を用いる構成としたことを特徴
としている。 本発明に係わる異方性希土類磁石の製造方法においては
、前述したように、冷間圧粉成形した予@成形体(請求
項第(1)項の場合)あるいは素材粉末(請求項第(2
)項の場合)を、コアパンチとスリーブパンチを有する
2アクシヨンの複動パンチを用いて、650〜950℃
に加熱した素材を第1ステツプでは両パンチに同一の作
動を与えることにより、すなわち両パンチを一体として
作動させることにより一様に加圧圧縮することによって
、理論密度比99%以上の磁気的等方性の中実または中
空成形体よりなる圧粉成形素材を得たのち、そのまま第
2ステツプとして同一型内で、再ヒートなしに、コアパ
ンチのみで押出し成形することによってスリーブ状ない
しはリング状の横断面環状をなす異方性希土類磁石素材
を得るようにし、その後適宜着磁して異方性希土類永久
磁石となるようにしている。 なお、この第2ステツプではスリーブパンチは加工材端
面から完全に後退させてもよいが、請求項第(3)項に
記載したように、むしろ低い一定の圧力で加工材の端面
を加圧した状態を保つことによって成形割れの発生をよ
り一層確実に防止することができるようになる。 また、請求項第(4)項に記載したように、これらの成
形はITo r rよりも低圧の真空下又は不活性ガス
雰囲気下で650〜900℃の加熱下で行うことがより
望ましい。 本発明が適用されるR−Fe−B系磁石において、Rは
Ndで代表されるLa系の希土類元素であり、この磁石
には少量のCo、Dy2O3、Ga等の磁石特性を向上
させるための物質や、Ni 、Zn、Pb、A見等の耐
食性、耐熱性、加工性を改善するための物質を含有させ
ることができることはいうまでもないところである。 本発明に係わる異方性希土類磁石の製造方法では、素材
粉末あるいはそれを冷間圧粉成形した予m成形体を用い
て、磁気的等方性の中実または中空素材よりなる圧粉成
形素材を成形し、引つづきこれを押出し成形してスリー
ブ状ないしリング状等の横断面環状の磁石素材に成形す
るが、この際の押出し成形方法としては後方押出し成形
や前方押出し成形のいずれであっても可能である。これ
らの成形加工において、従来の場合、第1ステツプでは
粉末またはその予備成形体を加熱圧縮して磁気的等方性
の圧粉成形素材を成形し、第2ステツプでは再加熱して
別の成形型において押出し成形して磁気的異方性のスリ
ーブ状ないしはリング状の横断面環状に成形している。 しかるに、従来の場合、この材料は長時間加熱によって
結晶粒が成長してその磁気的特性が劣化してしまう。 そこで、本発明では、コアパンチとスリーブパンチのf
−jルアクションパンチヲ用いるこトニよってlヒート
でかつ1組の成形型で磁気的異方性のスリーブ状ないし
リング状をなす断面環状の永久磁石を得るようにしたも
のである。さらには、第2ステツプの押出し成形におい
て、加工材端面の自由表面にもスリーブパンチによって
一定の加圧圧縮を付与保持することによって、成形割れ
の発生をより一層効果的に防ぎ得るものとしている。 第1図は本発明に係わる異方性希土類磁石の製造方法の
実施態様を示すもので、希土類磁石の母材合金溶湯を超
急冷して薄帯とし、前記薄帯を粉砕した粉末を予@成形
し、慣用の粉末成形法で冷間成形された予備成形体を用
意する。この予備成形体の密度は理論密度比で70〜8
0%であり、一般的な成形方法によれば約80%である
。この予lil成形体は図示しない加熱手法によってあ
らかじめ650〜900℃、より望ましくは700〜8
00℃に予熱しておく0次いで、第1図(a)に示すよ
うに、前記予II成形体1をダイス2と、コアパンチ3
およびスリーブパンチ4を有する複動パンチ5と、対向
パンチ6とを備えた成形型7の成形空間7a内に入れ、
このとき、成形型7も図示しない方法で600〜900
℃、より望ましくは700〜800℃に予熱しておく、
また、予備成形体1が小型の場合には成形型7のみを予
熱して、予備成形体1は成形型7からの伝熱で加熱して
もよいし、予備成形体1が大型の場合には予@戒形体1
のみを予熱して、成形型7は室温のままで成形できる場
合もある。さらには予lil成形体1の代わりに、素材
粉末のまま成形型7の成形空間7a内にセットすること
も可能である。またこれら全体は密閉槽内に保持し、そ
の槽内雰囲気をITorrよりも低い圧力の真空とする
か、あるいはアルゴンガス等の不活性ガスを充満させて
酸化防止雰囲気としておくのも必要に応じて好ましい。 次に、複動パンチ5のコアバンチ3とスリーブパンチ4
をそれらの先端面3a 、4aが同一面となるように一
体で圧下して予備成形体1を均一に圧縮することによっ
て、第1図(b)に示すように、圧粉成形素材9を得る
。この際の加圧圧力としては、0 、5〜2 、 Ot
 o n/ cm2程度、より望ましくは1〜l 、5
t on/cm2を与えるのがよい、これにより理論密
度比99%以上の圧粉成形素材(円柱状等方性磁石素材
)9を得る。 次いで、第1図(e)に示すように、複動パンチ5のう
ちコアバンチ3のみを圧下して後方押出しを行い、第1
図(b)の圧粉成形素材9をスリーブ状の横断面環状を
なす異方性希土類磁石素材10に成形する。この際の押
出し圧力はパンチ面圧で2〜5ton/cm2.より望
ましくは3〜4tb なお、この後方押出し時には内表面に成形割れが生じる
ことがないとはいえないため、その上端面10bに、ス
リーブパンチ4によって第1図(C)に矢印で示す方向
に圧縮応力を付与しておくことによって、この割れの発
生をより一層確実に防ぐことができるようになる。その
際の圧縮力としては、圧力で0.2〜1.0ton/c
m2.より望ましくは0.4〜0.6ton/Cm2を
与えるのがよい。 押出し成形の終了後、対向パンチ6を上昇させてスリー
ブ状をなす異方性希土類磁石素材10を成形型7からノ
ックアウトし、別途その底部10aを切断して除去した
のち半径方向に磁化することによって異方性希土類磁石
が得られる。 本発明に係わる異方性希土類磁石の製造方法においては
、上記した後方押出しのほかに、前方押出し成形法を用
いることもでき、この前方押出しによる成形例を第2図
