JP2800249B2 - Manufacturing method of rare earth anisotropic magnet - Google Patents

Manufacturing method of rare earth anisotropic magnet

Info

Publication number
JP2800249B2
JP2800249B2 JP1095600A JP9560089A JP2800249B2 JP 2800249 B2 JP2800249 B2 JP 2800249B2 JP 1095600 A JP1095600 A JP 1095600A JP 9560089 A JP9560089 A JP 9560089A JP 2800249 B2 JP2800249 B2 JP 2800249B2
Authority
JP
Japan
Prior art keywords
magnet
extrusion
extruded
sleeve
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1095600A
Other languages
Japanese (ja)
Other versions
JPH02272712A (en
Inventor
輝夫 渡辺
誠 斉藤
慎一郎 矢萩
紀夫 吉川
吉田  裕
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1095600A priority Critical patent/JP2800249B2/en
Priority to AT90303835T priority patent/ATE95627T1/en
Priority to DE69003720T priority patent/DE69003720T3/en
Priority to EP90303835A priority patent/EP0392799B2/en
Priority to US07/507,438 priority patent/US4963320A/en
Publication of JPH02272712A publication Critical patent/JPH02272712A/en
Priority to US08/042,772 priority patent/US5342574A/en
Application granted granted Critical
Publication of JP2800249B2 publication Critical patent/JP2800249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は希土類磁石の製造方法に係り、詳しくはNd
−Fe−B系磁石で代表されるR−Fe−B系(RはLa系の
希土類元素)永久磁石の製造方法に関する。
The present invention relates to a method for manufacturing a rare earth magnet, and more particularly, to a method for producing Nd.
The present invention relates to a method for producing an R-Fe-B-based (R is a La-based rare earth element) permanent magnet represented by a -Fe-B-based magnet.

(従来の技術及び発明が解決しようとする課題) R−Fe−B系永久磁石には、(イ)母材合金を溶融
し、型に鋳込んで鋳塊とし、これを粉砕して極微細粉と
し、この粉末を磁場中金型を用いて成形圧粉し、焼結し
て異方性磁石とした焼結磁石と、(ロ)母材合金の溶湯
を超急冷して薄帯とし、その粗粉砕粉末を温度約700℃
でホットプレスして等方磁性の素材とし、その粗材を90
0℃以下の温度で減面率40%以上の塑性変形加工を施し
て異方化した超急冷磁石とがある。
(Problems to be Solved by the Related Art and the Invention) R-Fe-B-based permanent magnets include (a) a base material alloy melted and cast into a mold to form an ingot, which is pulverized to an extremely fine The powder is compacted and compacted using a metal mold in a magnetic field, and then sintered and anisotropically magnetized. The coarsely pulverized powder is heated to about 700 ° C
Hot-pressed to make isotropic magnetic material
There is a super-quenched magnet which is anisotropically subjected to plastic deformation processing at a temperature of 0 ° C. or less and a surface reduction rate of 40% or more.

これらの高磁気特性磁石は、特にOA,FA用の小型モー
タに適用できれば、モータの小型化,軽量化を図る上で
極めて有用であるにも拘らず、現時点では実用化技術上
の問題があって、モータへの適用が十分になされていな
いのが実情である。
These high magnetic property magnets, if applicable to small motors for OA and FA, are extremely useful in reducing the size and weight of motors. Therefore, the fact is that it is not sufficiently applied to motors.

上記希土類磁石をこれらのモータに適用するには、半
径方向に磁気異方化した薄肉のスリーブ状ないしリング
状磁石とするのが最も望ましいが、上記焼結磁石では、
粉末を磁場中で成形する際に半径方向の磁場を付与する
のが難しく、そのため異方化の程度は板状磁石の場合に
比べて50〜60%と低く、磁石性能が低下してしまう問題
がある。
In order to apply the rare-earth magnet to these motors, it is most preferable to use a thin-walled sleeve or ring-shaped magnet that is magnetically anisotropic in the radial direction.
It is difficult to apply a magnetic field in the radial direction when molding powder in a magnetic field, so the degree of anisotropy is 50-60% lower than that of a plate magnet, and the magnet performance is reduced. There is.

他方後者の超急冷磁石では、磁場中での成形を必要と
せず、塑性変形によって異方化を行うため、上記スリー
ブ状ないしリング状磁石にあってもその異方化は最大限
になし得るものの、この希土類磁石材料は極めて脆性で
あるため、押出成形で素材をスリーブ状,リング状に成
形する場合に大きな成形割れを生じてしまう。
On the other hand, the latter super-quenched magnet does not require molding in a magnetic field and performs anisotropic deformation by plastic deformation. However, since this rare earth magnet material is extremely brittle, a large forming crack occurs when the material is formed into a sleeve shape or a ring shape by extrusion.

(課題を解決するための手段) 本発明は上記超急冷磁石において、これをスリーブ状
ないしリング状の断面環状に成形するに際して成形割れ
を防止し、高い磁気異方性の磁石を得ることを目的とし
てなされたものであって、その要旨は、パンチとダイと
を含む押出成形型を用いて磁気的等方性の中実又は中空
磁石素材を後方又は前方押出しすることにより該磁石素
材を断面環状に押出成形するとともに磁気的異方性を付
与するに際して、 押出しにつれて後方又は前方に移動する前記磁石素材
の後方端の自由表面又は前方端の自由表面に対して加圧
手段により前方又は後方に圧縮力を付与し、該自由表面
を圧縮力付与状態で後方又は前方に移動させつつ押出成
形を行うことにある。
(Means for Solving the Problems) An object of the present invention is to provide a magnet having a high magnetic anisotropy in the above-mentioned super-quenched magnet, which is prevented from forming cracks when it is formed into a sleeve-like or ring-shaped annular cross section. The gist of the invention is that a magnetic or isotropic solid or hollow magnet material is extruded rearward or forward by using an extrusion mold including a punch and a die, so that the magnet material is annular in cross section. When the magnetic material is extruded and magnetic anisotropy is imparted, the free surface at the rear end or the free surface at the front end of the magnet material that moves rearward or forward as it is extruded is compressed forward or rearward by pressing means. Extrusion is performed while applying a force and moving the free surface backward or forward in a state where a compressive force is applied.

ここで押出成形は、1トールより低圧の真空下又は不
活性ガス雰囲気下で650〜900℃の加熱下で行うことが望
ましい。
Here, the extrusion molding is desirably performed under vacuum at a pressure lower than 1 Torr or in an inert gas atmosphere under heating at 650 to 900 ° C.

また更に本発明においては、前記磁石素材表面に酸化
防止被膜を形成した後、大気中加熱下で押出成形するこ
ともできる。
Further, in the present invention, after forming the antioxidant film on the surface of the magnet material, it can be extruded under heating in the air.

本発明のR−Fe−B系磁石において、RはNdで代表さ
れるLa系の希土類元素であり、この磁石には少量のCo,D
y2O3,Ga等磁石特性を向上させるための物質や、Ni,Zn,P
b,Al等の耐食性,耐熱性,加工性を改善するための物質
を含有させることができる。
In the R-Fe-B-based magnet of the present invention, R is a La-based rare earth element represented by Nd, and a small amount of Co, D
y 2 O 3 , Ga and other substances for improving magnet properties, Ni, Zn, P
b, Al and other substances for improving corrosion resistance, heat resistance, and workability can be contained.

本発明の製造方法では、磁気的等方性の中実又は中空
素材を押出成形してスリーブ状ないしリング状等断面環
状に成形する。ここで磁石素材は、超急冷薄帯を粉砕し
た粉末を真空或いは不活性ガス雰囲気中で圧粉すること
により用意できる。この場合、理論密度比99%以上の中
実,中空形状の成形体を得ることができる。
In the manufacturing method of the present invention, a magnetically isotropic solid or hollow material is extruded and formed into a ring shape such as a sleeve shape or a ring shape. Here, the magnet material can be prepared by compacting the powder obtained by grinding the ultra-quenched ribbon in a vacuum or an inert gas atmosphere. In this case, a solid or hollow shaped body having a theoretical density ratio of 99% or more can be obtained.

上記押出成形方法としては後方押出成形,前方押出成
形の何れも可能である。これら成形加工において、上記
磁石素材はダイ,パンチ等成形型の成形表面に接触して
それらにより拘束を受けつつ塑性変形させられるが、一
部に成形型と非接触の自由表面が生ずる。例えば後方押
出成形では材料の流れ方向、即ち後方側の端面の一部が
自由表面となり、また前方押出成形では前方側の端面の
一部が自由表面となる。
As the extrusion molding method, any of rear extrusion molding and front extrusion molding is possible. In these forming processes, the above-mentioned magnet material is brought into contact with the forming surface of a forming die such as a die and a punch, and is plastically deformed while being restrained by the forming surface. For example, in backward extrusion, a part of the flow direction of the material, that is, a part of the rear end face is a free surface, and in front extrusion, a part of the front end face is a free surface.

