JPH02272712A - Manufacture of rare earth anisotropic magnet - Google Patents

Manufacture of rare earth anisotropic magnet

Info

Publication number
JPH02272712A
JPH02272712A JP9560089A JP9560089A JPH02272712A JP H02272712 A JPH02272712 A JP H02272712A JP 9560089 A JP9560089 A JP 9560089A JP 9560089 A JP9560089 A JP 9560089A JP H02272712 A JPH02272712 A JP H02272712A
Authority
JP
Japan
Prior art keywords
magnet
mold
powder
molding
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9560089A
Other languages
Japanese (ja)
Other versions
JP2800249B2 (en
Inventor
Teruo Watanabe
渡辺 輝夫
Makoto Saito
誠 斉藤
Shinichiro Yahagi
慎一郎 矢萩
Norio Yoshikawa
紀夫 吉川
Yutaka Yoshida
裕 吉田
Toshiya Kinami
俊哉 木南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1095600A priority Critical patent/JP2800249B2/en
Priority to EP90303835A priority patent/EP0392799B2/en
Priority to DE69003720T priority patent/DE69003720T3/en
Priority to AT90303835T priority patent/ATE95627T1/en
Priority to US07/507,438 priority patent/US4963320A/en
Publication of JPH02272712A publication Critical patent/JPH02272712A/en
Priority to US08/042,772 priority patent/US5342574A/en
Application granted granted Critical
Publication of JP2800249B2 publication Critical patent/JP2800249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To prevent cracks in molding and to elevate magnetic anisotropy by extruding magnetic isotropic stuffed or hollow magnet material while giving compressing force to the free face which does not contact with an extrusion mold. CONSTITUTION:To manufacture a columnar stuffed magnet material 16, first magnet powder 16 is filled in the space formed by a die 10 and a lower punch 12. These molds are heated to 600-900 deg.C in advance. These whole are held in a sealed bath, and inside of the bath is exhausted or filled with inert gas so as to put it in oxidation preventive atmosphere. The magnetic power 16 is maintained in the mold for one to three minutes after charge, thus the temperature of the powder 16 rises to the specified temperature by the heat transmitted from the mold, and then an upper punch 14 is screwed down so as to compress the powder 16. Hereby, compressing molding material (columnar magnet material) 18 can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は希土類磁石の製造方法に係り、詳しくはNd
−F@−B系磁石で代表されるR −Fe −B系(R
はLa系の希土類元素)永久磁石の製造方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing rare earth magnets, and in detail, Nd
R -Fe -B system (R
relates to a method of manufacturing a permanent magnet (La-based rare earth element).

(従来の技術及び発IJ+が解決しようとする課題)R
−Fe −B系永久磁石には、(イ)母材合金を溶融し
、型に鋳込んで鋳塊とし、これを粉砕して極微細粉とし
、この粉末を磁場中金型を用いて成形圧粉し、焼結して
異方性磁石とした焼結磁石と、(a) jlJ材合金合
金湯をa急冷して薄帯とし、その粗粉砕粉末を温度的7
00℃でホットプレスして等方磁性の素材とし、その素
材を900℃以下の温度で減面率40%以上の塑性変形
加工を施して異方化した超急冷磁石とがある。
(Conventional technology and issues to be solved by IJ+)R
-Fe-B permanent magnets are produced by (a) melting the base alloy, casting it into a mold to form an ingot, pulverizing it into ultrafine powder, and molding this powder using a mold in a magnetic field. A sintered magnet that is compacted and sintered to make an anisotropic magnet;
There is an ultra-quenched magnet in which an isotropic magnetic material is obtained by hot pressing at 00°C, and then plastically deformed with an area reduction of 40% or more at a temperature of 900°C or less to make it anisotropic.

これらの高磁気特性磁石は、特にOA 、FA用の小型
モータに適用できれば、モータの小型化。
If these magnets with high magnetic properties can be applied to small motors, especially for OA and FA, they will help miniaturize the motors.

軽量化を図る上で極めて有用であるにも拘らず、現時点
では実用化技術上の問題があって、モータへの適用が十
分になされていないのが実情である。
Although it is extremely useful for reducing weight, the reality is that it has not been fully applied to motors due to technical problems in practical application.

上記希土類磁石をこれらのモータに適用するには、半径
方向に磁気異方化した薄肉のスリープ状ないしリング状
磁石とするのが最も望ましいが。
In order to apply the rare earth magnet to these motors, it is most desirable to use a thin sleep-shaped or ring-shaped magnet with magnetic anisotropy in the radial direction.

上記焼結磁石では、粉末を磁場中で成形する際に半径方
向の磁場を付与するのが難しく、そのため異方化の程度
は板状磁石の場合に比べて50〜60%と低く、磁石性
能が低下してしまう問題がある。
In the above sintered magnet, it is difficult to apply a radial magnetic field when compacting the powder in a magnetic field, so the degree of anisotropy is 50 to 60% lower than that of plate magnets, and the magnet performance is There is a problem that the value decreases.

他方後者の超急冷磁石では、磁場中での成形を必要とせ
ず、′gJ性変形によって異方化を行うため、上記スリ
ープ状ないしリング状磁石にあってもその異方化は最大
限になし得るものの、この希土類磁石材料は極めて脆性
であるため、押出成形で素材をスリーブ状、リング状に
成形する場合に大きな成形割れを生じてしまう。
On the other hand, the latter type of super-quenched magnet does not require forming in a magnetic field, and anisotropy is achieved by 'gJ deformation, so the anisotropy is minimized even in the sleep-shaped or ring-shaped magnets mentioned above. However, since this rare earth magnet material is extremely brittle, large mold cracks occur when the material is extruded into a sleeve or ring shape.

(課題を解決するための手段) 本発明は上記超急冷磁石において、これをスリープ状な
いしリング状の断面環状に成形するに際して成形割れを
防止し、高い磁気異方性の磁石を得ることを目的として
なされたものであって、その要旨は、磁気的等方性の中
実又は中空磁石素材に押出成形加工を施してこれを断面
環状に成形するに際して、該磁石素材の押出成形型と接
触しない自由表面に圧縮力を付与しっつ押出成形するこ
とにある。
(Means for Solving the Problems) An object of the present invention is to prevent molding cracks when molding the ultra-quenched magnet into a sleep-shaped or ring-shaped cross-sectional shape, and to obtain a magnet with high magnetic anisotropy. The gist of this is that when extruding a magnetically isotropic solid or hollow magnet material to form it into an annular cross-section, there is no contact with the extrusion mold of the magnet material. The purpose is to apply compressive force to the free surface and perform extrusion molding.

ここて押出成形は、1トールより低圧の真空下又は不活
性ガス雰囲気下で650〜900℃の加熱下で行うこと
か望ましい。
Here, extrusion molding is desirably carried out under vacuum at a pressure lower than 1 Torr or under heating at 650 to 900°C under an inert gas atmosphere.

また更に本発明においては、前記磁石素材表面に酸化防
止被膜を形成した後、大気中加熱下で押出成形すること
もできる。
Furthermore, in the present invention, after forming an antioxidant coating on the surface of the magnet material, extrusion molding can be carried out under heating in the atmosphere.

本発明のR−Fe −B系磁石において、RはNdで代
表されるLa系の希土類元素てあり、この磁石には少量
のGoo DyJ:+ 、 Ga等磁石特性を向上させ
るための物質や、 Ni、 Zn、 Pb、 AI等の
耐食性、耐熱性、加工性を改善するための物質を含有さ
せることかできる。
In the R-Fe-B magnet of the present invention, R is a La-based rare earth element represented by Nd, and this magnet contains a small amount of Goo DyJ:+, Ga, or other substances for improving magnetic properties. Substances such as Ni, Zn, Pb, and AI for improving corrosion resistance, heat resistance, and processability can be included.

′本発明の製造方法では、磁気的等方性の中実又は中空
素材を押出成形してスリープ状ないしリング状等断面環
状に成形する。ここて磁石素材は、超急冷薄帯を粉砕し
た粉末を真空或いは不活性ガス雰囲気中で圧粉すること
により用意できる。この場合、理論密度比99%以上の
中実、中空形状の成形体を得ることができる。
'In the manufacturing method of the present invention, a magnetically isotropic solid or hollow material is extruded and formed into a sleep-like or ring-like shape with a uniform cross section. The magnet material can be prepared by crushing a powder obtained by pulverizing an ultra-quenched ribbon in a vacuum or an inert gas atmosphere. In this case, it is possible to obtain a solid, hollow molded body having a theoretical density ratio of 99% or higher.