に基づいて説明する。 第2図に示す成形型7において、複動パンチ5のうちの
スリーブパンチ4はコアバンチ3にスライド可能に嵌合
したもので、第2図(a)に示すように、最初にコアバ
ンチ3の先端面3aとスリーブパンチ4の先端面4aと
をそろえた状態に保持して、ダイ2との成形空間7aに
予IiI戒形体をセットし、次いで対向パンチ6により
加圧圧縮して理論密度比99%以上の圧粉成形素材9と
する0次に、第2図(b)に示すように、コアパンチ3
を固定したまま対向パンチ6を圧下して、圧粉成形素材
9をスリーブ状の異方性希土類−磁石素材10に前方押
出し成形する。この場合、異方性希土類磁石素材10の
下端面10bにはスリーブパンチ4によって一定の圧縮
力を与えておくことにより成形割れの発生をより一層確
実に防ぐことができるようになる。 ところで、かかるスリーブ状成形品である異方性希土類
磁石素材10の成形において、半径方向に十分な磁気異
方性を生じさせるためには、押出し減面率として40〜
80%、より望ましくは55〜65%が必要である。し
たがって、薄肉のスリーブを得るためには、磁石素材と
して第1図および第2図に示したような円柱状の予@戒
形体1よりなる素材を用いると、押出し減面率が大きく
なりすぎる場合がある。 そこで、このような場合には、第3図に示すように厚肉
円筒形状の予備成形体1を素材とするのもよい、すなわ
ち、第3図(a)に示すようにダイス2と、コアパンチ
3およびスリーブパンチ4を有する複動パンチ5と、対
向パンチ6とを備えた成形型7の成形空間7a内に厚肉
円筒状の冷間圧粉成形した予備成形体1をセットし、次
いで第3図(b)に示すように、複動パンチ5のコアパ
ンチ3とスリーブパンチ4とを同時に圧下して、理論密
度比99%以上の等方性磁石素材である圧粉成形素材9
を得る。この際、コアパンチ3は厚肉円筒状の予備成形
体1の中空部1bの中に入り込む小径部3bを備えたも
のを使用しており、第3図(b)に示すように圧粉成形
素材9の中にコアパンチ3の小径部3bが入り込んだ状
態となっている。また対向パンチ6には前記コアパンチ
3の小径部3bを受は入れる中空部6bが設けである0
次に、第3図(C)に示すように、複動パンチ5のうち
コアパンチ3のみを圧下して薄肉のスリーブ状成形品で
ある異方性希土類磁石素材10に押出し成形する。この
間、異方性希土類磁石素材10の端面10bにスリーブ
パンチ4で一定圧縮力を付与しておけば、成形割れの発
生をより一層確実に防ぐことができるが、加圧しなくて
も成形は可能である。 (発明の作用) 本発明に係わる異方性希土類磁石の製造方法では、前述
した構成を有するものであるから、磁場中での成形を必
要とせず、塑性変形によって異方化を行うようにしたの
ち着磁する異方性の超急冷磁石において、これをスリー
ブ状ないしはリング状の断面環状に成形するに際して、
1ヒート加熱により高い磁気特性の異方性希土類磁石が
製造されるようになる。 (実施例) 笈亀豊ユ Nd13.5Fe80.5B8.0の組成を有する希土
類磁石の母材合金溶湯を超急冷して得た厚さ20ILm
の薄帯を粉砕して、大きさ約2001Lmのフレーク状
粉末を得た0次いで、この粉末に0.5重量%のステア
リン酸リチウムを均一に混合した後、慣用の粉末成形プ
レスを用いて外径29.5mm、高さ25mmの円柱状
予備成形体を得た。 続いて、この予備成形体を慣用の真空脱脂炉を用いて真
空度1O−2Torr、温度450℃。 保持時間30m1nで脱脂してステアリン酸リチウムを
蒸発除去した。この予!a戒形体の密度を測定した結果
は理論密度比で77%であった。 次に、この予備成形体の表面に潤滑剤としてグラファイ
ト粉末を塗布して乾燥した後、アルゴンガス雰囲気中で
2m1n加熱して750℃に昇温した後、直ちに第1図
に示したダイス2の内径30mmの成形型7の成形空間
7a内に装入した。この場合、成形型7はあらかじめ7
50℃に予熱しておき、アルゴンガス雰囲気中で、まず
、コアパンチ3およびスリーブパンチ4を同時に圧下し
て、加圧圧力1ton/cm2で均一に圧縮して圧粉成
形素材9を得た。なお、製造工程上は成形型7かち取り
出す必要はないが参考のために、この状態で圧粉成形素
材9を成形型7から取出し、冷却して寸法および密度を
測定した結果、直径30.1mm、高さ18.5mm、
理論密度比99.6%であった◆ 次に、上記と同じ成形工程により均一圧縮した圧粉成形
素材9を得た後、第1図(C)に示すように、直径24
mmのコアパンチ3のみを圧下して後方押出し成形して
スリーブ状の成形品である異方性希土類磁石素材10を
得た。この場合のコアパンチ3による加圧力は4.0t
on/cm2とし、スリーブパンチ4には加圧力0.6
ton/ c m 2の圧力を付与したまま成形品であ
る異方性希土類磁石素材10の端面10bの位置変化に
追随するようにしておいた。 この異方性希土類磁石素材10を冷却した後、アルゴン
雰囲気室から取出して寸法測定した結果、外径30.1
mm、内径24.1mm、高さ45mm、底厚3.5m
mであり、その内外表面には成形割れは皆無であった。 次に、このスリーブ状異方性希土類磁石素材10の底部
10aを切断して除去した後、これを半径方向に磁化し
て異方性希土類磁石となし、その半径方向の最大磁気エ
ネルギーを測定したところ31MG・Oeの優れた磁気
特性のものを得ることができた。 実施例2 上記と同じフレーク状の粉末を用い、その100gを秤
量して、アルゴン雰囲気中で800℃に予熱した第1図
に示した成形型7の成形空間7a内に粉末のままモして
加熱することなく装入した。この成形型7のダイス2の
内径は30 m mとした。 ついで、第1図(b)に示すようにコアパンチ3および
スリーブパンチ4を同時に圧下して加圧圧力1ton/
am′で加圧したまま2m1n保持して、成形型7から
の伝熱によって粉末を加熱すると同時に、その密度の向
上をはかった。 次にコアパンチ(直径24mm)3のみを圧下して後方
押出し成形することによって、スリーブ状の成形品であ
る異方性希土類磁石素材10を得た。この場合のコアパ
ンチ3の圧力は3.5ton/cm2とし、スリーブパ