そこで本発明では、これら自由表面に所定の加圧手段
を用いて圧縮力を付与し、そのような加圧条件の下で素
材を塑性変形させる。従って本発明では加圧手段とし
て、素材の上記自由表面を移動させつつ、同表面を加圧
し得るものを用いる必要がある。
Therefore, in the present invention, a compressive force is applied to these free surfaces using a predetermined pressurizing means, and the material is plastically deformed under such pressurizing conditions. Therefore, in the present invention, it is necessary to use, as the pressing means, a means capable of moving the free surface of the material and pressing the same surface.

而してこのように素材の自由表面を加圧しつつ押出成
形した場合、従来生じていた成形割れが効果的に回避さ
れ、磁気特性の高いスリーブ状,リング状等断面環状の
希土類異方性磁石が得られる。
When the free surface of the material is extruded while being pressurized in this way, the conventional forming cracks can be effectively avoided, and a sleeve-shaped or ring-shaped annular rare earth anisotropic magnet having high magnetic properties. Is obtained.

(実施例) 次に本発明の実施例を図面に基づいて詳しく説明す
る。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings.

先ず第2図及び第3図は、等方性の磁石素材を得る方
法を示している。このうち第2図は中実の円柱状の磁石
素材を、また第3図は中空円筒形状の磁石素材を得る方
法を示している。
First, FIGS. 2 and 3 show a method for obtaining an isotropic magnet material. 2 shows a method for obtaining a solid cylindrical magnet material, and FIG. 3 shows a method for obtaining a hollow cylindrical magnet material.

第2図において10はダイ,12は下パンチ(ノックアウ
トパンチ)で、14は上パンチである。
In FIG. 2, 10 is a die, 12 is a lower punch (knockout punch), and 14 is an upper punch.

本例に従って円柱状の中実磁石素材18を製造するに
は、先ず磁石粉末16をダイ10と下パンチ12とで形成され
た空隙に充填する。尚これら成形型は図示しない方法で
600〜900℃、望ましくは700〜800℃に予め加熱してお
く。またこれら全体を密閉槽内に保持し、その槽内雰囲
気を1トールより低い圧力の真空とするか、或いはアル
ゴンガス等の不活性ガスを充満させて酸化防止雰囲気と
しておく。
In order to manufacture the columnar solid magnet material 18 according to the present embodiment, first, the magnet powder 16 is filled into the gap formed by the die 10 and the lower punch 12. These molding dies are not shown
It is previously heated to 600 to 900 ° C, preferably 700 to 800 ° C. Further, the entirety of these is held in a closed tank, and the atmosphere in the tank is evacuated to a pressure lower than 1 Torr or filled with an inert gas such as an argon gas to provide an antioxidant atmosphere.

磁石粉末16を充填した後これを型内に1〜3分保持
し、型からの伝熱によって磁石粉末16を昇温させる。磁
石粉末16が所定温度になったら、次に上パンチ14を圧下
して磁石粉末16を圧縮する。この際の加圧圧力としては
0.5〜2トン/cm2、望ましくは1〜1.5トン/cm2を与え
る。これにより理論密度比99%以上の圧粉成形素材(円
柱状磁石素材)18を得る。
After filling the magnet powder 16, the magnet powder 16 is held in the mold for 1 to 3 minutes, and the temperature of the magnet powder 16 is increased by heat transfer from the mold. When the magnet powder 16 reaches a predetermined temperature, the upper punch 14 is pressed down to compress the magnet powder 16. The pressurizing pressure at this time is
It gives 0.5 to 2 ton / cm 2 , preferably 1 to 1.5 ton / cm 2 . As a result, a compacting material (columnar magnet material) 18 having a theoretical density ratio of 99% or more is obtained.

第3図において、厚肉の中空円筒状の磁石素材20を得
るには、ダイ10とセンターコア22との間の空隙内に磁石
粉末16を充填し、そして円筒形状の下パンチ24と上パン
チ26とにより、磁石粉末16を圧粉する。その後下パンチ
24を上昇させて円筒形状の磁石素材20を型より取り出
す。
In FIG. 3, to obtain a thick hollow cylindrical magnet material 20, a gap between the die 10 and the center core 22 is filled with the magnet powder 16, and a cylindrical lower punch 24 and an upper punch 24 are formed. 26, the magnet powder 16 is compacted. Then lower punch
24 is raised to take out the cylindrical magnet material 20 from the mold.

尚磁石粉末16に2%以下のステアリン酸リチウム等の
潤滑剤を混合しておいて、上記成形時に型との潤滑の向
上を図ることも可能である。
It is also possible to mix a lubricant such as lithium stearate of 2% or less in the magnet powder 16 to improve the lubrication with the mold at the time of the molding.

次に第2図の方法で得た円柱形状の磁石素材18を後方
押出しによってスリーブ状に成形する方法の例を第1図
に基づいて説明する。先ず、素材18をダイ11と下パンチ
13にて形成される空間にセットする。尚これら成形型は
図示しない方法で650〜900℃、望ましくは700〜850℃に
予め加熱しておく。またこれら全体を密閉槽内に保持
し、その槽内雰囲気を1トールより低い圧力の真空とす
るか、或いはアルゴンガス等の粉末活性ガスを充満させ
て酸化を防いでおく。
Next, an example of a method of forming the cylindrical magnet material 18 obtained by the method of FIG. 2 into a sleeve shape by backward extrusion will be described with reference to FIG. First, punch the material 18 with the die 11 and the lower punch.
Set in the space formed by 13. These molds are previously heated to 650 to 900 ° C, preferably 700 to 850 ° C by a method not shown. Further, the whole is held in a closed tank, and the atmosphere in the tank is evacuated to a pressure lower than 1 Torr or filled with a powdered active gas such as argon gas to prevent oxidation.

上記素材18は、別途高周波加熱等の方法で予め加熱し
てから型内にセットしても良いし、型内で型からの伝熱
によって加熱しても良い。
The material 18 may be heated in advance by a method such as high-frequency heating and then set in the mold, or may be heated in the mold by heat transfer from the mold.

素材18を所定温度に昇温した後、加圧手段としての円
筒状の加圧型28を圧下して素材18の上面30に圧縮力を与
える。その際の圧縮力としては圧力で0.2〜1トン/c
m2、望ましくは0.4〜0.6トン/cm2を与える。また加圧型
28に対する圧下力付与手段としては油圧シリンダ或いは
空圧シリンダ等を用いるのが良い。これらシリンダを用
いることにより、素材18の上面30の位置変化に応じて加
圧型28を自由に上下動させることができる。即ち素材18
の自由表面に一定の圧縮力を付与しつつ、素材18を塑性
変形させることができる。
After the temperature of the material 18 is raised to a predetermined temperature, a compressive force is applied to the upper surface 30 of the material 18 by pressing down a cylindrical pressing mold 28 as a pressing means. The compression force at that time is 0.2 to 1 ton / c in pressure
m 2 , preferably 0.4 to 0.6 ton / cm 2 . Also pressurized
It is preferable to use a hydraulic cylinder, a pneumatic cylinder, or the like as the means for applying the rolling force to 28. By using these cylinders, the pressing mold 28 can be freely moved up and down in accordance with a change in the position of the upper surface 30 of the material 18. That is, material 18
The material 18 can be plastically deformed while applying a constant compressive force to the free surface of the material 18.

次いで、押出しパンチ32を圧下して後方押出を行い、
素材18をスリーブ状の成形品34に成形する。この押出力
は、パンチ面圧力で2〜5トン/cm2、望ましくは2.5〜
3.5トン/cm2とする。
Next, the extrusion punch 32 is pressed down to perform backward extrusion,
The material 18 is formed into a sleeve-shaped molded product 34. The pushing force is 2 to 5 tons / cm 2 , preferably 2.5 to
3.5 tons / cm 2 .

このように、押出成形中上面30に一定の圧力を与える
ことによって、スリーブ状成形品34の内表面38或いは外
表面40に成形割れが生じるのを防ぐことができる。
As described above, by applying a constant pressure to the upper surface 30 during extrusion molding, it is possible to prevent the occurrence of molding cracks on the inner surface 38 or the outer surface 40 of the sleeve-shaped molded product 34.

押出成形終了後、下パンチ13を上昇させてスリーブ状
成形品34を型からノックアウトし、別途その底部42を切
断除去する。
After the completion of the extrusion, the lower punch 13 is raised to knock out the sleeve-shaped molded product 34 from the mold, and the bottom 42 is separately cut and removed.

以上は磁石素材18を酸化防止雰囲気中で成形する場合
の例であるが、磁石素材18の表面に予め酸化防止被膜を
施しておくことによって、これらの成形を大気中で実施
することもできる。この酸化防止被膜としては、ニッケ
ル等の耐酸化性のある金属をメッキしたものでも良い
し、或いは水ガラス等気密性のものを塗布後乾燥して被
膜としたものでも良い。
The above is an example of the case where the magnet material 18 is formed in an anti-oxidation atmosphere. However, by forming an anti-oxidation coating on the surface of the magnet material 18 in advance, these shaping can be performed in the atmosphere. The antioxidant film may be plated with an oxidation-resistant metal such as nickel, or may be an air-tight material such as water glass and dried after coating.

本発明においては、上記後方押出の他に前方押出成形
法を用いることもでき、この場合においても成形割れを
発生させることなくスリーブ状成形品34を成形できる。
この前方押出しによる成形例を第4図に基づいて説明す
る。
In the present invention, in addition to the above-mentioned backward extrusion, a forward extrusion molding method can also be used. In this case, the sleeve-like molded product 34 can be molded without generating molding cracks.
An example of molding by this front extrusion will be described with reference to FIG.

第4図において、44は下パンチ15にスライド可能に嵌
合した加圧型であって、ダイ11と下パンチ15にて形成さ
れる空間に円柱状の磁石素材18をセットし、そしてこの
加圧型44にて素材18の下面に所定の圧縮力を与える。こ
の状態で押出パンチ32を圧下させて素材18をスリーブ状
成形品46に成形する。このとき加圧型44を素材18の変形
とともに、押出パンチ32による前方押出方向、即ち図中
下方に後退移動させ、素材18に一定の圧縮力を付与し続
ける。これによりスリーブ状成形品46における内外周面
の割れの発生を防止できる。
In FIG. 4, reference numeral 44 denotes a pressurizing type which is slidably fitted to the lower punch 15, in which a cylindrical magnet material 18 is set in a space formed by the die 11 and the lower punch 15, and At 44, a predetermined compressive force is applied to the lower surface of the material 18. In this state, the extrusion punch 32 is lowered to form the material 18 into a sleeve-shaped molded product 46. At this time, as the material 18 is deformed, the pressing die 44 is moved backward in the forward extrusion direction by the extrusion punch 32, that is, in the downward direction in FIG. This can prevent the inner and outer peripheral surfaces of the sleeve-shaped molded product 46 from cracking.

ところで、かかるスリーブ状成形品46の成形におい
て、半径方向に十分な磁気異方性を生じさせるためには
押出減面率として40〜80%、望ましくは55〜65%が必要
である。従って薄肉のスリーブを得るためには、磁石素
材として第1図及び第4図に示すような円形状素材18を
使用すると、押出減面率が大きくなり過ぎる場合があ
る。
By the way, in forming such a sleeve-shaped molded product 46, in order to generate a sufficient magnetic anisotropy in the radial direction, the extrusion reduction area is required to be 40 to 80%, preferably 55 to 65%. Therefore, in order to obtain a thin sleeve, if a circular material 18 as shown in FIGS. 1 and 4 is used as the magnet material, the extrusion reduction area may become too large.

そこでこのような場合には、第3図の方法で得られる
厚肉円筒形状の素材20を用いて押出成形する。即ち第3
図の方法で厚肉円筒形状の素材20を得、これを第5図に
示すようにダイ11と下パンチ17で形成される空間にセッ
トし、そして加圧型45を下降させて素材上面30に一定の
圧縮力を与える。
Therefore, in such a case, extrusion molding is performed using the thick cylindrical material 20 obtained by the method shown in FIG. That is, the third
A thick cylindrical material 20 was obtained by the method shown in the figure, and this was set in the space formed by the die 11 and the lower punch 17 as shown in FIG. Gives constant compression force.

次に押出パンチ32を圧下して素材20をスリーブ状に後
方押出しする。このとき上面30には加圧型28により常時
圧縮力が与えられているため、成形品における割れの発
生が防止される。
Next, the extrusion punch 32 is pressed down to extrude the material 20 backward into a sleeve shape. At this time, since a compressive force is always applied to the upper surface 30 by the pressing mold 28, the occurrence of cracks in the molded product is prevented.

以上後方押出しの場合について記したが、円筒形状の
素材20を前方押出によっても同様のスリーブ状に成形で
きる。
Although the case of backward extrusion has been described above, the cylindrical material 20 can be formed into a similar sleeve shape by forward extrusion.

[実験例1] Ni13Fe82.74.3の組成の磁石合金を超急冷して得た
厚さ20μの薄帯を粉砕して、大きさ約200μのフレーク
状粉末を得た。
Experimental Example 1 A 20 μm-thick ribbon obtained by ultra-quench cooling a magnetic alloy having a composition of Ni 13 Fe 82.7 B 4.3 was pulverized to obtain a flake-like powder having a size of about 200 μm.

これを第2図に示した形式の成形型を用いて、アルゴ
ンガス雰囲気中,700℃,加圧圧力1トン/cm2の条件で加
圧圧粉し、直径30mm,高さ19mmの円柱状素材18を得た。
この素材18の理論密度比は99.6%であった。
Using a mold of the type shown in Fig. 2, pressurize and compact under argon gas atmosphere at 700 ° C and under a pressure of 1 ton / cm 2 to obtain a cylindrical material 30 mm in diameter and 19 mm in height. I got 18.
The theoretical density ratio of this material 18 was 99.6%.

この素材18を第1図に示す成形型を用い、加圧型28に
てその自由表面に種々大きさの圧縮応力を付与しつつ、
ダイ11とパンチ13,32とで後方押出ししてスリーブ状成
形品34を得、その内表面38に生じた成形割れの深さと上
面30に付与した圧縮応力との関係を調べた。結果を第6
図に示している。尚この場合スリーブ状成形品34の外径
は30mm,内径は23mmで、押出減面率は59%であった。ま
た加熱成形温度は750℃とし、これらはアルゴンガス雰
囲気中で処理した。
Using a molding die shown in FIG. 1 and applying various sizes of compressive stress to the free surface of the material 18 with a pressing die 28,
A sleeve-like molded product 34 was obtained by extruding backward with the die 11 and the punches 13 and 32, and the relationship between the depth of the molding crack generated on the inner surface 38 and the compressive stress applied to the upper surface 30 was examined. Result 6
It is shown in the figure. In this case, the outer diameter of the sleeve-shaped molded product 34 was 30 mm, the inner diameter was 23 mm, and the extrusion reduction area was 59%. The heat molding temperature was 750 ° C., and these were processed in an argon gas atmosphere.

図から明らかなように、圧縮応力を付与すると発生す
る割れの深さは著しく小さくなる。
As is clear from the figure, the depth of cracks generated when compressive stress is applied becomes extremely small.

一般に上記スリーブ状成形品34を磁石として使用する
場合には、その内・外表面は研削加工され、その際に深
さの浅い成形割れについては除去されるから、その割れ
深さが0.5mm以下、望ましくは0.2mm以下の浅いものであ
れば実用上障害とはならない。
In general, when the above-mentioned sleeve-shaped molded product 34 is used as a magnet, its inner and outer surfaces are ground and, at that time, formed cracks having a shallow depth are removed, so the crack depth is 0.5 mm or less. However, if the depth is preferably as small as 0.2 mm or less, it will not be a practical obstacle.

次にこのスリーブ状成形品34の底部を切断除去した後
これを半径方向に磁化して、その最大磁気エネルギー
(半径方向の)を測定したところ、34MGOeを得た。
Next, after cutting and removing the bottom of the sleeve-shaped molded product 34, it was magnetized in the radial direction, and its maximum magnetic energy (in the radial direction) was measured. As a result, 34MGOe was obtained.

[実験例2] 上記と同じフレーク状の粉末を用い、これを第3図に
示した形式の成形型を用いてアルゴンガス雰囲気中,750
℃,加圧圧力1.3トン/cm2の条件で加圧圧粉して、外形3
0mm,内径15mm,高さ20mmの円筒状素材20を得た。この素
材20の理論密度比99.3%であった。
[Experimental Example 2] The same flaky powder as above was used, and this was used in an argon gas atmosphere using a molding die of the type shown in FIG.
Compressed under pressure of 1.3 tons / cm 2 under the conditions of
A cylindrical material 20 having a diameter of 0 mm, an inner diameter of 15 mm, and a height of 20 mm was obtained. The theoretical density ratio of this material 20 was 99.3%.

この素材20の全表面に厚さ50μmのニッケルメッキを
施して耐酸化性被膜とした。
The entire surface of the material 20 was nickel-plated with a thickness of 50 μm to form an oxidation-resistant film.

この耐酸化性被覆を施した素材20を大気中高周波加熱
装置で800℃に加熱し、第5図に示した成形型を予め700
℃に加熱しておいて、大気中で後方押出し成形を行っ
た。この場合のスリーブ状成形品48の外径は30mmとし、
内径を変えて減面率を30〜80%に変化させた。また併せ
て素材20の上面30に加圧圧力0.8トン/cm2を与えた場合
と加圧なしの両方とについて実験を行った。尚押出しパ
ンチ32の圧力は3トン/cm2とした。
The material 20 provided with the oxidation-resistant coating was heated to 800 ° C. by a high-frequency heating device in the air, and the mold shown in FIG.
While being heated to ℃, backward extrusion was performed in the air. In this case, the outer diameter of the sleeve-shaped molded product 48 is 30 mm,
By changing the inner diameter, the area reduction rate was changed to 30 to 80%. In addition, experiments were conducted both when a pressure of 0.8 ton / cm 2 was applied to the upper surface 30 of the material 20 and when no pressure was applied. The pressure of the extrusion punch 32 was 3 tons / cm 2 .

この押出成形において、スリーブ状成形品の内表面に
生じた成形割れの深さを第7図に示した。
FIG. 7 shows the depth of molding cracks generated on the inner surface of the sleeve-shaped molded product in this extrusion molding.

この図から、上面30に圧縮応力を付与すると割れ防止
に著しく効果があることが分る。
From this figure, it can be seen that applying a compressive stress to the upper surface 30 is extremely effective in preventing cracking.

更に上記スリーブ状成形品48の底部を切断除去して外
面,内面を研削仕上げした後、これを半径方向に磁化し
て、その半径方向の最大磁気エネルギー積を測定した結
果を第8図に示した。
FIG. 8 shows the result of measuring the maximum magnetic energy product in the radial direction after cutting the bottom of the sleeve-shaped molded product 48 to remove the bottom and grinding the outer and inner surfaces, and magnetizing the outer surface and the inner surface in the radial direction. Was.

この図によると、減面率40%以上で30MGOeを超えて著
しく高特性が得られている。
According to this figure, remarkably high characteristics are obtained at a surface reduction rate of 40% or more and over 30 MGOe.

以上本発明の実施例を詳述したが、本発明はその主旨
を逸脱しない範囲において、当業者の知識に基づき、種
々変更を加えた態様において実施可能である。
Although the embodiments of the present invention have been described in detail, the present invention can be implemented in variously modified modes based on the knowledge of those skilled in the art without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例である希土類異方性磁石の製
造方法の説明図であり、第2図及び第3図は夫々磁石素
材の成形方法の説明図である。第4図及び第5図は本発
明の他の実施例の説明図であり、第6図は第1図の方法
に従って行った実験の結果得られた圧縮応力と割れ深さ
との関係を示す図である。第7図及び第8図は夫々第5
図の方法に従って行った実験の結果得られた押出減面率
と割れ深さとの関係を示す図及び押出減面率と最大磁気
エネルギー積との関係を示す図である。 10,11:ダイ 13,15,17,32:パンチ 18,20:素材 28,45:加圧型 34,46,48:成形品
FIG. 1 is an explanatory view of a method of manufacturing a rare earth anisotropic magnet according to one embodiment of the present invention, and FIGS. 2 and 3 are explanatory views of a method of forming a magnet material, respectively. 4 and 5 are explanatory views of another embodiment of the present invention, and FIG. 6 is a view showing the relationship between compressive stress and crack depth obtained as a result of an experiment conducted according to the method of FIG. It is. FIG. 7 and FIG.
FIG. 3 is a diagram showing the relationship between the extrusion reduction area and the crack depth obtained as a result of an experiment conducted in accordance with the method shown in the figure, and the diagram showing the relationship between the extrusion reduction area and the maximum magnetic energy product. 10,11: Die 13,15,17,32: Punch 18,20: Material 28,45: Pressure type 34,46,48: Molded product

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木南 俊哉 愛知県東海市加木屋町南鹿持18 知多寮 (56)参考文献 特開 平1−169910(JP,A) 特開 昭58−206105(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 41/02 B22F 3/00,3/20 C22C 33/02────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiya Kinami 18 Chita Ryo, Minamikamochi, Kagiya-cho, Tokai City, Aichi Prefecture (56) References JP-A-1-169910 (JP, A) JP-A-58-206105 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01F 41/02 B22F 3/00, 3/20 C22C 33/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パンチとダイとを含む押出成形型を用いて
磁気的等方性の中実又は中空磁石素材を後方又は前方押
出しすることにより該磁石素材を断面環状に押出成形す
るとともに磁気的異方性を付与するに際して、 押出しにつれて後方又は前方に移動する前記磁石素材の
後方端の自由表面又は前方端の自由表面に対して加圧手
段により前方又は後方に圧縮力を付与し、該自由表面を
圧縮力付与状態で後方又は前方に移動させつつ押出成形
を行うことを特徴とする希土類異方性磁石の製造方法。
1. A magnetic or isotropic solid or hollow magnet material is extruded rearward or forward by using an extrusion mold including a punch and a die, thereby extruding the magnet material into an annular cross section and magnetically extruding the magnetic material. When imparting anisotropy, compressive force is applied to the free surface at the rear end or the free surface at the front end of the magnet material that moves rearward or forward as it is extruded by pressing means forward or rearward, and A method for producing a rare-earth anisotropic magnet, wherein extrusion molding is performed while moving the surface backward or forward while applying a compressive force.
【請求項2】前記押出成形を、1トールより低圧の真空
下又は不活性ガス雰囲気下で650〜900℃の加熱下で行う
ことを特徴とする請求項(1)に記載の希土類異方性磁
石の製造方法。
2. The rare-earth anisotropic material according to claim 1, wherein said extrusion molding is carried out under vacuum at a pressure lower than 1 Torr or in an inert gas atmosphere under heating at 650 to 900 ° C. Manufacturing method of magnet.
【請求項3】前記磁石素材表面に酸化防止皮膜を形成し
た後、大気中加熱下で押出成形することを特徴とする請
求項(1)又は(2)に記載の希土類異方性磁石の製造
方法。
3. The production of a rare earth anisotropic magnet according to claim 1, wherein after forming an antioxidant film on the surface of the magnet material, the magnet is extruded under heating in the air. Method.
JP1095600A 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet Expired - Lifetime JP2800249B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1095600A JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet
AT90303835T ATE95627T1 (en) 1989-04-14 1990-04-10 METHOD AND APPARATUS FOR THE MANUFACTURE OF AN ANISOTROPIC RARE EARTH MAGNET.
DE69003720T DE69003720T3 (en) 1989-04-14 1990-04-10 Method and device for manufacturing an anisotropic rare earth magnet.
EP90303835A EP0392799B2 (en) 1989-04-14 1990-04-10 Method and apparatus for producing anisotropic rare earth magnet
US07/507,438 US4963320A (en) 1989-04-14 1990-04-11 Method and apparatus for producing anisotropic rare earth magnet
US08/042,772 US5342574A (en) 1989-04-14 1993-04-06 Method for producing anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095600A JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH02272712A JPH02272712A (en) 1990-11-07
JP2800249B2 true JP2800249B2 (en) 1998-09-21

Family

ID=14142049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095600A Expired - Lifetime JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet

Country Status (1)

Country Link
JP (1) JP2800249B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169910A (en) * 1987-12-24 1989-07-05 Hitachi Metals Ltd Manufacture of anisotropical nd-fe-b base magnet

Also Published As

Publication number Publication date
JPH02272712A (en) 1990-11-07

Similar Documents

Publication Publication Date Title
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JP3554604B2 (en) Compact molding method and rubber mold used in the method
JPH01290714A (en) Die upset production process for producing major rolume portion of magnetically ordered rare earth-iron-boron material
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
JPH09129465A (en) Manufacture of nd-fe-b magnet
JP2870883B2 (en) Method for producing radially anisotropic NdFeB magnet
US5516371A (en) Method of manufacturing magnets
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2643267B2 (en) Method for producing R-Fe-B anisotropic magnet
EP0565363B1 (en) Method for producing anisotropic rare earth magnet
JP2811708B2 (en) Rare earth-iron permanent magnet manufacturing method and mold used for it
CN216028073U (en) High pressure resistant powder compacting die
JP2583113B2 (en) Rare earth magnet manufacturing method
JP2689445B2 (en) Rare earth magnet manufacturing method
JPH03290906A (en) Warm-worked magnet and its manufacture
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
JP2791616B2 (en) Manufacturing method of ring-shaped magnet material
JP2001044055A (en) Manufacture of rare earth sintered magnet, and the rare earth sintered magnet
JPH108102A (en) Press compact method for magnetic alloy powder
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
KR19980043534A (en) Anisotropic Permanent Magnet Manufacturing Method
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
JPH0826364B2 (en) Extrusion molding method of rapidly solidified metal powder
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11