上記押出成形方法としては後方押出成形、前方押出成形
の何れも可能である。これら成形加工において、上記磁
石素材はダイ、パンチ等成形型の成形表面に接触してそ
れらにより拘束を受けつつ塑性変形させられるが、一部
に成形型と非接触の自由表面が生ずる0例えば後方押出
成形では材料の流れ方向、即ち後方側の端面の一部が自
由表面となり、また前方押出成形では前方側の端面の一
部が自由表面となる。
As the above extrusion molding method, either backward extrusion molding or forward extrusion molding is possible. In these forming processes, the magnet material comes into contact with the forming surface of a mold such as a die or punch and is plastically deformed while being constrained by them. In extrusion molding, a part of the end face in the flow direction of the material, that is, on the rear side, becomes a free surface, and in forward extrusion molding, a part of the end face on the front side becomes a free surface.

そこで未発1月では、これら自由表面に所定の加圧手段
を用いて圧縮力を付与し、そのような加圧条件の下で素
材を塑性変形させる。従って本発明では加圧手段として
、素材の上記自由表面を移動させつつ、同表面を加圧し
得るものを用いる必要がある。
Therefore, in the case of undeveloped January, compressive force is applied to these free surfaces using a predetermined pressurizing means, and the material is plastically deformed under such pressurizing conditions. Therefore, in the present invention, it is necessary to use a pressurizing means that can press the free surface of the material while moving it.

而してこのように素材の自由表面を加圧しつつ押出成形
した場合、従来生じていた成形割れが効果的に回避され
、磁気特性の高いスリーブ状、リング状等断面環状の希
土類異方性磁石が得られる。
In this way, when the free surface of the material is extruded while being pressurized, the molding cracks that conventionally occur can be effectively avoided, and rare earth anisotropic magnets with an annular cross section of a sleeve shape or a ring shape with high magnetic properties can be produced. is obtained.

(実施例) 次に本発明の実施例を図面に基づいて詳しく説明する。(Example) Next, embodiments of the present invention will be described in detail based on the drawings.

先ず第2図及び第3図は、等方性の磁石素材を得る方法
を示している。このうち第2図は中実の円柱状の磁石素
材を、また第3図は中空円筒形状の磁石素材を得る方法
を示している。
First, FIGS. 2 and 3 show a method for obtaining an isotropic magnetic material. 2 shows a method for obtaining a solid cylindrical magnet material, and FIG. 3 shows a method for obtaining a hollow cylindrical magnet material.

第2図において10はダイ、12は下パンチ(ノックア
ウトパンチ)て、14は上バンチである。
In FIG. 2, 10 is a die, 12 is a lower punch (knockout punch), and 14 is an upper bunch.

本例に従って円柱状の中実磁石素材18を製造するには
、先ず磁石粉末16をダイ10と下パンチ12とで形成
された空隙に充填する。尚これら成形型は図示しない方
法で600〜900℃、望ましくは700〜800℃に
予め加熱しておく。
In order to manufacture the cylindrical solid magnet material 18 according to this example, the gap formed by the die 10 and the lower punch 12 is first filled with magnet powder 16 . Note that these molds are preheated to 600 to 900°C, preferably 700 to 800°C, by a method not shown.

またこれら全体を密閉槽内に保持し、その槽内雰囲気を
lトールより低い圧力の真空とするか、或いはアルゴン
ガス等の不活性ガスを充満させて酸化防止雰囲気として
おく。
The whole is kept in a closed tank, and the atmosphere inside the tank is kept in a vacuum with a pressure lower than 1 Torr, or it is filled with an inert gas such as argon gas to create an oxidation-preventing atmosphere.

磁石粉末16を充填した後これを型内に1〜3分保持し
、型からの伝熱によって磁石粉末16を昇温させる。磁
石粉末16か所定温度になったら、次に上バンチ14を
圧下して磁石粉末16を圧縮する。この際の加圧圧力と
しては0.5〜2)−ン/ cm”、望ましくは1〜1
.5)−ン/cm2を与える。これにより理論密度比9
9%以上の圧粉成形素材(円柱状磁石素材)18を得る
After filling the magnet powder 16, it is held in the mold for 1 to 3 minutes, and the temperature of the magnet powder 16 is raised by heat transfer from the mold. When the magnet powder 16 reaches a predetermined temperature, the upper bunch 14 is then lowered to compress the magnet powder 16. The pressurizing pressure at this time is 0.5 to 2)-cm/cm, preferably 1 to 1
.. 5) Give -ton/cm2. This results in a theoretical density ratio of 9
A powder compacting material (cylindrical magnet material) 18 having a content of 9% or more is obtained.

第3図において、厚肉の中空円筒状の磁石素材20を得
るには、ダイ10とセンターコア22との間の空隙内に
磁石粉末16を充填し、そして円筒形状の下バンチ24
と上パンチ26とにより、磁石粉末16を圧粉する。そ
の後下バンチ24を上昇させて円筒形状の磁石素材20
を型より取り出す。
In FIG. 3, in order to obtain a thick hollow cylindrical magnet material 20, the gap between the die 10 and the center core 22 is filled with magnet powder 16, and the cylindrical lower bunch 24 is filled with magnet powder 16.
The magnet powder 16 is compacted by the upper punch 26 and the upper punch 26 . After that, the lower bunch 24 is raised to form a cylindrical magnet material 20.
Remove from the mold.

尚磁石粉末16に2%以下のステアリン酸リチウム等の
潤滑剤を混合しておいて、上記成形時に型との潤滑の向
上を図ることも可能である。
It is also possible to mix 2% or less of a lubricant such as lithium stearate into the magnet powder 16 to improve lubrication with the mold during the above-mentioned molding.

次に第2図の方法で得た円柱形状の磁石素材18を後方
押出しによってスリーブ状に成形する方法の例をfJI
J1図に基づいて説明する。先ず、素材18をダイニー
と下バンチ13にて形成される空間にセットする。尚こ
れら成形型は図示しない方法で650〜900℃、望ま
しくは700〜850℃に予め加熱しておく。またこれ
ら全体を密閉槽内に保持し、その槽内雰囲気を1トール
より低い圧力の真空とするか、或いはアルゴンガス等の
粉末活性ガスを充満させて酸化を防いでおく 上記素材18は、別途高周波加熱等の方法で予め加熱し
てから型内にセットしても良いし、型内で型からの伝熱
によフて加熱しても良い。
Next, an example of a method for forming the cylindrical magnet material 18 obtained by the method shown in FIG.
This will be explained based on diagram J1. First, the material 18 is set in the space formed by the diene and the lower bunch 13. Note that these molds are preheated to 650 to 900°C, preferably 700 to 850°C, by a method not shown. In addition, the above-mentioned material 18, which is kept as a whole in a closed tank and the atmosphere inside the tank is kept under a vacuum with a pressure lower than 1 Torr, or is filled with powdered active gas such as argon gas to prevent oxidation, is prepared separately. It may be heated in advance by a method such as high frequency heating and then set in the mold, or it may be heated within the mold by heat transfer from the mold.

素材18を所定温度に昇温した後、円筒状の加圧型28
を圧下して素材18の、l:面30に圧縮力を与える。
After heating the material 18 to a predetermined temperature, a cylindrical pressure mold 28
is rolled down to apply compressive force to the l: face 30 of the material 18.

その際の圧縮力としては圧力で0.2〜1トン/Cl1
12、望ましくは0.4〜0.6トン/c112を与え
る。また加圧型28に対する圧下力付与手段としては油
圧シリンダ或いは空圧シリンダ等を用いるのか良い、こ
れらシリンダを用いることにより、素材18の上面30
の位置変化に応して加圧型28を自由に上下動させるこ
とができる。即ち素材18の自由表面に一定の圧縮力を
付与しつつ、素材18を塑性変形させることができる。
The compression force at that time is 0.2 to 1 ton/Cl1 in terms of pressure.
12, preferably 0.4 to 0.6 tons/c112. Further, as a means for applying a downward force to the pressurizing die 28, a hydraulic cylinder or a pneumatic cylinder may be used. By using these cylinders, the upper surface 30 of the material 18 can be
The pressure mold 28 can be freely moved up and down in accordance with the change in position. That is, the material 18 can be plastically deformed while applying a constant compressive force to the free surface of the material 18.

次いで、押出しパンチ32を圧下して後方押出を行い、
素材18をスリーブ状の成形品34に成形する。この押
出力は、パンチ面圧力で2〜5トン/ cm2.望まし
くは2.5〜3.5)−ン/ c+s”とする。
Next, the extrusion punch 32 is pressed down to perform backward extrusion,
The raw material 18 is molded into a sleeve-shaped molded product 34. This extrusion force is 2 to 5 tons/cm2. with punch surface pressure. It is preferably 2.5 to 3.5)-n/c+s.

このように、押出成形中−E面30に一定の圧力を与え
ることによって、スリーブ状成形品34の内表面38或
いは外表面401.:成形割れか生じるのを防ぐことが
できる。
In this manner, by applying a constant pressure to the E surface 30 during extrusion, the inner surface 38 or the outer surface 401 of the sleeve-shaped molded product 34 is heated. : Can prevent molding cracks from occurring.

押出成形終了後、下バンチ13を上昇させてスリーブ状
成形品34を型からノックアウトし、別途その底部42
を切断除去する。
After the extrusion molding is completed, the lower bunch 13 is raised to knock out the sleeve-shaped molded product 34 from the mold, and the bottom part 42 is separately removed.
Cut and remove.

以上は磁石素材18を酸化防止雰囲気中で成形する場合
の例であるが、磁石素材18の表面に予め酸化防止液1
1りを施しておくことによって、これらの成形を大気中
で実施することもてきる。この耐化防止被膜としては、
ニッケル等の耐酸化性のある金属をメツキしたものても
良いし、或いは水ガラス等気密性のものを塗布後乾燥し
て被膜としだものても良い。
The above is an example of molding the magnet material 18 in an oxidation-preventing atmosphere.
These moldings can also be carried out in the atmosphere by providing the following conditions. As this anti-oxidation coating,
It may be plated with an oxidation-resistant metal such as nickel, or it may be coated with an airtight material such as water glass and then dried to form a coating.

本発明においては、上記後方押出の他に前方押出成形法
を用いることもてき、この場合においても成形割れを発
生させることなくスリーブ状成形品34を成形てきる。
In the present invention, a forward extrusion molding method may be used in addition to the above-mentioned backward extrusion, and even in this case, the sleeve-shaped molded product 34 can be molded without causing molding cracks.

この前方押出しによる成形例を第4図に基づいて説明す
る。
An example of molding by this forward extrusion will be explained based on FIG. 4.

第4図において、44は下バンチ15にスライド可能に
嵌合した加圧型であって、ダイ11と下パンチ15にて
形成される空間に円柱状の磁石素材18をセットし、そ
してこの加圧型44にて素材18の下面に所定の圧縮力
を与える。この状態て上バンチ32を圧下させて素材1
8をスリーブ状成形品46に成形する。このとき加圧型
44を素材18の変形とともに、上バンチ32による前
方押出方向、即ち図中下方に後退移動させ、素材18に
一定の圧縮力を付与し続ける。これによりスリーブ状成
形品46における内外周面の割れめ発生を防止できる。
In FIG. 4, reference numeral 44 denotes a pressure mold that is slidably fitted into the lower bunch 15. A cylindrical magnet material 18 is set in the space formed by the die 11 and the lower punch 15, and this pressure mold At 44, a predetermined compressive force is applied to the lower surface of the material 18. In this state, lower the upper bunch 32 and press the material 1.
8 is molded into a sleeve-shaped molded product 46. At this time, the pressing mold 44 is moved backward in the forward extrusion direction by the upper bunch 32, that is, downward in the figure, as the material 18 is deformed, and a constant compressive force is continued to be applied to the material 18. This can prevent the occurrence of cracks on the inner and outer circumferential surfaces of the sleeve-shaped molded product 46.

ところで、かかるスリーブ状成形品46の成形において
、半径方向に十分な磁気異方性を生じさせるためには押
出減面率として40〜80%、望ましくは55〜65%
が必要である。従って薄肉のスリーブを得るためには、
磁石素材として第1図及び第4図に示すような円形状素
材18を使用すると、押出減面率が大きくなり過ぎる場
合かある。
By the way, in order to produce sufficient magnetic anisotropy in the radial direction in molding the sleeve-shaped molded product 46, the extrusion area reduction rate should be 40 to 80%, preferably 55 to 65%.
is necessary. Therefore, in order to obtain a thin sleeve,
If a circular material 18 as shown in FIGS. 1 and 4 is used as the magnet material, the extrusion reduction rate may become too large.

そこでこのような場合には、第3図の方法て得られる厚
内円筒形状の素材20を用いて押出成形する。即ち第3
図の方法て厚肉円筒形状の素材20を得、これを第5図
に示すようにタイ11と下パンチ17で形成される空間
にセットし、そして加圧型45を下降させて素材上面3
0に一定の圧縮力を与える。
Therefore, in such a case, extrusion molding is performed using a thick cylindrical material 20 obtained by the method shown in FIG. That is, the third
A thick cylindrical material 20 is obtained by the method shown in the figure, and this is set in the space formed by the tie 11 and the lower punch 17 as shown in FIG.
Apply a constant compressive force to 0.

次に押出パンチ32を圧下して素材20をスリーブ状に
後方押出しする。このとき上面30には加圧型28によ
り常時圧縮力か与えられているため、成形品における割
れの発生が防止される。
Next, the extrusion punch 32 is pressed down to extrude the material 20 backward into a sleeve shape. At this time, since compressive force is constantly applied to the upper surface 30 by the pressurizing die 28, the occurrence of cracks in the molded product is prevented.

以上後方押出しの場合について記したか1円筒形状の素
材20を前方押出によっても同様のスリーブ状に成形で
きる。
The cylindrical material 20 described above using backward extrusion can also be formed into a similar sleeve shape by forward extrusion.

[実験例1] Ni+3Fe’a2. tB 4.2の組成の磁石合金
を超急冷して得た厚さ20ルの薄帯を粉砕して、大きさ
約20(MLのフレーク状粉末を得た。
[Experimental Example 1] Ni+3Fe'a2. A ribbon having a thickness of 20 L obtained by ultra-quenching a magnetic alloy having a composition of tB 4.2 was crushed to obtain a flake-like powder with a size of about 20 (ML).

これを第2図に示した形式の成形型を用いて、アルゴン
ガス雰囲気中、700°C9加圧圧力1トン/ c+i
”の条件て加圧圧粉し、直径3011I11.高さ19
m11の円柱状素材18を得た。この素材18の理論密
度比は99.6%であった。
Using a mold of the type shown in Figure 2, this was heated at 700°C9 at a pressure of 1 ton/c+i in an argon gas atmosphere.
"Diameter: 3011I11.Height: 19"
A cylindrical material 18 of m11 was obtained. The theoretical density ratio of this material 18 was 99.6%.

この素材18を第1図に示す成形型を用い、加圧型28
にてその自由表面に種々大きさの圧縮応力を付与しつつ
、タイ11とパンチ13.32とて後方押出ししてスリ
ーブ状成形品34を得、その内表面38に生じた成形割
れの深さと上面30に付与した圧縮応力との関係を調べ
た。結果を第6図に示している。尚この場合スリーブ状
成形品34の外形は30mm、内径は23mmで、押出
減面率は59%てあった。また加熱成形温度は750°
Cとし、これらはアルゴンガス雰囲気中で処理した。
This material 18 is molded into a pressure mold 28 using a mold shown in FIG.
While applying compressive stress of various magnitudes to the free surface, the sleeve-shaped molded product 34 was obtained by extruding it backward using the tie 11 and punches 13 and 32, and the depth of the molding crack that occurred on the inner surface 38 and The relationship with the compressive stress applied to the upper surface 30 was investigated. The results are shown in Figure 6. In this case, the sleeve-shaped molded product 34 had an outer diameter of 30 mm, an inner diameter of 23 mm, and an extrusion area reduction rate of 59%. Also, the heating molding temperature is 750°
C, and these were treated in an argon gas atmosphere.

図から明らかなように、圧縮応力を付与すると発生ずる
割れの深さは著しく小さくなる。
As is clear from the figure, when compressive stress is applied, the depth of the shear cracks that occur becomes significantly smaller.

一般に上記スリーブ状成形品34を磁石として使用する
場合には、その内・外表面は研削加工され、その際に深
さの浅い成形割れについては除去されるから、その割れ
深さか0.5mm以下、望ましくは0.2mm以下の浅
いものてあれば実用上障害とはならない。
Generally, when the sleeve-shaped molded product 34 is used as a magnet, its inner and outer surfaces are ground, and shallow molding cracks are removed at that time, so the crack depth is 0.5 mm or less. If it is shallow, preferably 0.2 mm or less, it will not pose a practical problem.

次にこのスリーブ状成形品34の底部を切断除去した後
これを半径方向に磁化して、その最大磁気エネルギー(
半径方向の)を1111定したところ、34 MGOe
を得た。
Next, after cutting and removing the bottom part of this sleeve-shaped molded product 34, it is magnetized in the radial direction, and its maximum magnetic energy (
) in the radial direction was set to 1111, 34 MGOe
I got it.

[実験例2] 上記と同じフレーク状の粉末を用い、これを第3図に示
した形式の成形型を用いてアルゴンガス雰囲気中、75
0℃、加圧圧力1.3トン/cII+2の条件て加圧圧
粉して、外形30ma+、内径15mm、高さ20mm
の円筒状素材20を得た。この素材20の理論密度比9
9.3%てあった。
[Experimental Example 2] Using the same flaky powder as above, it was heated for 75 minutes in an argon gas atmosphere using a mold of the type shown in Figure 3.
Pressed into powder under the conditions of 0°C and pressure of 1.3 tons/cII+2, resulting in an outer diameter of 30 ma+, an inner diameter of 15 mm, and a height of 20 mm.
A cylindrical material 20 was obtained. Theoretical density ratio of this material 20 is 9
It was 9.3%.

この素材20の全表面に厚さ50ルmのニッケルメッキ
を施して耐醇化性被膜とした。
The entire surface of this material 20 was plated with nickel to a thickness of 50 lumens to form an anti-corrosion coating.

この耐酸化性被覆を施した素材20を大気中高周波加熱
装置で800°Cに加熱し、第5図に示した成形型を予
め700°Cに加熱しておいて、大気中で後方押出し成
形を行った。この場合のスリーブ状成形品48の外径は
30mmとし、内径を変えて減面率を30〜80%に変
化させた。また併せて素材20の上面30に加圧圧力0
.8トン/c[l′を与えた場合と加圧なしの両方とに
ついて実験を行った。尚押出しパンチ32の圧力は3ト
ン/C12とした。
The material 20 coated with this oxidation-resistant coating is heated to 800°C in the atmosphere with a high-frequency heating device, and the mold shown in Fig. 5 is heated to 700°C in advance and extruded backward in the air. I did it. In this case, the outer diameter of the sleeve-shaped molded product 48 was 30 mm, and the inner diameter was changed to vary the area reduction rate from 30 to 80%. Additionally, the pressure applied to the upper surface 30 of the material 20 is 0.
.. Experiments were conducted both with 8 tons/c [l' and without pressurization. The pressure of the extrusion punch 32 was 3 tons/C12.

この押出成形において、スリーブ状成形品の内表面に生
した成形割れの深さを第7図に示した。
FIG. 7 shows the depth of molding cracks that occurred on the inner surface of the sleeve-shaped molded product during this extrusion molding.

この図から、上面30に圧縮応力を付与すると割れ防1
ヒに著しく効果があることか分る。
From this figure, it can be seen that when compressive stress is applied to the top surface 30, crack prevention 1
It turns out that it has a remarkable effect on h.

更に上記スソーツ状成形品48の底部を切断除去して外
面、内面を研削仕上げした後、これを半径方向に磁化し
て、その半径方向の最大磁気エネルギー積を測定した結
果を第8図に示した。
Furthermore, after cutting and removing the bottom of the ssort-shaped molded product 48 and grinding the outer and inner surfaces, it was magnetized in the radial direction and the maximum magnetic energy product in the radial direction was measured. The results are shown in FIG. Ta.

この図によると、減面率40%以上て30 MGOeを
超えて著しく高特性が得られている。
According to this figure, extremely high properties are obtained with an area reduction rate of 40% or more and exceeding 30 MGOe.

以上本発明の実施例を詳述したか1本発明はその主旨を
逸脱しない範囲において、当業者の知識に基づき1種々
変更を加えた態様において実施可能である。
Although the embodiments of the present invention have been described in detail above, the present invention can be practiced with various modifications based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である為土類異方性磁石の製
造方法の説明図であり、:52図及び第3図は夫々磁石
素材の成形方法の説明図である。第4図及び第5図は本
発明の他の実施例の説明図てあり、第6図は第1図の方
法に従って行った実験の結果得られた圧縮応力と割れ深
さとの関係を示す図である。第7図及び第S +′Aは
夫々第5図の方法に逆って行った実験の結果得られた押
出減面率と割れ深さとの関係を示す図及び押出減面率と
最大り磁気エネルギー積との関係を示す図である。 10.1トタイ 13.15,17.32・パンチ 18.20:素材 28.45:加圧型 34.46,48:成形品 第2図 第 図 コ 第 図 第 図 圧縮応力 (トン7’cm2 ) 第 図 押出窓面率(’/、 ) 第 図 押出シ逼面率(’/、 )
FIG. 1 is an explanatory diagram of a method of manufacturing an anisotropic earth magnet according to an embodiment of the present invention, and FIGS. 52 and 3 are explanatory diagrams of a method of molding a magnet material, respectively. 4 and 5 are explanatory diagrams of other embodiments of the present invention, and FIG. 6 is a diagram showing the relationship between compressive stress and crack depth obtained as a result of an experiment conducted according to the method of FIG. 1. It is. Figure 7 and S+'A are diagrams showing the relationship between extrusion area reduction rate and crack depth obtained as a result of experiments conducted in reverse to the method shown in Figure 5, respectively, and extrusion area reduction rate and maximum magnetic flux. FIG. 3 is a diagram showing a relationship with an energy product. 10.1 Tie 13.15, 17.32 Punch 18.20: Material 28.45: Pressure mold 34. 46, 48: Molded product Figure 2 Figure C Figure Compressive stress (tons 7'cm2) Fig. Extruded window area ratio ('/, ) Fig. Extruded window area ratio ('/, )

Claims (3)

【特許請求の範囲】[Claims] (1)磁気的等方性の中実又は中空磁石素材に押出成形
加工を施してこれを断面環状に成形するに際して、該磁
石素材の押出成形型と接触しない自由表面に圧縮力を付
与しつつ押出成形することを特徴とする希土類異方性磁
石の製造方法。
(1) When extruding a magnetically isotropic solid or hollow magnet material to form it into an annular cross-section, compressive force is applied to the free surface of the magnet material that does not come into contact with the extrusion mold. A method for producing an anisotropic rare earth magnet, which is characterized by extrusion molding.
(2)前記押出成形を、1トールより低圧の真空下又は
不活性ガス雰囲気下で650〜900℃の加熱下で行う
ことを特徴とする請求項(1)に記載の希土類異方性磁
石の製造方法。
(2) The rare earth anisotropic magnet according to claim (1), wherein the extrusion molding is performed under vacuum at a pressure lower than 1 Torr or under heating at 650 to 900°C in an inert gas atmosphere. Production method.
(3)前記磁石素材表面に酸化防止被膜を形成した後、
大気中加熱下で押出成形することを特徴とする請求項(
1)又は(2)に記載の希土類異方性磁石の製造方法。
(3) After forming an antioxidant coating on the surface of the magnet material,
A claim characterized in that extrusion molding is carried out under heating in the atmosphere (
The method for manufacturing a rare earth anisotropic magnet according to 1) or (2).
JP1095600A 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet Expired - Lifetime JP2800249B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1095600A JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet
EP90303835A EP0392799B2 (en) 1989-04-14 1990-04-10 Method and apparatus for producing anisotropic rare earth magnet
DE69003720T DE69003720T3 (en) 1989-04-14 1990-04-10 Method and device for manufacturing an anisotropic rare earth magnet.
AT90303835T ATE95627T1 (en) 1989-04-14 1990-04-10 METHOD AND APPARATUS FOR THE MANUFACTURE OF AN ANISOTROPIC RARE EARTH MAGNET.
US07/507,438 US4963320A (en) 1989-04-14 1990-04-11 Method and apparatus for producing anisotropic rare earth magnet
US08/042,772 US5342574A (en) 1989-04-14 1993-04-06 Method for producing anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095600A JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH02272712A true JPH02272712A (en) 1990-11-07
JP2800249B2 JP2800249B2 (en) 1998-09-21

Family

ID=14142049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095600A Expired - Lifetime JP2800249B2 (en) 1989-04-14 1989-04-14 Manufacturing method of rare earth anisotropic magnet

Country Status (1)

Country Link
JP (1) JP2800249B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169910A (en) * 1987-12-24 1989-07-05 Hitachi Metals Ltd Manufacture of anisotropical nd-fe-b base magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169910A (en) * 1987-12-24 1989-07-05 Hitachi Metals Ltd Manufacture of anisotropical nd-fe-b base magnet

Also Published As

Publication number Publication date
JP2800249B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP0392799B2 (en) Method and apparatus for producing anisotropic rare earth magnet
JP7125222B2 (en) Ring-shaped Nd--Fe--B system sintered magnetic material forming apparatus and manufacturing method thereof
US2241441A (en) Manufacture of magnetic bodies
CN113223846A (en) Method for preparing anisotropic neodymium iron boron magnet through one-step heating
CN1649046A (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JPH02272712A (en) Manufacture of rare earth anisotropic magnet
JPH09129465A (en) Manufacture of nd-fe-b magnet
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
JP2870883B2 (en) Method for producing radially anisotropic NdFeB magnet
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
CN108526471B (en) Preparation method of iron-based powder metallurgy friction wheel
JP2643267B2 (en) Method for producing R-Fe-B anisotropic magnet
CN111785504A (en) Near-net-shape preparation method of rare earth permanent magnet
EP0565363B1 (en) Method for producing anisotropic rare earth magnet
US5342574A (en) Method for producing anisotropic rare earth magnet
JP2583113B2 (en) Rare earth magnet manufacturing method
CN109365824B (en) Preparation method of 6.5 wt% high-silicon electrical steel thin-wall hollow pipe
JP2003193107A (en) Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
JPS61208808A (en) Manufacture of sintered magnet
JP2811708B2 (en) Rare earth-iron permanent magnet manufacturing method and mold used for it
JPH03290906A (en) Warm-worked magnet and its manufacture
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
KR19980043534A (en) Anisotropic Permanent Magnet Manufacturing Method
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11