ンチ4は後退させて加圧力が付与されないようにした。 次いで、上記異方性希土類磁石素材10を冷却した後、
アルゴン雰囲気室から取出して寸法測定した結果、外径
30.1mm、内径24.1mm、高さ45.5mm、
底厚3.4mmであった。但し、その内表面には深さ約
1.2mmの成形割れが生じていた。 次に、このスリーブ状成形品である異方性希土類磁石素
材10の底部10aを切断して除去した後、この内径部
分を研削することによって成形割れ部を除去して、内径
26.5mmとした。これを半径方向に磁化して異方性
希土類永久磁石となし、半径方向の最大磁気エネルギー
を測定した結果、28MG・Oeの優れた磁気特性のも
のを得ることができた。
(Means for Solving the Problems) A method for manufacturing an anisotropic rare earth magnet according to the present invention, as described in claim (1), involves ultra-quenching a molten metal of a base alloy of a rare earth magnet to form a thin ribbon. A preform obtained by cold compacting the powder obtained by pulverizing the ribbon is heated to 650 to 900° C., and is uniformly compressed by 7111 pressure using a double-acting punch having a core punch and a sleeve punch to form a green powder. It is characterized by a structure in which an anisotropic rare earth magnet with an annular cross section is manufactured in one heat processing by increasing the theoretical density of the molding material to 99% or more, then retracting the sleeve punch and extruding it with a core punch. . Furthermore, in the invention described in claim (2), in the method described in claim (1), instead of using a cold compacted preform,
It is characterized by a structure in which the powder is directly heated and uniformly compressed under pressure using a double-acting punch having a core punch and a sleeve punch. Furthermore, in the invention described in claim (3), in the method described in claim (1) or (2), instead of retracting the sleeve punch, the sleeve punch is used to apply a slight constant pressure. It is characterized by a structure in which extrusion molding is performed using a core punch while compressive stress is applied to the end face of the processed material. Furthermore, in the invention described in claim (4), in the method described in claim (1), (2), or (3),
It is characterized by a structure in which pressure compression and extrusion molding are performed under a vacuum or an inert gas atmosphere at a pressure lower than that of ITorr. Furthermore, in the invention described in claim (5), in the method described in claim (1), (3), or (4), the material powder is cold compacted. In order to improve the lubrication ability between the mold and the powder grains, we used a preform whose green density was improved by mixing 2% by weight or less of a lubricant such as lithium stearate. It is characterized by In the method for manufacturing an anisotropic rare earth magnet according to the present invention, as described above, a cold compacted pre-formed body (in the case of claim (1)) or a raw material powder (in the case of claim (2)) is used.
