JP2689445B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP2689445B2
JP2689445B2 JP62272489A JP27248987A JP2689445B2 JP 2689445 B2 JP2689445 B2 JP 2689445B2 JP 62272489 A JP62272489 A JP 62272489A JP 27248987 A JP27248987 A JP 27248987A JP 2689445 B2 JP2689445 B2 JP 2689445B2
Authority
JP
Japan
Prior art keywords
green compact
rare earth
earth magnet
magnet
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62272489A
Other languages
Japanese (ja)
Other versions
JPH01114007A (en
Inventor
昭彦 井端
清司 小嶋
滋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62272489A priority Critical patent/JP2689445B2/en
Publication of JPH01114007A publication Critical patent/JPH01114007A/en
Application granted granted Critical
Publication of JP2689445B2 publication Critical patent/JP2689445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希土類磁石の製造法に関し、特に、高性能
な多極着磁用の鉄−希土類元素(R)−ホウ素系の異方
性永久磁石の製造法に関する。 従来の技術 従来R,Fe,B系からなる非晶質あるいは結晶質の微細な
粒子状からなる合金を用いて永久磁石を得る方法として
は、例えば特開昭60−100402号公報に示されているよう
に塑性加工として高温圧縮、高温ダイーアップセット、
押出、鍛造、あるいはローラーかけ等が開示されてい
る。さらに、このような高温処理(塑性加工)した磁石
の最大の磁気特性は、処理の方向に平行(流れの方向に
垂直)に配列することも示されている。 しかし、前記公知例では、高性能なモータ用の異方性
磁石が得られていない。 発明が解決しようとする問題点 本発明は、前述したようにR,Fe,B系からなる非晶質あ
るいは結晶質の微細な粒子状からなる合金を用いて、永
久磁石を得る方法において、前記公知例でみられるよう
に高性能なモータ用の異方性磁石が得られていない点を
解決するものである。 問題点を解決するための手段 以上の問題点を解決するために本発明は、R,Fe,B系か
らなる非晶質あるいは結晶質の微細な粒子状の合金を加
圧して、中空筒状の圧粉体とした後、中空筒状の圧粉体
を高温で中空筒状に押出加工するものである。 作用 前述した方法によって、つまり粒子状合金を加圧し
て、中空筒状の圧粉体とした後、高温で中空体状の圧粉
体を中空筒状に押出加工することによって、高性能なモ
ータなどに用いるのに適した径方向に異方性化した磁石
を得ることができる。 実施例 本発明は、Fe,NdあるいはPrおよびBを主成分とする
非晶質あるいは結晶質の微細な粒子状の合金を加圧し
て、中空筒状の圧粉体とした後、高温で押出加工するも
のである。 前記の中空筒状として一般には円筒体がある。また、
実用的な面から円筒状の圧粉体の外周部あるいは内周部
に他の異種金属等が存在する状態で共に押出加工を行な
っても良い。こうすることにより円筒状の磁石とした場
合にシャフトを取付けやすくしたり、強度向上を図った
りあるいは不要な磁石量を軽減したりすることが可能で
ある。 本発明で示しているFe,NdあるいはPrおよびBを主成
分とする非晶質あるいは結晶質の微細な粒子状の合金と
は、前記公知技術に示されているような、公知の永久磁
石用組成のR−Fe−B系の非晶質あるいは結晶質の微細
な粒子状の合金であればよい。Fe以外にはFeとCo,Ni,Cr
あるいはMn(の内1つまたは2つ以上)であり、さらに
基本3元元素以外に磁気特性の向上あるいは各種の性質
改善のための各種添加元素あるいは若干の不純物からな
る合金であれば良い。 圧粉体を得るときの加圧条件は、20kgf/mm2以上の圧
力でよい。さらに、充填率を向上させるために粉末に各
種の金属石けん、例えばステアリン酸亜鉛、あるいはス
テアリン酸カルシウム等を0.05%〜3.0%程度添加して
もよい。添加量が多い程、最終の磁石の磁気特性が低下
するため0.5%程度が望ましい。 高温での押出加工条件としては、500℃〜1100℃の温
度範囲において加工は行えたが、900℃以上では磁石の
保磁力はかなり低下した。望ましくは600℃〜80℃の温
度範囲である。さらに押出加工における加工前後の試料
の形状変化は、加工によって試料の最外周部の長さが長
くなるような加工の方が、径方向に優れた磁気特性を示
す。例えば、試料の形状を円筒体とした場合、加工後の
外径が加工前の外径より大きくなるような加工である。
また、雰囲気については、非酸化性の雰囲気(不活性ガ
ス中、N2ガス中あるいは真空中など)あるいは大気中で
も十分である。 本発明のプロセスでは、押出加工初期の圧粉体加工時
に押出金型内で圧粉体は加熱・加圧された状態になり、
圧粉体を得る工程と押出加工工程の間に焼結工程を入れ
ても特に問題はない。 次に本発明の更に具体的な実施例について説明する。 (実施例1) 分析組成で68.4mass%(以下%とする)のFe,29.2%
のNd,0.77%のBおよび1.60%のPrからなる非晶質ある
いは結晶質からなる微細な粒子状の合金127gの円筒状の
空洞部を有する第1図に示すような金型を用いて圧粉体
にした。用いた金型の外型2の内径は39mmであり、中心
部に存在するコア4の直径は13mmである。外型2、下型
3およびコア4で形成される空洞部に、粉末がリング状
になるように充填した。この空洞部に外径39mm、内径13
mmのポンチ5を挿入し、粉末を金型で囲まれた状態にし
て、大気中で、荷重50×103kgfで加圧した。 粉末は外径が39mm,内径が13mm,長さが18mmの円筒状の
圧粉体になっていた。 次に、この圧粉体を用いて大気中において、700℃の
温度で、外径が30mm,内径が12mmまでの押出加工を行な
った。 押出加工後の試料から一辺の長さが5mmの直方体を各
辺が軸方向、直径方向および弦方向(周方向)に平行に
なるように切出し、印加磁場20KOeの大きさで各方向の
磁気特性を測定した。 磁気特性は、径方向ではBr=10KG,iHc=6KOe,bHc=5K
Oe,(BH)max=22MG・Oeであり、周方向ではBr=7KG,iH
c=6KOe,bHc=4KOe,(BH)max=13MG・Oeであり、軸方
向ではBr=3KG,iHc=9KOe,bHc=2KOe,(BH)max=2MG・
Oeであった。 さらに、磁気トルク測定等の詳細な実験においても、
本発明によって得られた磁石は径方向に異方性化した磁
石であった。この磁石は、鉄−希土類元素−ホウ素系磁
石において、これまでに類のない高性能な径異方性永久
磁石である。 (実施例2) 実施例1と同様にして、外径が39mm,内径が13mm,長さ
が18mmの円筒状の圧粉体を作製し、さらに、圧粉体を金
型内にいれたままの状態で金型を700℃に加熱して焼結
した。粉末は外径が39mm,内径が13mm,長さが16mmの円筒
状の焼結体になっていた。但し、粉末に0.5%のステア
リン酸カルシウムを添加し、荷重40×103kgfで加圧した
圧粉体にした後、温度を650℃にして焼結した。 次に、この焼結体を用いて、Arガス雰囲気中におい
て、650℃の温度で、外径が30mm,内径が12mmmまでの押
出加工を行なった。 実施例1と同様に試料を切出し、磁気測定した。 磁気特性は、実施例1で得られた磁石とほぼ同様であ
った。 (実施例3) 実施例2と同様にして、外径が35mm,内径が13mm,長さ
が16mmの円筒状の焼結体を作製した。粉体には実施例2
と同じステアリン酸カルシウム0.5%混入した。焼結時
の雰囲気はN2ガス中であり、700℃の温度で、荷重22×1
03kgfで加圧して焼結した。 次に、この焼結体と外径が39mm,内径が35mm,長さが16
mmのパイプ状の炭素鋼を組み合わせて外径が39mm,内径
が13mm,長さが16mmの円筒状の複合試料を作製し、Arガ
ス雰囲気中において、650℃の温度で、外径が30mm,内径
が12mmまでの押出加工を行なった。 実施例1と同様に一辺が3mmの測定用試料を切出し、
各方向の磁気特性を測定した。 磁気特性は、実施例1で得られた磁石とほぼ同様であ
った。本実施例で得られた磁石は外周部が炭素鋼からな
るため、他のものに組み込みやすい磁石であった。 (実施例4) 実施例3と同様にして、外径が39mm,内径が17mm,長さ
が16mmの円筒状の焼結体を作製した。但し、焼結時の雰
囲気は約10-4Torrの真空状態で、700℃の温度で、荷重2
2×103kgfで加圧して焼結した。 次に、この焼結体と外径が17mm,内径が13mm,長さが16
mmのパイプ状のしんちゅうを組み合わせて外径が外径が
39mm,内径が13mm,長さが16mmの円筒状の複合体試料を作
製し、大気中において、700℃の温度で、外径が30mm,内
径が12mmまでの押出加工を行なった。 実施例3と同様に試料を切出し、磁気測定した。 磁気特性は、実施例1で得られた磁石とほぼ同様であ
った。さらに、本実施例で得られた磁石は内周部がしん
ちゅうであるためモータ等に用いる場合にシャフトなど
を取り付けやすい磁石である。 (実施例5) 実施例2と同様の方法で、外径が40mm,内径が24mm,長
さが20mmの円筒状の焼結体を作製した。但し、焼結時の
雰囲気は約10-4Torrの真空状態で、700℃の温度で、荷
重22×103kgfで加圧して焼結した。 次に、この焼結体を用いて大気中において、700℃の
温度で、外径が44mm,内径が36mmまでの押出加工を行な
った。 押出加工後の試料から実施例1と同様にして一辺の長
さが3mmの直方体を切出し、磁気特性を測定した。 磁気特性は、径方向ではBr=11KG,iHc=7KOe,bHc=6K
Oe,(BH)max=26MG・Oeであり、周方向ではBr=4KG,iH
c=8KOe,bHc=3KOe,(BH)max=3MG・Oeであり、軸方向
ではBr=3KG,iHc=9KOe,bHc=2KOe,(BH)max=2MG・Oe
であった。 さらに、磁気トルク測定等の詳細な実験においても、
本発明によって得られた磁石は径方向に異方性化した磁
石であった。この磁石は、鉄−希土類元素−ホウ素系磁
石において、これまでに類のない高性能な径異方性永久
磁石である。 発明の効果 本発明は、実施例によって述べたように、Fe,Ndある
いはPrおよびBを主成分とする非晶質あるいは結晶質の
微細な粒子状の合金を加圧して、中空筒状の圧粉体とし
た後、さらに、高温で中空筒状に押出加工することによ
って、径方向の磁気特性が最も高い磁石、つまり径方向
に異方性化した非常に高性能な磁石を得ることができる
ものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a rare earth magnet, and more particularly to an iron-rare earth (R) -boron-based anisotropic permanent magnet for high-performance multipole magnetization. Manufacturing method. 2. Description of the Related Art Conventionally, as a method of obtaining a permanent magnet using an amorphous or crystalline fine particle alloy composed of R, Fe, B system, it is disclosed in, for example, JP-A-60-100402. As for plastic working, high temperature compression, high temperature die-up set,
Extrusion, forging, rolling, etc. are disclosed. Further, it has been shown that the maximum magnetic characteristics of such high temperature treated (plastic working) magnets are arranged parallel to the treatment direction (perpendicular to the flow direction). However, in the known example, a high-performance anisotropic magnet for a motor has not been obtained. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, the present invention provides a method for obtaining a permanent magnet by using an amorphous or crystalline fine particle alloy composed of R, Fe, and B-based materials, This is to solve the problem that a high-performance anisotropic magnet for a motor has not been obtained as seen in a known example. Means for Solving the Problems In order to solve the above problems, the present invention applies a pressure to an amorphous or crystalline fine particle alloy composed of R, Fe and B to form a hollow cylindrical shape. After the green compact is manufactured, the hollow cylindrical green compact is extruded into a hollow cylinder at a high temperature. Action A high-performance motor is produced by the method described above, that is, by pressing the particulate alloy to form a hollow cylindrical green compact, and then extruding the hollow green compact into a hollow cylinder at high temperature. It is possible to obtain a magnet anisotropy in the radial direction which is suitable for use in, for example, EXAMPLE The present invention is to press an amorphous or crystalline fine-grained alloy containing Fe, Nd, Pr, and B as main components into a hollow cylindrical green compact, and then extrude it at a high temperature. It is to be processed. A cylindrical body is generally used as the hollow cylinder. Also,
From a practical point of view, the extrusion process may be carried out together with other dissimilar metals or the like in the outer peripheral portion or the inner peripheral portion of the cylindrical green compact. By doing so, it is possible to easily attach the shaft in the case of using a cylindrical magnet, to improve the strength, or to reduce the amount of unnecessary magnets. The amorphous or crystalline fine-grained alloy containing Fe, Nd or Pr and B as the main components shown in the present invention is used for a known permanent magnet as described in the above-mentioned known art. The composition may be an R-Fe-B type amorphous or crystalline fine particle alloy. Other than Fe, Fe and Co, Ni, Cr
Alternatively, the alloy may be Mn (one or more of them), and other than the basic ternary element, an alloy composed of various additive elements for improving magnetic properties or various properties or some impurities. The pressure condition for obtaining the green compact may be a pressure of 20 kgf / mm 2 or more. Further, in order to improve the filling rate, various metallic soaps such as zinc stearate or calcium stearate may be added to the powder in an amount of about 0.05% to 3.0%. The larger the amount added, the lower the magnetic properties of the final magnet, so about 0.5% is desirable. As for the extrusion processing conditions at high temperature, processing was possible in the temperature range of 500 ℃ ~ 1100 ℃, but the coercive force of the magnet decreased considerably above 900 ℃. Desirably, the temperature range is 600 ° C to 80 ° C. Further, regarding the shape change of the sample before and after processing in the extrusion processing, the processing in which the length of the outermost peripheral portion of the sample becomes longer due to the processing exhibits better magnetic characteristics in the radial direction. For example, when the shape of the sample is a cylindrical body, the outer diameter after processing is larger than the outer diameter before processing.
As for the atmosphere, a non-oxidizing atmosphere (in inert gas, N 2 gas, vacuum, etc.) or air is sufficient. In the process of the present invention, the green compact is heated and pressed in the extrusion die during the green compact processing in the initial extrusion process,
There is no particular problem even if a sintering step is inserted between the step of obtaining the green compact and the extrusion step. Next, more specific examples of the present invention will be described. (Example 1) 68.4 mass% (hereinafter referred to as%) Fe, 29.2% in the analysis composition
Of Nd, 0.77% B and 1.60% Pr of 127 g of an amorphous or crystalline fine-grained alloy of cylindrical shape having a cylindrical cavity is used to press the die. Made into powder. The outer die 2 of the die used has an inner diameter of 39 mm, and the core 4 existing at the center has a diameter of 13 mm. The powder was filled into the cavity formed by the outer mold 2, the lower mold 3 and the core 4 so as to form a ring. Outer diameter 39 mm, inner diameter 13
The punch 5 of mm was inserted, the powder was surrounded by the mold, and the powder was pressurized with a load of 50 × 10 3 kgf in the atmosphere. The powder was a cylindrical green compact with an outer diameter of 39 mm, an inner diameter of 13 mm and a length of 18 mm. Next, this green compact was extruded in air at a temperature of 700 ° C. to an outer diameter of 30 mm and an inner diameter of 12 mm. A rectangular parallelepiped with a side length of 5 mm is cut out from the extruded sample so that each side is parallel to the axial direction, the diametrical direction, and the chordal direction (circumferential direction), and the magnetic properties in each direction are adjusted by the magnitude of the applied magnetic field of 20 KOe. Was measured. The magnetic characteristics are Br = 10KG, iHc = 6KOe, bHc = 5K in the radial direction.
Oe, (BH) max = 22MG ・ Oe, Br = 7KG, iH in the circumferential direction
c = 6KOe, bHc = 4KOe, (BH) max = 13MG ・ Oe, and in axial direction Br = 3KG, iHc = 9KOe, bHc = 2KOe, (BH) max = 2MG ・
Oe. Furthermore, even in detailed experiments such as magnetic torque measurement,
The magnet obtained by the present invention was a magnet that was anisotropic in the radial direction. This magnet is an iron-rare earth element-boron-based magnet that is a high-performance diametrically anisotropic permanent magnet that is unprecedented. (Example 2) In the same manner as in Example 1, a cylindrical green compact having an outer diameter of 39 mm, an inner diameter of 13 mm and a length of 18 mm was produced, and further, the green compact was placed in a mold. In this state, the mold was heated to 700 ° C. and sintered. The powder was a cylindrical sintered body with an outer diameter of 39 mm, an inner diameter of 13 mm and a length of 16 mm. However, 0.5% calcium stearate was added to the powder, and the powder was pressed with a load of 40 × 10 3 kgf to obtain a green compact, which was then sintered at 650 ° C. Next, this sintered body was extruded in an Ar gas atmosphere at a temperature of 650 ° C. to an outer diameter of 30 mm and an inner diameter of 12 mm. The sample was cut out and magnetically measured in the same manner as in Example 1. The magnetic characteristics were almost the same as those of the magnet obtained in Example 1. (Example 3) In the same manner as in Example 2, a cylindrical sintered body having an outer diameter of 35 mm, an inner diameter of 13 mm and a length of 16 mm was produced. Example 2 for powder
The same calcium stearate as 0.5% was mixed. The atmosphere during sintering is N 2 gas, the temperature is 700 ℃, and the load is 22 × 1.
It was pressed at 0 3 kgf and sintered. Next, this sintered body and outer diameter 39mm, inner diameter 35mm, length 16
mm pipe-shaped carbon steel is combined to produce a cylindrical composite sample with an outer diameter of 39 mm, an inner diameter of 13 mm, and a length of 16 mm, and the outer diameter is 30 mm at 650 ° C in an Ar gas atmosphere. Extrusion with an inner diameter of up to 12 mm was performed. Cut out a measurement sample having a side of 3 mm in the same manner as in Example 1,
The magnetic characteristics in each direction were measured. The magnetic characteristics were almost the same as those of the magnet obtained in Example 1. Since the outer peripheral portion of the magnet obtained in this example is made of carbon steel, the magnet was easy to incorporate into other magnets. Example 4 In the same manner as in Example 3, a cylindrical sintered body having an outer diameter of 39 mm, an inner diameter of 17 mm and a length of 16 mm was produced. However, the atmosphere during sintering is a vacuum of about 10 -4 Torr, a temperature of 700 ° C, and a load of 2
Sintered under pressure of 2 × 10 3 kgf. Next, this sintered body and outer diameter 17mm, inner diameter 13mm, length 16
The outer diameter of the brass
A cylindrical composite sample having a diameter of 39 mm, an inner diameter of 13 mm and a length of 16 mm was prepared and extruded in the air at a temperature of 700 ° C. to an outer diameter of 30 mm and an inner diameter of 12 mm. The sample was cut out and magnetically measured in the same manner as in Example 3. The magnetic characteristics were almost the same as those of the magnet obtained in Example 1. Furthermore, since the magnet obtained in this embodiment has the brass inner circumference, it is a magnet to which a shaft or the like can be easily attached when used in a motor or the like. (Example 5) A cylindrical sintered body having an outer diameter of 40 mm, an inner diameter of 24 mm, and a length of 20 mm was produced in the same manner as in Example 2. However, the atmosphere at the time of sintering was a vacuum state of about 10 −4 Torr, and the sintering was performed at a temperature of 700 ° C. with a load of 22 × 10 3 kgf. Next, using this sintered body, extrusion processing was performed in the atmosphere at a temperature of 700 ° C. to an outer diameter of 44 mm and an inner diameter of 36 mm. A rectangular parallelepiped having a side length of 3 mm was cut out from the extruded sample in the same manner as in Example 1 and the magnetic characteristics were measured. The magnetic characteristics are Br = 11KG, iHc = 7KOe, bHc = 6K in the radial direction.
Oe, (BH) max = 26MG · Oe, and Br = 4KG, iH in the circumferential direction.
c = 8KOe, bHc = 3KOe, (BH) max = 3MG ・ Oe, and axially Br = 3KG, iHc = 9KOe, bHc = 2KOe, (BH) max = 2MG ・ Oe
Met. Furthermore, even in detailed experiments such as magnetic torque measurement,
The magnet obtained by the present invention was a magnet that was anisotropic in the radial direction. This magnet is an iron-rare earth element-boron-based magnet that is a high-performance diametrically anisotropic permanent magnet that is unprecedented. EFFECTS OF THE INVENTION As described in the examples, the present invention presses an amorphous or crystalline fine particle-shaped alloy containing Fe, Nd, Pr and B as the main components to form a hollow cylinder. A magnet with the highest magnetic properties in the radial direction, that is, a very high-performance magnet anisotropy in the radial direction, can be obtained by further extruding into a hollow cylinder at a high temperature after forming the powder. It is one.

【図面の簡単な説明】 第1図は、本発明の成形あるいは焼結の一実施例を示す
金型の一部の断面図、第2図は、本発明の押出加工の一
実施例を示す金型の一部の断面図である。 1……粉末、2……外型、3……下型、4……コア、5
……ポンチ、6……焼結体、7……ダイス、8……マン
ドレル、9……ポンチ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional view of a mold showing an embodiment of molding or sintering of the present invention, and FIG. 2 shows an embodiment of extrusion processing of the present invention. It is a sectional view of a part of mold. 1 ... powder, 2 ... outer mold, 3 ... lower mold, 4 ... core, 5
...... Punch, 6 ... Sintered body, 7 ... Die, 8 ... Mandrel, 9 ... Punch.

Claims (1)

(57)【特許請求の範囲】 1.Fe,NdあるいはPrおよびBを主成分とする非晶質あ
るいは結晶質の微細な粒子状の合金を加圧して、中空筒
状の圧粉体とした後、高温で中空筒状に押出加工する希
土類磁石の製造法。 2.圧粉体が円筒体である特許請求の範囲第1項記載の
希土類磁石の製造法。 3.粒子状の合金に金属石けんを混入して圧粉体を作製
する特許請求の範囲第1項記載の希土類磁石の製造法。 4.高温での押出加工を圧粉体の内周部に金属が存在す
る状態で両者を共に加工する特許請求の範囲第1項記載
の希土類磁石の製造法。 5.高温での押出加工を圧粉体の内周部に金属が存在す
る状態で両者を共に加工する特許請求の範囲第1項記載
の希土類磁石の製造法。 6.押出加工によって圧粉体の外周の長さを長くする特
許請求の範囲第1項記載の希土類磁石の製造法。
(57) [Claims] Amorphous or crystalline fine-grained alloy containing Fe, Nd, Pr, and B as main components is pressed into a hollow cylindrical green compact, which is then extruded at high temperature into a hollow cylindrical shape. Rare earth magnet manufacturing method. 2. The method for producing a rare earth magnet according to claim 1, wherein the green compact is a cylindrical body. 3. The method for producing a rare earth magnet according to claim 1, wherein metal powder is mixed with a particulate alloy to produce a green compact. 4. The method for producing a rare earth magnet according to claim 1, wherein the extrusion processing at a high temperature is performed together with the green compact in a state where a metal is present in the inner peripheral portion of the green compact. 5. The method for producing a rare earth magnet according to claim 1, wherein the extrusion processing at a high temperature is performed together with the green compact in a state where a metal is present in the inner peripheral portion of the green compact. 6. The method for producing a rare earth magnet according to claim 1, wherein the outer circumference of the green compact is increased by extrusion.
JP62272489A 1987-10-28 1987-10-28 Rare earth magnet manufacturing method Expired - Fee Related JP2689445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272489A JP2689445B2 (en) 1987-10-28 1987-10-28 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272489A JP2689445B2 (en) 1987-10-28 1987-10-28 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01114007A JPH01114007A (en) 1989-05-02
JP2689445B2 true JP2689445B2 (en) 1997-12-10

Family

ID=17514633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272489A Expired - Fee Related JP2689445B2 (en) 1987-10-28 1987-10-28 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2689445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392799B2 (en) * 1989-04-14 1998-11-25 Daido Tokushuko Kabushiki Kaisha Method and apparatus for producing anisotropic rare earth magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148904A (en) * 1984-08-16 1986-03-10 Hitachi Metals Ltd Manufacture of permanent magnet

Also Published As

Publication number Publication date
JPH01114007A (en) 1989-05-02

Similar Documents

Publication Publication Date Title
US4960469A (en) Method of manufacturing magnetically anisotropic magnet materials and device for same
KR960005323B1 (en) Process for producing permanent magnets
JP3132393B2 (en) Method for producing R-Fe-B based radial anisotropic sintered ring magnet
JP2819748B2 (en) Forming method of thin long ring-shaped magnet molded body
US4963320A (en) Method and apparatus for producing anisotropic rare earth magnet
JP2689445B2 (en) Rare earth magnet manufacturing method
US5536334A (en) Permanent magnet and a manufacturing method thereof
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP2563407B2 (en) Rare earth magnet manufacturing method
JP2791616B2 (en) Manufacturing method of ring-shaped magnet material
JP2000182867A (en) Anisotropically bonded magnet, manufacture thereof, and press apparatus
JP3651098B2 (en) Manufacturing method of long radial anisotropic ring magnet
JPH0559572B2 (en)
JPH01115104A (en) Manufacture of rare earth magnet
JP2558760B2 (en) Anisotropic permanent magnet
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH11195548A (en) Production of nd-fe-b magnet
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JPH01115106A (en) Manufacture of rare earth magnet
JPH06330102A (en) Method for compacting magnet powder in magnetic field and manufacture of magnet
JPH05258947A (en) Ring magnet and manufacture of ring magnet
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
JP2563438B2 (en) Rare earth magnet manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees