JP3057897B2 - Manufacturing method of anisotropic rare earth magnet - Google Patents

Manufacturing method of anisotropic rare earth magnet

Info

Publication number
JP3057897B2
JP3057897B2 JP4116821A JP11682192A JP3057897B2 JP 3057897 B2 JP3057897 B2 JP 3057897B2 JP 4116821 A JP4116821 A JP 4116821A JP 11682192 A JP11682192 A JP 11682192A JP 3057897 B2 JP3057897 B2 JP 3057897B2
Authority
JP
Japan
Prior art keywords
magnet material
punch
rare earth
magnet
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4116821A
Other languages
Japanese (ja)
Other versions
JPH05291024A (en
Inventor
靖正 葛西
日吉 山田
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4116821A priority Critical patent/JP3057897B2/en
Priority to EP19930302736 priority patent/EP0565363B1/en
Priority to DE1993603313 priority patent/DE69303313T2/en
Publication of JPH05291024A publication Critical patent/JPH05291024A/en
Application granted granted Critical
Publication of JP3057897B2 publication Critical patent/JP3057897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は異方性希土類磁石の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an anisotropic rare earth magnet.

【0002】[0002]

【従来の技術】R−Fe−B(RはLa系の希土類元
素)で代表される希土類磁石には、(イ)母材合金を溶
融し、型に鋳込んで鋳塊とし、これを粉砕して極微細粉
とし、この粉末を磁場中で成形・焼結して異方性磁石と
した焼結磁石と、(ロ)母材合金の溶湯を超急冷して薄
帯とし、その粗粉砕粉末を圧粉して成る等方磁性の素材
を塑性変形加工して磁気異方化した超急冷磁石とがあ
る。
2. Description of the Related Art Rare-earth magnets represented by R-Fe-B (R is a La-based rare earth element) include (a) a base material alloy which is melted and cast into a mold to form an ingot, which is pulverized. Into an ultrafine powder, and form and sinter this powder in a magnetic field to form an anisotropic magnet; There is a super-quenched magnet that is magnetically anisotropic by plastically deforming an isotropic magnetic material formed by compacting powder.

【0003】これらの異方性希土類磁石は高い磁気特性
を有しており、OA用,FA用の小型モータに適用でき
ればモータの小型化,軽量化を図る上で極めて有用であ
る。
[0003] These anisotropic rare earth magnets have high magnetic properties, and if they can be applied to small motors for OA and FA, they are extremely useful in reducing the size and weight of the motor.

【0004】この希土類磁石をモータに適用するには、
これを半径方向に磁気異方化したリング状磁石とするこ
とが最も望ましいが、上記焼結磁石の場合、粉末を磁場
中で成形・焼結する際に半径方向の磁場を付与するのが
難しい問題がある。
To apply this rare earth magnet to a motor,
It is most preferable that this is a ring-shaped magnet with magnetic anisotropy in the radial direction, but in the case of the sintered magnet, it is difficult to apply a magnetic field in the radial direction when molding and sintering the powder in a magnetic field. There's a problem.

【0005】一方後者の超急冷磁石の場合、磁場中での
成形を必要とせず、塑性変形によって異方化を行うた
め、上記リング状磁石にあっても異方化を最大限に行い
得る特長がある。
[0005] On the other hand, the latter super-quenched magnet does not require molding in a magnetic field and performs anisotropic deformation by plastic deformation. There is.

【0006】ここで塑性変形によって異方化を行う方法
として、従来、中空又は中実円板状の等方性磁石素材を
押出成形する方法が用いられている。
Here, as a method of performing anisotropic deformation by plastic deformation, a method of extruding a hollow or solid disk-shaped isotropic magnet material has conventionally been used.

【0007】図4はその一例を示している。図において
100は厚肉円筒形状の筒型,102はその底部を構成
する底型で、これら筒型100,底型102によりダイ
スが構成されている。
FIG. 4 shows an example. In the figure, reference numeral 100 denotes a thick cylindrical tube, and reference numeral 102 denotes a bottom forming the bottom thereof. The cylindrical die 100 and the bottom 102 constitute a die.

【0008】104はポンチで、106はポンチ104
と筒型100との間の成形空間(成形部)108内に後
退可能に収容された円筒部材である。
Reference numeral 104 denotes a punch, and reference numeral 106 denotes a punch.
It is a cylindrical member that is retractably accommodated in a molding space (molding portion) 108 between the cylindrical member 100 and the cylindrical mold 100.