), using a two-action double-acting punch having a core punch and a sleeve punch, at 650 to 950°C.
In the first step, the material heated to After obtaining a compacted material consisting of an oriented solid or hollow compact, it is extruded in the same mold as a second step using only a core punch without reheating to form a transverse sleeve-like or ring-like material. An anisotropic rare earth magnet material having a ring-shaped surface is obtained, and then it is suitably magnetized to become an anisotropic rare earth permanent magnet. Note that in this second step, the sleeve punch may be completely retreated from the end surface of the workpiece, but as stated in claim (3), it is preferable to press the end surface of the workpiece with a constant low pressure. By maintaining this condition, mold cracks can be more reliably prevented from occurring. Further, as described in claim (4), it is more desirable that these moldings be performed under a vacuum at a pressure lower than that of ITorr or under heating at 650 to 900° C. in an inert gas atmosphere. In the R-Fe-B magnet to which the present invention is applied, R is a La-based rare earth element represented by Nd, and this magnet contains a small amount of Co, Dy2O3, Ga, etc. to improve the magnetic properties. It goes without saying that it is possible to contain substances for improving corrosion resistance, heat resistance, and workability, such as Ni, Zn, Pb, and aluminum. In the method for manufacturing an anisotropic rare earth magnet according to the present invention, a compacting material made of a magnetically isotropic solid or hollow material is produced using a raw material powder or a preformed body obtained by cold compacting the material powder. This is then extruded to form a magnet material with an annular cross section such as a sleeve or ring shape.The extrusion method used at this time is either backward extrusion or forward extrusion. is also possible. Conventionally, in these molding processes, in the first step, the powder or its preform is heated and compressed to form a magnetically isotropic compacted material, and in the second step, it is reheated and subjected to another molding process. It is extruded in a mold to form a magnetically anisotropic sleeve-like or ring-like cross-sectional annular shape. However, in the conventional case, when this material is heated for a long time, crystal grains grow and its magnetic properties deteriorate. Therefore, in the present invention, f of the core punch and sleeve punch is
By using a double action punch, a magnetically anisotropic sleeve- or ring-shaped permanent magnet having an annular cross section can be obtained with one heat and one set of molds. Furthermore, in the second step of extrusion molding, the occurrence of mold cracks can be more effectively prevented by applying and maintaining a constant pressure compression to the free surface of the end face of the workpiece using a sleeve punch. FIG. 1 shows an embodiment of the method for manufacturing an anisotropic rare earth magnet according to the present invention, in which a molten base alloy of a rare earth magnet is ultra-quenched into a thin ribbon, and the thin ribbon is pulverized into powder. A preform is provided which is molded and cold formed using conventional powder compacting techniques. The density of this preform is 70 to 8 in terms of theoretical density ratio.
0%, and about 80% according to a general molding method. This pre-lil molded body is heated to a temperature of 650 to 900°C, more preferably 700 to 8°C, by a heating method (not shown).
Next, as shown in FIG.
and a double-acting punch 5 having a sleeve punch 4, and a facing punch 6.
At this time, the mold 7 is also heated to 600 to 900
℃, preferably preheated to 700-800℃,
Further, if the preform 1 is small, only the mold 7 may be preheated, and the preform 1 may be heated by heat transfer from the mold 7, or if the preform 1 is large, the preform 1 may be heated by heat transfer from the mold 7. Hayo @ precept form 1
In some cases, the mold 7 can be molded while remaining at room temperature by preheating the mold. Furthermore, instead of the pre-lil molded body 1, it is also possible to set the raw material powder in the molding space 7a of the molding die 7 as it is. Also, if necessary, keep all of these in a sealed tank and make the tank atmosphere a vacuum with a pressure lower than ITorr, or fill it with an inert gas such as argon gas to create an oxidation-preventing atmosphere. preferable. Next, the core bunch 3 of the double-acting punch 5 and the sleeve punch 4
By compressing the preform 1 uniformly by compressing the preform 1 integrally so that their tip surfaces 3a and 4a are on the same plane, a compacted powder material 9 is obtained as shown in FIG. 1(b). . The pressurizing pressure at this time is 0, 5 to 2, Ot
on/cm2, more preferably 1 to 1,5
It is preferable to give ton/cm2, thereby obtaining a compacted material (cylindrical isotropic magnet material) 9 having a theoretical density ratio of 99% or more. Next, as shown in FIG. 1(e), only the core bunch 3 of the double-acting punch 5 is pressed down to perform backward extrusion, and the first
The compacted material 9 shown in Figure (b) is formed into an anisotropic rare earth magnet material 10 having a sleeve-like annular cross section. The extrusion pressure at this time is 2 to 5 tons/cm2 in terms of punch surface pressure. More preferably 3 to 4 tb. Since it cannot be said that molding cracks will not occur on the inner surface during this backward extrusion, the upper end surface 10b is punched in the direction shown by the arrow in FIG. 1(C) using the sleeve punch 4. By applying compressive stress, this cracking can be more reliably prevented from occurring. The compressive force at that time is 0.2 to 1.0 ton/c in pressure.
m2. More preferably, it is 0.4 to 0.6 ton/Cm2. After extrusion molding is completed, the opposed punch 6 is raised to knock out the sleeve-shaped anisotropic rare earth magnet material 10 from the mold 7, and the bottom portion 10a is separately cut and removed, and then magnetized in the radial direction. An anisotropic rare earth magnet is obtained. In the method of manufacturing an anisotropic rare earth magnet according to the present invention, in addition to the above-described backward extrusion, a forward extrusion molding method can also be used, and an example of molding by this forward extrusion will be explained based on FIG. In the mold 7 shown in FIG. 2, the sleeve punch 4 of the double-acting punch 5 is slidably fitted to the core bunch 3, and as shown in FIG. While keeping the surface 3a and the tip surface 4a of the sleeve punch 4 aligned, the pre-IiI shaped body is set in the molding space 7a with the die 2, and then pressurized and compressed by the opposing punch 6 to achieve a theoretical density ratio of 99. % or more of the compacted material 9. Next, as shown in FIG. 2(b), the core punch 3 is
While keeping it fixed, the facing punch 6 is pressed down, and the compacted material 9 is forwardly extruded into a sleeve-shaped anisotropic rare earth magnet material 10. In this case, by applying a constant compressive force to the lower end surface 10b of the anisotropic rare earth magnet material 10 by the sleeve punch 4, the occurrence of mold cracks can be more reliably prevented. By the way, in order to produce sufficient magnetic anisotropy in the radial direction in molding the anisotropic rare earth magnet material 10, which is the sleeve-shaped molded product, the extrusion area reduction ratio must be 40 to 40.
80%, more preferably 55-65% is required. Therefore, in order to obtain a thin sleeve, if a material consisting of a cylindrical pre-shaped body 1 as shown in Figs. 1 and 2 is used as the magnet material, the extrusion area reduction rate may become too large. There is. Therefore, in such a case, it is better to use a thick-walled cylindrical preform 1 as the raw material, as shown in FIG. 3. In other words, as shown in FIG. A thick-walled cylindrical cold compacted preform 1 is set in a molding space 7a of a mold 7 equipped with a double-acting punch 5 having a sleeve punch 3 and a sleeve punch 4, and an opposing punch 6. As shown in FIG. 3(b), the core punch 3 and sleeve punch 4 of the double-acting punch 5 are simultaneously pressed down to form a compacted powder material 9 which is an isotropic magnetic material with a theoretical density ratio of 99% or more.
get. At this time, the core punch 3 is equipped with a small diameter part 3b that enters into the hollow part 1b of the thick-walled cylindrical preformed body 1, and as shown in FIG. The small diameter portion 3b of the core punch 3 is inserted into the hole 9. Further, the opposing punch 6 is provided with a hollow portion 6b for receiving the small diameter portion 3b of the core punch 3.
Next, as shown in FIG. 3(C), only the core punch 3 of the double-acting punch 5 is pressed down and extruded into an anisotropic rare earth magnet material 10 which is a thin sleeve-shaped molded product. During this time, if a certain compression force is applied to the end surface 10b of the anisotropic rare earth magnet material 10 using the sleeve punch 4, the occurrence of molding cracks can be more reliably prevented, but molding can be performed without applying pressure. It is. (Function of the Invention) Since the method for manufacturing an anisotropic rare earth magnet according to the present invention has the above-described configuration, anisotropy is performed by plastic deformation without requiring forming in a magnetic field. When forming an anisotropic ultra-quenched magnet that is later magnetized into a sleeve-like or ring-like cross-section,
An anisotropic rare earth magnet with high magnetic properties can be manufactured by one heat heating. (Example) Thickness 20ILm obtained by ultra-quenching a molten base alloy of a rare earth magnet having a composition of Nd13.5Fe80.5B8.0
A flaky powder with a size of about 2001 Lm was obtained by pulverizing the ribbon.Next, 0.5% by weight of lithium stearate was mixed uniformly into this powder, and then it was extruded using a conventional powder molding press. A cylindrical preform with a diameter of 29.5 mm and a height of 25 mm was obtained. Subsequently, this preform was heated in a conventional vacuum degreasing furnace at a vacuum level of 10-2 Torr and a temperature of 450°C. Degreasing was carried out for a holding time of 30 ml to remove lithium stearate by evaporation. This forecast! The density of the a-shaped body was measured, and the theoretical density ratio was 77%. Next, after applying graphite powder as a lubricant to the surface of this preform and drying it, it was heated for 2 ml in an argon gas atmosphere to raise the temperature to 750°C, and immediately after that, the die 2 shown in FIG. It was charged into the molding space 7a of the molding die 7 having an inner diameter of 30 mm. In this case, the mold 7 is
The core punch 3 and sleeve punch 4 were preheated to 50° C. in an argon gas atmosphere, and the core punch 3 and the sleeve punch 4 were first pressed down at the same time to uniformly compress the material at a pressure of 1 ton/cm 2 to obtain a compacted powder material 9 . Although it is not necessary to take out the 7 molds in the manufacturing process, for reference purposes, the compacted material 9 was taken out from the mold 7 in this state, cooled, and its dimensions and density were measured. As a result, the diameter was 30.1 mm. , height 18.5mm,
The theoretical density ratio was 99.6% ◆ Next, after obtaining a uniformly compressed powder molding material 9 by the same molding process as above, as shown in FIG.
The anisotropic rare earth magnet material 10, which is a sleeve-shaped molded product, was obtained by pressing down only the core punch 3 having a diameter of 1 mm and performing backward extrusion molding. In this case, the pressing force by the core punch 3 is 4.0t
on/cm2, and the sleeve punch 4 has a pressing force of 0.6.
A pressure of ton/cm 2 was applied so as to follow the positional change of the end face 10b of the anisotropic rare earth magnet material 10, which is a molded product. After cooling this anisotropic rare earth magnet material 10, it was taken out from the argon atmosphere chamber and its dimensions were measured. As a result, the outer diameter was 30.1.
mm, inner diameter 24.1mm, height 45mm, bottom thickness 3.5m
m, and there were no molding cracks on its inner and outer surfaces. Next, after cutting and removing the bottom part 10a of this sleeve-shaped anisotropic rare earth magnet material 10, it was magnetized in the radial direction to form an anisotropic rare earth magnet, and the maximum magnetic energy in the radial direction was measured. However, we were able to obtain a material with excellent magnetic properties of 31 MG·Oe. Example 2 Using the same flaky powder as above, 100 g of it was weighed and placed in the molding space 7a of the mold 7 shown in FIG. 1, which was preheated to 800° C. in an argon atmosphere. It was charged without heating. The inner diameter of the die 2 of this mold 7 was 30 mm. Then, as shown in FIG. 1(b), the core punch 3 and sleeve punch 4 are simultaneously pressed down to a pressurizing pressure of 1 ton/ton.
The powder was heated by heat transfer from the molding die 7 while being kept under pressure of 2 m1n at am', and at the same time, the density was improved. Next, by pressing down only the core punch (diameter 24 mm) 3 and performing backward extrusion molding, an anisotropic rare earth magnet material 10 as a sleeve-shaped molded product was obtained. In this case, the pressure of the core punch 3 was set to 3.5 ton/cm<2>, and the sleeve punch 4 was moved backward so that no pressing force was applied. Next, after cooling the anisotropic rare earth magnet material 10,
As a result of taking it out of the argon atmosphere chamber and measuring its dimensions, the outer diameter was 30.1 mm, the inner diameter was 24.1 mm, the height was 45.5 mm,
The bottom thickness was 3.4 mm. However, molding cracks with a depth of about 1.2 mm had occurred on the inner surface. Next, the bottom part 10a of the anisotropic rare earth magnet material 10, which is the sleeve-shaped molded product, was cut and removed, and the inner diameter part was ground to remove the molding cracks and the inner diameter was set to 26.5 mm. . This was magnetized in the radial direction to form an anisotropic rare earth permanent magnet, and as a result of measuring the maximum magnetic energy in the radial direction, it was possible to obtain excellent magnetic properties of 28 MG·Oe.

【発明の効果】【Effect of the invention】

本発明に係わる異方性希土類磁石の製造方法では、希土
類磁石の母材合金溶湯を超急冷して薄帯とし、前記薄帯
を粉砕した粉末を冷間圧粉成形した予(1成形体を65
0〜900℃に加熱して、コアパンチとスリーブパンチ
とを有する複動パンチにより一様に加圧圧縮して圧粉成
形素材の理論密度を99%以上に高めた後にスリーブパ
ンチを後退させてコアパンチにより押出し成形すること
によって横断面環状の異方性希土類磁石を1ヒート加工
で製造するようにしており、上記製造方法において、冷
間圧粉成形した予@戊形体を用いる代りに、粉末を直接
加熱して、コアパンチとスリーブパンチとを有する複動
パンチにより一様に加圧圧縮するようにしており、さら
に上記製造方法において、スリーブパンチを後退させる
代りに、スリーブパンチで軽く一定圧力の圧縮応力を加
工材端面に付与した状態でコアパンチにより押出し成形
するようにしており、さらにまた上記製造方法において
、加圧圧縮および押出し成形をITorrよりも低圧の
真空下または不活性ガス雰囲気下で行うようにしており
、さらにまた上記製造方法において、素材粉末を冷間圧
粉成形するにあたり、成形用型および粉末粒相互の潤滑
能を向上させるためにステアリン酸リチウムなどの潤滑
剤を2重量%以下混合することによってその圧粉密度を
向上させた予備成形体を用いるようにしたから、磁場中
での成形を必要とせず、塑性変形によって異方化を行う
ようにしたのち着磁する異方性の超急冷永久磁石におい
て、これをスリーブ状ないしはリング状の横断面環状に
成形するに際して、1ヒート加熱により高い磁気特性の
異方性永久磁石とすることが可能であり、かつまた加圧
圧縮して理論密度を99%以上に高める加圧圧縮と、ス
リーブ状ないしはリング状に成形する押出し成形とを同
一の成形型で行っているため型費用の著しい低減をはか
ることが可能であり、さらにはとくにスリーブ状ないし
はリング状の内面における割れの発生をも防止すること
が可能であるという著しく優れた効果がもたらされる。 そして。 従来のように、理論密度比99%以上の加圧圧縮と塑性
加工とを別々の成形型でおこないモして2ヒートの加熱
を行う場合のように、長時間加熱で結晶粒が粗大化する
ことによる磁気特性の低下がないという著しく優れた効
果がもたらされる。
In the method for manufacturing an anisotropic rare earth magnet according to the present invention, a molten metal of a base alloy of a rare earth magnet is ultra-quenched into a thin ribbon, and a powder obtained by pulverizing the thin ribbon is cold-pressed into a preform (one molded body). 65
After heating to 0 to 900°C and uniformly pressurizing and compressing with a double-acting punch having a core punch and a sleeve punch to increase the theoretical density of the compacted material to 99% or more, the sleeve punch is retreated to form a core punch. By extrusion molding, an anisotropic rare earth magnet with an annular cross section is manufactured in one heat process. It is heated and compressed uniformly by a double-acting punch having a core punch and a sleeve punch.Furthermore, in the above manufacturing method, instead of retracting the sleeve punch, the sleeve punch applies a slight compressive stress at a constant pressure. is applied to the end surface of the workpiece, and extrusion molding is performed using a core punch.Furthermore, in the above manufacturing method, pressure compression and extrusion molding are performed under vacuum or an inert gas atmosphere at a pressure lower than ITorr. Furthermore, in the above manufacturing method, when cold compacting the raw material powder, 2% by weight or less of a lubricant such as lithium stearate is mixed in order to improve the lubrication ability between the molding die and the powder particles. Since we used a preform with improved compaction density, we did not need to form it in a magnetic field, but instead created anisotropy through plastic deformation and then magnetized it. When forming a quenched permanent magnet into a sleeve-like or ring-like cross-sectional annular shape, it is possible to make an anisotropic permanent magnet with high magnetic properties by one heat heating, and it is also possible to make it into an anisotropic permanent magnet with high magnetic properties by compressing it under pressure. Pressure compression to increase the density to over 99% and extrusion molding to form a sleeve or ring shape are performed in the same mold, making it possible to significantly reduce mold costs. A remarkable effect is brought about in that it is possible to prevent cracks from occurring on the inner surface of the ring-shaped or ring-shaped inner surface. and. As in conventional methods, where pressure compression and plastic working with a theoretical density ratio of 99% or more are performed in separate molds and heating is performed in two heats, the crystal grains become coarser due to long-term heating. This brings about an extremely excellent effect in that there is no deterioration in magnetic properties due to this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)(c)は本発明の一実施態様におけ
る異方性希土類磁石の製造方法を工程順に示す各々断面
説明図、第2図(a)(b)は本発明の他の実施態様に
おける異方性希土類磁石の製造方法を工程順に示す各々
断面説明図、第3図(a)(b)(c)は本発明の他の
実施態様における異方性希土類磁石の製造方法を工程順
に示す各々断面説明図、第4図(a)(b)(c)は従
来の異方性希土類磁石の製造方法を工程順に示す各々断
面説明図である。 1・・・予@戒形体、 2・・・ダイス、 3・・・コアパンチ、 4・・・スリーブパンチ、 5・・・複動パンチ、 7・・・成形型。 9・・・圧粉成形素材、 10・・・異方性希土類磁石素材。 第1図(G) 第1図(b) @2図(0) 第2図(b) 第3図((]) 第3図(b) 第3「マ<c>
FIGS. 1(a), (b), and (c) are cross-sectional explanatory diagrams showing the manufacturing method of an anisotropic rare earth magnet according to an embodiment of the present invention in the order of steps, and FIGS. 3(a), (b), and (c) are cross-sectional explanatory diagrams illustrating a method for manufacturing an anisotropic rare earth magnet in another embodiment in the order of steps, and FIGS. FIGS. 4(a), 4(b), and 4(c) are cross-sectional explanatory views showing the conventional method for manufacturing an anisotropic rare earth magnet in order of steps. 1...Pre-order form, 2...Dice, 3...Core punch, 4...Sleeve punch, 5...Double acting punch, 7...Forming mold. 9...Powder molding material, 10...Anisotropic rare earth magnet material. Figure 1 (G) Figure 1 (b) @ Figure 2 (0) Figure 2 (b) Figure 3 (()) Figure 3 (b) 3rd “Ma<c>

Claims (5)

【特許請求の範囲】[Claims] (1)希土類磁石の母材合金溶湯を超急冷して薄帯とし
、前記薄帯を粉砕した粉末を冷間圧粉成形した予備成形
体を650〜900℃に加熱して、コアパンチとスリー
ブパンチとを有する複動パンチにより一様に加圧圧縮し
て圧粉成形素材の理論密度を99%以上に高めた後にス
リーブパンチを後退させてコアパンチにより押出し成形
することによって横断面環状の異方性希土類磁石を1ヒ
ート加工で製造することを特徴とする異方性希土類磁石
の製造方法。
(1) The molten base alloy of rare earth magnets is ultra-quenched into a thin ribbon, the thin ribbon is pulverized and the powder is cold compacted to form a preform, which is then heated to 650 to 900°C to form a core punch and a sleeve punch. After increasing the theoretical density of the compacted material to 99% or more by uniformly pressurizing and compressing it with a double-acting punch having A method for manufacturing an anisotropic rare earth magnet, characterized by manufacturing a rare earth magnet by one heat processing.
(2)請求項第(1)項に記載の方法において、冷間圧
粉成形した予備成形体を用いる代りに、粉末を直接加熱
して、コアパンチとスリーブパンチとを有する複動パン
チにより一様に加圧圧縮することを特徴とする異方性希
土類磁石の製造方法。
(2) In the method according to claim (1), instead of using a cold compacted preform, the powder is directly heated and uniformly formed by a double-acting punch having a core punch and a sleeve punch. A method for manufacturing an anisotropic rare earth magnet characterized by compressing it under pressure.
(3)請求項第(1)項または第(2)項に記載の方法
において、スリーブパンチを後退させる代りに、スリー
ブパンチで軽く一定圧力の圧縮応力を加工材端面に付与
した状態でコアパンチにより押出し成形することを特徴
とする異方性希土類磁石の製造方法。
(3) In the method according to claim (1) or (2), instead of retracting the sleeve punch, the sleeve punch applies a slight compressive stress of a constant pressure to the end surface of the workpiece, and then the core punch is used. A method for producing an anisotropic rare earth magnet, characterized by extrusion molding.
(4)請求項第(1)項,第(2)項または第(3)項
に記載の方法において、加圧圧縮および押出し成形を1
Torrよりも低圧の真空下または不活性ガス雰囲気下
で行うことを特徴とする異方性希土類磁石の製造方法。
(4) In the method according to claim (1), (2) or (3), pressure compression and extrusion molding are carried out in one step.
A method for manufacturing an anisotropic rare earth magnet, characterized in that the manufacturing method is carried out under a vacuum at a pressure lower than Torr or under an inert gas atmosphere.
(5)請求項第(1)項,第(3)項または第(4)項
に記載の方法において、素材粉末を冷間圧粉成形するに
あたり、成形用型および粉末粒相互の潤滑能を向上させ
るためにステアリン酸リチウムなどの潤滑剤を2重量%
以下混合することによってその圧粉密度を向上させた予
備成形体を用いることを特徴とする異方性希土類磁石の
製造方法。
(5) In the method described in claim (1), (3), or (4), when cold compacting the raw material powder, the mutual lubrication ability of the forming mold and the powder particles is 2% by weight of lubricants such as lithium stearate to improve
A method for producing an anisotropic rare earth magnet, characterized by using a preform whose green density has been improved by mixing the following:
JP1198172A 1989-04-14 1989-07-31 Manufacturing method of anisotropic rare earth magnet Expired - Lifetime JP2830125B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1198172A JP2830125B2 (en) 1989-07-31 1989-07-31 Manufacturing method of anisotropic rare earth magnet
DE69003720T DE69003720T3 (en) 1989-04-14 1990-04-10 Method and device for manufacturing an anisotropic rare earth magnet.
EP90303835A EP0392799B2 (en) 1989-04-14 1990-04-10 Method and apparatus for producing anisotropic rare earth magnet
AT90303835T ATE95627T1 (en) 1989-04-14 1990-04-10 METHOD AND APPARATUS FOR THE MANUFACTURE OF AN ANISOTROPIC RARE EARTH MAGNET.
US07/507,438 US4963320A (en) 1989-04-14 1990-04-11 Method and apparatus for producing anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1198172A JP2830125B2 (en) 1989-07-31 1989-07-31 Manufacturing method of anisotropic rare earth magnet

Publications (2)

Publication Number Publication Date
JPH0362507A true JPH0362507A (en) 1991-03-18
JP2830125B2 JP2830125B2 (en) 1998-12-02

Family

ID=16386670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1198172A Expired - Lifetime JP2830125B2 (en) 1989-04-14 1989-07-31 Manufacturing method of anisotropic rare earth magnet

Country Status (1)

Country Link
JP (1) JP2830125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894607A (en) * 2014-04-23 2014-07-02 上海交通大学 Forming method and die of anisotropic annular magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894607A (en) * 2014-04-23 2014-07-02 上海交通大学 Forming method and die of anisotropic annular magnet

Also Published As

Publication number Publication date
JP2830125B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JPH03274713A (en) Formation of thin and long ringlike magnet molding
KR102045400B1 (en) Manufacturing method of rare earth sintered magnet
CN105185562A (en) Preparation method of sintered neodymium-iron-boron magnet
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2013138127A (en) Production method of rare earth magnet
JPH0362507A (en) Manufacture of anisotropic rare earth magnet
CN111785504A (en) Near-net-shape preparation method of rare earth permanent magnet
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
KR0159651B1 (en) Method for manufacturing a magnet made from anisotropic rare earth
JPH03290906A (en) Warm-worked magnet and its manufacture
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
EP0565363B1 (en) Method for producing anisotropic rare earth magnet
CN216028073U (en) High pressure resistant powder compacting die
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
US5342574A (en) Method for producing anisotropic rare earth magnet
JP4127599B2 (en) Sintered body manufacturing method and sintered body and magnetostrictive material manufactured thereby
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
KR20240092866A (en) Manufacturing Method Of Anisotropic Rare Earth Bulk Magnet
JPH01208813A (en) Manufacture of rare earth magnet
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

EXPY Cancellation because of completion of term