【0009】尚底型102には、ポンチ104の中心突
部110を突入させる嵌合穴112が設けられている。
The bottom mold 102 is provided with a fitting hole 112 into which the central projection 110 of the punch 104 is inserted.

【0010】この方法は、中空円板状の磁石素材114
を成形型内に装填し、そして磁石素材114の成形部1
08に臨む自由端面を円筒部材106で押圧しつつ且つ
これを後退させつつ、ポンチ104を磁石素材114に
押し込んで後方押出成形するもので、これにより磁石素
材114は円筒形状に成形されると同時にラジアル方向
(半径方向)に磁気異方化される。
In this method, a hollow disk-shaped magnet material 114 is used.
Is loaded into the mold, and the molding part 1 of the magnet material 114 is
08, while pressing the free end face with the cylindrical member 106 and retreating the same, the punch 104 is pushed into the magnet material 114 and extruded backward, whereby the magnet material 114 is formed into a cylindrical shape. It is magnetically anisotropic in the radial direction (radial direction).

【0011】[0011]

【発明が解決しようとする課題】ところでこの押出成形
方法の場合、図(B)中イで示す円筒成形体の上端部分
の磁気特性が他の部分、例えば図中ロで示す部分に比べ
て低く、同部分については実際の使用に供し得ない問題
があった。
However, in the case of this extrusion molding method, the magnetic properties of the upper end portion of the cylindrical molded body shown in FIG. 2B are lower than those of other portions, for example, the portion shown in FIG. However, there was a problem that this portion could not be used for actual use.

【0012】図中イで示す部分の磁気特性が低いのは、
同部分は押出成形の開始当初に成形部108内に押し出
される部分であって、ラジアル方向に十分な圧縮歪を加
えられないまま成形部108内に押し出されてしまい、
その加工率が他の部分に比べて低いことがその理由であ
ると考えられる。
The magnetic characteristics of the portion indicated by a in FIG.
The same part is a part that is extruded into the molding part 108 at the beginning of the extrusion molding, and is extruded into the molding part 108 without applying sufficient compressive strain in the radial direction,
It is considered that the reason is that the processing rate is lower than other parts.

【0013】[0013]

【課題を解決するための手段】本発明はこのような課題
を解決するためになされたものであり、その要旨は、成
形型内に希土類磁石素材を装填し、該磁石素材に対しポ
ンチを押圧して該磁石素材を塑性変形させつつ成形部内
に押し出して磁気異方性の成形体に押出成形するに際
し、該磁石素材の前記ポンチの先端面に接触する部分を
部分的に突出させて該磁石素材の形状を、該ポンチの先
端面に接触する部分と前記成形部に臨む部分とが段違状
を成す形状と成したことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and the gist of the present invention is to load a rare earth magnet material into a mold and press a punch against the magnet material. When the magnet material is extruded into a molded part while being plastically deformed and extruded into a magnetically anisotropic molded body, a portion of the magnet material that is in contact with the leading end surface of the punch is partially projected to form the magnet material. The material has a shape in which a portion that contacts the tip end surface of the punch and a portion that faces the forming portion form a step.

【0014】[0014]

【作用及び発明の効果】以上のように本発明は、磁石素
材の形状を、ポンチの先端面に接触する部分と成形部に
臨む部分とが段違状となるような形状と成してこれを押
出成形するもので、かかる本発明によれば、押出成形の
開始当初に成形部内に押し出される部分に対しても十分
な圧縮歪を加えつつ塑性変形させることができる。
As described above, according to the present invention, the shape of the magnet material is formed such that the portion contacting the tip end surface of the punch and the portion facing the forming portion are stepped. According to the present invention, it is possible to plastically deform a portion extruded into a molded portion at the beginning of extrusion molding while applying a sufficient compressive strain.

【0015】従って例えば磁石素材を円筒形状に押出成
形した場合において、円筒成形体の端部における磁気特
性を十分に高めることができ、同部分をも使用に供する
ことが可能となって、高価な希土類磁石の歩留を向上さ
せることができる。
Therefore, for example, when the magnet material is extruded into a cylindrical shape, the magnetic characteristics at the end of the cylindrical molded body can be sufficiently enhanced, and the same portion can be used, which is expensive. The yield of rare earth magnets can be improved.

【0016】[0016]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。図1は希土類磁石素材を後方押出成形する場
合の例を示したもので、図中10は筒型、12は可動の
底型でこれら筒型10と底型12とでダイス13が構成
されている。14はポンチであり、また16は筒型10
とポンチ14との間の成形空間(成形部)18内に収容
され、磁石素材の押出しにつれて後退運動させられる円
筒部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example in which a rare earth magnet material is extruded backward. In the drawing, reference numeral 10 denotes a cylindrical mold, 12 denotes a movable bottom mold, and a die 13 is formed by the cylindrical mold 10 and the bottom mold 12. I have. 14 is a punch and 16 is a cylindrical 10
It is a cylindrical member that is accommodated in a molding space (molding portion) 18 between the and the punch 14, and is moved backward as the magnet material is extruded.

【0017】尚、ポンチ14には図中下向きに中心突部
22が、また底型12にはこれに対応する嵌合穴24が
設けられている。
The punch 14 is provided with a central projection 22 downward in the figure, and the bottom die 12 is provided with a corresponding fitting hole 24.

【0018】本例の方法では、先ず成形型内に磁石素材
20を装填し、かかる磁石素材20を成形型とともに所
定温度に加熱した状態とする。またこれら成形型及び磁
石素材20は、全体を密閉槽内に保持し、その槽内雰囲
気を1トールより低い圧力の真空とするか又はアルゴン
ガス等の不活性ガスを充満させて酸化防止雰囲気とした
状態で押出成形を行う。
In the method of the present embodiment, first, the magnet material 20 is loaded into a mold, and the magnet material 20 is heated to a predetermined temperature together with the mold. Further, the molding die and the magnet material 20 are entirely held in a sealed tank, and the atmosphere in the tank is set to a vacuum having a pressure lower than 1 Torr or filled with an inert gas such as an argon gas to form an atmosphere for preventing oxidation. Extrusion molding is performed in the state.

【0019】磁石素材20は全体として略中空円板形状
を成すものであるが、内周側の部分26が外周側の部分
28に対して軸方向に突出した形状とされている。
The magnet material 20 has a substantially hollow disk shape as a whole, but has a shape in which an inner peripheral portion 26 projects axially from an outer peripheral portion 28.

【0020】即ち可動ポンチ14の先端押圧面に接触す
る部分と上記成形部18に臨む部分とが段違形状とされ
ている。
That is, the portion that comes into contact with the front end pressing surface of the movable punch 14 and the portion that faces the forming portion 18 have a stepped shape.

【0021】さて磁石素材20を成形型内に装填した
ら、次に(B)に示しているようにダイス13内にポン
チ14と円筒部材16とを挿入し、ポンチ14及び円筒
部材16の各先端面を磁石素材20の内周側部分26と
外周側部分28の各端面に当接させる。
After the magnet material 20 is loaded in the mold, the punch 14 and the cylindrical member 16 are inserted into the die 13 as shown in FIG. The surface is brought into contact with each end face of the inner peripheral portion 26 and the outer peripheral portion 28 of the magnet material 20.

【0022】そしてこの状態で(C)に示しているよう
にポンチ14を図中下向きに押し込んで、磁石素材20
を塑性変形させつつ後方押出しする。
In this state, the punch 14 is pushed downward in the figure as shown in FIG.
Is extruded backward while being plastically deformed.

【0023】このとき円筒部材16は、成形部18内に
押し出される磁石素材20の自由端面を図中下向きに押
圧しつつ、磁石素材20の押出しにつれて後退運動す
る。
At this time, the cylindrical member 16 retreats as the magnet material 20 is extruded while pressing the free end face of the magnet material 20 pushed into the forming portion 18 downward in the drawing.

【0024】このように円筒部材16によって磁石素材
20の自由端面を押圧しつつ押出成形をすることで、成
形体25に成形割れが生じるのを効果的に防止すること
ができる。
By performing extrusion while pressing the free end face of the magnet material 20 with the cylindrical member 16 as described above, it is possible to effectively prevent the molded body 25 from being cracked.

【0025】(C)において押出成形された磁石素材の
成形体25は、その後底型12の筒型10に対する相対
移動により成形型から取り出された上、常法に従って着
磁処理され、ラジアル異方性の希土類磁石となる。
The molded body 25 of the magnet material extruded in (C) is then taken out of the mold by the relative movement of the bottom mold 12 with respect to the cylindrical mold 10 and then subjected to a magnetizing treatment according to a conventional method to obtain a radially anisotropic material. Rare earth magnet.

【0026】本例の方法にて磁石素材20を後方押出成
形した場合、円筒成形体25の上端部、つまり押出成形
開始当初に成形部18内に入り込んだ部分に対しても半
径方向の圧縮歪を十分に加えることができ、従って同部
分に対して良好な磁気特性を付与することができる。
In the case where the magnet material 20 is extruded backward by the method of this embodiment, the upper end portion of the cylindrical molded body 25, that is, the portion which has entered the molded portion 18 at the beginning of the extrusion molding, also has a radial compression strain. Can be sufficiently added, and good magnetic properties can be imparted to the same portion.

【0027】因みに磁石材料粉末として28Nd−2.
5Dy−0.9B−5Co−残Fe(数値は何れも重量
%)から成る合金粉末を用い、これを800℃,Arガ
ス中で圧粉処理して図2に示す寸法形状の磁石素材20
を作製し、次いでこれを図1に示す方法で後方押出成形
及び着磁処理して円筒形状の希土類磁石を製造し、特性
調査したところ、円筒成形体25の上端部においても良
好な磁気特性が得られた。
Incidentally, 28Nd-2.
An alloy powder composed of 5Dy-0.9B-5Co-remaining Fe (each numerical value is wt%) is compacted in an Ar gas at 800 ° C., and is subjected to a compacting process.
Then, this was rear-extruded and magnetized by the method shown in FIG. 1 to produce a cylindrical rare earth magnet, and its characteristics were examined. As a result, good magnetic properties were obtained even at the upper end of the cylindrical molded body 25. Obtained.

【0028】その結果が表1に示してある。但し表1の
数値は、円筒成形体25の端から5mmまでの部分のラ
ジアル方向の磁気特性を示している。
The results are shown in Table 1. However, the numerical values in Table 1 indicate the magnetic properties in the radial direction of a portion from the end of the cylindrical molded body 25 to 5 mm.

【0029】[0029]

【表1】 [Table 1]

【0030】この結果より、磁石素材20の形状を内周
側部分26が突出した形状とした上で後方押出成形する
ことで、押出成形開始当初に成形部18内に入り込んだ
部分に対しても良好な磁気特性を付与できること、また
その突出量(突出し高さ)L寸法を4mm以上としたと
き、その効果が高いこと等が分る。
According to the results, the magnet material 20 is formed into a shape in which the inner peripheral side portion 26 protrudes, and is subjected to backward extrusion molding, so that the portion which has entered the molding portion 18 at the beginning of the extrusion molding can be formed. It can be seen that good magnetic properties can be provided, and that the effect is high when the protrusion amount (projection height) L is set to 4 mm or more.

【0031】以上本発明の実施例を詳述したがこれはあ
くまで一例示である。例えば本発明における磁石素材と
して図3に示すような中実形態の磁石素材30を用いる
ことも可能であるし、また磁石素材を前方押出成形によ
り所定形状に成形するに際しても本発明の適用が可能で
ある等、本発明はその主旨を逸脱しない範囲において、
当業者の知識に基づき様々な変更を加えた態様で実施可
能である。
Although the embodiment of the present invention has been described in detail, this is merely an example. For example, a solid magnet material 30 as shown in FIG. 3 can be used as the magnet material in the present invention, and the present invention can also be applied when the magnet material is formed into a predetermined shape by forward extrusion. The present invention, within the scope not departing from the gist,
The present invention can be implemented in various modified embodiments based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例方法の工程説明図である。FIG. 1 is a process explanatory view of a method according to an embodiment of the present invention.

【図2】同実施例に用いた磁石素材の形状を示す図であ
る。
FIG. 2 is a view showing a shape of a magnet material used in the embodiment.

【図3】本発明の他の実施例において使用される磁石素
材の形状を示す図である。
FIG. 3 is a view showing a shape of a magnet material used in another embodiment of the present invention.

【図4】本発明の背景説明のための説明図である。FIG. 4 is an explanatory diagram for explaining the background of the present invention.

【符号の説明】[Explanation of symbols]

13 ダイス 14 ポンチ 18 成形部 20,30 磁石素材 26 内周側部分 28 外周側部分 DESCRIPTION OF SYMBOLS 13 Dice 14 Punch 18 Molding part 20, 30 Magnet material 26 Inner peripheral part 28 Outer peripheral part

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 7/02 H01F 41/02 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 7/02 H01F 41/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成形型内に希土類磁石素材を装填し、該
磁石素材に対しポンチを押圧して該磁石素材を塑性変形
させつつ成形部内に押し出して磁気異方性の成形体に押
出成形するに際し、 該磁石素材の前記ポンチの先端面に接触する部分を部分
的に突出させて該磁石素材の形状を、該ポンチの先端面
に接触する部分と前記成形部に臨む部分とが段違状を成
す形状と成したことを特徴とする異方性希土類磁石の製
造方法。
1. A rare earth magnet material is loaded into a molding die, and a punch is pressed against the magnet material to cause the magnet material to be plastically deformed and extruded into a molding portion to be extruded into a magnetically anisotropic molded body. At this time, a portion of the magnet material that is in contact with the tip surface of the punch is partially protruded so that the shape of the magnet material is stepped between a portion that contacts the tip surface of the punch and a portion that faces the forming portion. A method for producing an anisotropic rare earth magnet, characterized in that the magnet has a shape of:
JP4116821A 1992-04-09 1992-04-09 Manufacturing method of anisotropic rare earth magnet Expired - Fee Related JP3057897B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4116821A JP3057897B2 (en) 1992-04-09 1992-04-09 Manufacturing method of anisotropic rare earth magnet
EP19930302736 EP0565363B1 (en) 1992-04-09 1993-04-07 Method for producing anisotropic rare earth magnet
DE1993603313 DE69303313T2 (en) 1992-04-09 1993-04-07 Manufacturing process for an anisotropic rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116821A JP3057897B2 (en) 1992-04-09 1992-04-09 Manufacturing method of anisotropic rare earth magnet

Publications (2)

Publication Number Publication Date
JPH05291024A JPH05291024A (en) 1993-11-05
JP3057897B2 true JP3057897B2 (en) 2000-07-04

Family

ID=14696466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116821A Expired - Fee Related JP3057897B2 (en) 1992-04-09 1992-04-09 Manufacturing method of anisotropic rare earth magnet

Country Status (3)

Country Link
EP (1) EP0565363B1 (en)
JP (1) JP3057897B2 (en)
DE (1) DE69303313T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979881B (en) * 2010-11-25 2013-02-06 湖南湘电长沙水泵有限公司 Detection method for controlling streamline size of impeller blade

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454993B1 (en) 2000-01-11 2002-09-24 Delphi Technologies, Inc. Manufacturing technique for multi-layered structure with magnet using an extrusion process
JP2013098485A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Manufacturing apparatus and manufacturing method for rare earth magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859410A (en) * 1988-03-24 1989-08-22 General Motors Corporation Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically aligned material
EP0392799B2 (en) * 1989-04-14 1998-11-25 Daido Tokushuko Kabushiki Kaisha Method and apparatus for producing anisotropic rare earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979881B (en) * 2010-11-25 2013-02-06 湖南湘电长沙水泵有限公司 Detection method for controlling streamline size of impeller blade

Also Published As

Publication number Publication date
EP0565363A1 (en) 1993-10-13
EP0565363B1 (en) 1996-06-26
DE69303313T2 (en) 1996-12-05
DE69303313D1 (en) 1996-08-01
JPH05291024A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP2819748B2 (en) Forming method of thin long ring-shaped magnet molded body
JP3132393B2 (en) Method for producing R-Fe-B based radial anisotropic sintered ring magnet
JP3554604B2 (en) Compact molding method and rubber mold used in the method
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
US5516371A (en) Method of manufacturing magnets
JP2689445B2 (en) Rare earth magnet manufacturing method
JPS6126205A (en) Manufacture of rare earth magnet
JP2679206B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2872794B2 (en) Manufacturing method of rare earth permanent magnet
JP2816130B2 (en) Permanent magnet manufacturing method
JP2811708B2 (en) Rare earth-iron permanent magnet manufacturing method and mold used for it
JP2000012359A (en) Magnet and its manufacture
JPH0997730A (en) Manufacture of sintered permanent magnet
JP2791616B2 (en) Manufacturing method of ring-shaped magnet material
JP2800249B2 (en) Manufacturing method of rare earth anisotropic magnet
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JP2757442B2 (en) Manufacturing method of radial anisotropic permanent magnet
JP2583113B2 (en) Rare earth magnet manufacturing method
JP2830125B2 (en) Manufacturing method of anisotropic rare earth magnet
JPH05258947A (en) Ring magnet and manufacture of ring magnet
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH02206107A (en) Manufacture of thin-wall ring magnet
JPH08298220A (en) Production of rare earth-fe based permanent magnet material
JP2000237898A (en) Green compact forming mold, manufacture of rare earth magnet using it, and rare earth magnet
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees