JPH06330102A - Method for compacting magnet powder in magnetic field and manufacture of magnet - Google Patents

Method for compacting magnet powder in magnetic field and manufacture of magnet

Info

Publication number
JPH06330102A
JPH06330102A JP5140040A JP14004093A JPH06330102A JP H06330102 A JPH06330102 A JP H06330102A JP 5140040 A JP5140040 A JP 5140040A JP 14004093 A JP14004093 A JP 14004093A JP H06330102 A JPH06330102 A JP H06330102A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
magnet powder
powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5140040A
Other languages
Japanese (ja)
Other versions
JP3357421B2 (en
Inventor
Katashi Takebuchi
確 竹渕
Kazuo Sato
和生 佐藤
Koichi Yajima
弘一 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP14004093A priority Critical patent/JP3357421B2/en
Publication of JPH06330102A publication Critical patent/JPH06330102A/en
Application granted granted Critical
Publication of JP3357421B2 publication Critical patent/JP3357421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a rare earth magnet in which the reduction in the magnetic characteristic due to the defective orientation, etc., can be prevented from occurring, by subjecting a magnet powder contg. a rare earth element and a transition element to 'magnetic field compacting' while providing the surface of each of the punches with a ferromagnetic body having a specified thickness and applying a magnetic field to the magnet powder. CONSTITUTION:The magnet powder 6 contg. R (an element selected from the rare earth elements including Y) and a transition element is subjected to 'magnetic field compacting' in the space between the upper and lower punches 4 and in a magnetic field having its component in the axial direction of the above punches 4 which is effected by the coils 2. At this time, the surface of each of the upper punch 4 and/or lower punch 4 is provided with a ferromagnetic body 5. The total thickness of the ferromagnetic bodies 5 in the above axial direction (Lm) is selected so as to meet the following relational expressions: (CL-Lc)>=Lm>=1 mm, CL>=(Lm+Lc)>20mm and 20>=Lc>=1mm, wherein CL is the effective length of the coil 2 and Lc is the thickness of the compact out of the magnetic powder 6. As the above ferromagnetic body 5, that having >=10000G saturation magnetization (Bs) is preferred. Further as the above magnetic field, a pulsed magnetic field, the applying direction of which is almost identical to the applying direction of the compacting pressure and which has >=20kOe field strength and 10mus to 0.5s duration time, is preferred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類磁石の成形方法お
よび希土類磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of molding a rare earth magnet and a method of manufacturing a rare earth magnet.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。また、近年Nd−Fe
−B磁石やNd−Fe−Co−B磁石等のR−T−B系
磁石(Rは、Yを含む希土類元素の少なくとも1種であ
り、Tは、FeまたはFeおよびCoである)が開発さ
れ、特開昭59−46008号公報には焼結磁石が開示
されている。また、さらに近年、R−T−N系の磁石等
も開発が盛んに行われるようになっている。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co type magnet manufactured by powder metallurgy has an energy product of 32M.
GOe's are in mass production. In recent years, Nd-Fe
-B magnets and RTB-based magnets such as Nd-Fe-Co-B magnets (R is at least one kind of rare earth element including Y and T is Fe or Fe and Co) have been developed. Japanese Patent Application Laid-Open No. 59-46008 discloses a sintered magnet. Further, in recent years, R-TN magnets and the like have also been actively developed.

【0003】これらの異方性磁石を製造する際、成形方
法として磁場成形方法が行われる。このとき異方性磁石
の残留磁束密度を向上させるためには、磁場成形の際の
配向度を向上させることが重要である。配向度が高くな
れば角形性が向上して着磁率も改善される。
When manufacturing these anisotropic magnets, a magnetic field molding method is used as a molding method. At this time, in order to improve the residual magnetic flux density of the anisotropic magnet, it is important to improve the degree of orientation during magnetic field molding. If the degree of orientation is high, the squareness is improved and the magnetizability is also improved.

【0004】配向度を向上させるために、磁場成形の際
に印加磁界強度を大きくする方法がとられる。しかし、
磁界発生コイルの発熱が大きくなるため、極端に大きな
磁界を印加することは難しい。このため、磁界印加時間
の短いパルス磁界を利用して高い磁界を印加する方法が
提案されている(特開昭61−208809号等)。前
記パルス磁界のような高い磁界を印加するような場合、
一般には用いるパンチやダイス等は非磁性材で構成し、
これを空芯コイル内に配置する。
In order to improve the degree of orientation, a method of increasing the applied magnetic field strength during magnetic field shaping is adopted. But,
It is difficult to apply an extremely large magnetic field because the heat generation of the magnetic field generation coil becomes large. Therefore, a method of applying a high magnetic field by utilizing a pulsed magnetic field having a short magnetic field application time has been proposed (Japanese Patent Laid-Open No. 61-208809). When applying a high magnetic field such as the pulsed magnetic field,
Generally used punches and dies are made of non-magnetic material,
This is placed in the air core coil.

【0005】本発明者らは、特願平4−72581号
で、配向のために高いパルス磁界を印加する方法におい
て、磁石粉末の成形体の相対密度が25〜55%の範囲
内にあるときに少なくとも3回のパルス磁界を印加する
方法を提案した。この方法により、配向度が向上し、高
い残留磁束密度を有する磁石が得られる。しかし、空芯
コイル内にダイスと上下パンチを配置し、パンチ軸方向
に磁界を印加して磁場成形を行なういわゆる縦磁場成形
に際し、このような高いパルス磁界の印加を行っても、
上下パンチ軸方向に厚さの薄い成形体を得ようとする
と、残留磁束密度等の磁気特性がきわめて低くなり、実
用化できないことが判明した。
The inventors of the present invention, in Japanese Patent Application No. 4-72581, apply a high pulse magnetic field for orientation, and when the relative density of the magnet powder compact is within the range of 25 to 55%. We have proposed a method of applying a pulsed magnetic field at least three times. By this method, the degree of orientation is improved and a magnet having a high residual magnetic flux density can be obtained. However, when a die and upper and lower punches are arranged in the air-core coil, and so-called longitudinal magnetic field molding is performed in which a magnetic field is applied in the punch axis direction to perform magnetic field molding, even if such a high pulse magnetic field is applied,
It was found that when trying to obtain a compact having a small thickness in the axial direction of the upper and lower punches, the magnetic properties such as the residual magnetic flux density became extremely low and it could not be put to practical use.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
Rおよび遷移元素を含有する磁石粉末を上下パンチ間
で、上下パンチ軸方向成分を有する磁界中で磁場成形す
る際、特に上下パンチ軸方向に薄い希土類磁石用の成形
体を得る際に、配向不良等による磁気特性の低下が防止
された成形方法と、その成形方法を用いた磁石の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to form a magnetic powder containing the above R and a transition element between upper and lower punches in a magnetic field having a component in the upper and lower punch axis directions. It is an object of the present invention to provide a molding method in which deterioration of magnetic properties due to poor orientation or the like is obtained when obtaining a molded body for a rare earth magnet that is thin in the direction, and a method of manufacturing a magnet using the molding method.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(8)の本発明により達成される。 (1)R(Rは、Yを含む希土類元素の少なくとも1種
である。)および遷移元素を含有する磁石粉末を上下パ
ンチ間で、この上下パンチ軸方向成分を有する磁界中で
磁場成形する際に、上パンチおよび/または下パンチの
パンチ面に、前記軸方向の総厚Lmが、 (CL−Lc)≧Lm≧1mmでありかつ CL≧(Lm+Lc)>20mm (CLは磁界を印加するために用いるコイルの有効長で
あり、Lcは磁石粉末の成形後の前記軸方向の厚さであ
る。)である強磁性体を配置し、磁界を印加して上下パ
ンチで押圧し、20mm≧Lc≧1mmの成形体を得る磁石
粉末の磁場成形方法。 (2)前記強磁性体は、飽和磁化Bsが10000G 以
上である上記(1)の磁石用粉末の磁場成形方法。 (3)前記磁界は、印加方向が成形圧力印加方向とほぼ
一致している上記(1)または(2)の磁石用粉末の磁
場成形方法。 (4)前記磁界は、強度が20kOe 以上である上記
(1)〜(3)のいずれかの磁石用粉末の磁場成形方
法。 (5)前記磁界は、持続時間が10μs 〜0.5sec の
パルス磁界である上記(1)〜(4)のいずれかの磁石
用粉末の磁場成形方法。 (6)前記パルス磁界は、前記磁石粉末の成形体の相対
密度が25〜55%の範囲内にあるときに、少なくとも
3回のパルス磁界を前記成形体に印加する上記(5)の
磁石用粉末の磁場成形方法。 (7)前記磁石粉末が、R−T−B系の磁石粉末(T
は、FeまたはFeおよびCoである。)、R−Co系
の磁石粉末またはR−T−N系の磁石粉末のいずれかで
ある上記(1)〜(6)のいずれかの磁石用粉末の磁場
成形方法。 (8)上記(1)〜(7)のいずれかに記載の方法によ
り成形された磁石の製造方法。
These objects are achieved by the present invention described in (1) to (8) below. (1) When magnetic field molding of magnet powder containing R (R is at least one kind of rare earth element including Y) and a transition element between upper and lower punches in a magnetic field having this upper and lower punch axial component On the punch surface of the upper punch and / or the lower punch, the total thickness Lm in the axial direction is (CL−Lc) ≧ Lm ≧ 1 mm and CL ≧ (Lm + Lc)> 20 mm (CL applies a magnetic field. Is the effective length of the coil used for the above, and Lc is the thickness in the axial direction after the molding of the magnet powder) is arranged, and a magnetic field is applied and pressed by the upper and lower punches. A magnetic powder magnetic field molding method for obtaining a molded body of ≧ 1 mm. (2) The magnetic field molding method for magnet powder according to (1), wherein the ferromagnetic material has a saturation magnetization Bs of 10000 G or more. (3) The magnetic powder magnetic field molding method according to (1) or (2), wherein the applied direction of the magnetic field is substantially the same as the applied direction of the molding pressure. (4) The magnetic field molding method for magnet powder according to any one of (1) to (3), wherein the magnetic field has an intensity of 20 kOe or more. (5) The magnetic field molding method for magnet powder according to any of (1) to (4), wherein the magnetic field is a pulsed magnetic field having a duration of 10 μs to 0.5 sec. (6) For the magnet according to (5), the pulsed magnetic field applies the pulsed magnetic field at least three times to the molded body when the relative density of the molded body of the magnet powder is within the range of 25 to 55%. Magnetic field forming method of powder. (7) The magnet powder is an RTB-based magnet powder (T
Is Fe or Fe and Co. ), The magnetic field molding method of the magnet powder according to any one of the above (1) to (6), which is either the R-Co magnet powder or the R-TN magnet powder. (8) A method for producing a magnet molded by the method according to any one of (1) to (7) above.

【0008】[0008]

【作用および効果】前記空芯コイルタイプの成形装置を
用い、コイルにより磁界を印加すると、コイル内の磁石
粉末に生じた反磁界が、印加した磁界による磁石粉末の
配向効果を低下させ、得られた磁石の磁気特性が低下す
る。
[Operation and effect] When a magnetic field is applied by the coil using the air-core coil type molding apparatus, the demagnetizing field generated in the magnet powder in the coil reduces the orientation effect of the magnet powder due to the applied magnetic field and is obtained. The magnetic characteristics of the magnet are deteriorated.

【0009】反磁界によるこのような影響は、パンチ、
ダイス間のキャビティの形状により異なり、一般にはパ
ンチ間のキャビティ厚、すなわち成形体の上下パンチ軸
方向の厚さが薄いものほど大きい。そこで、本発明で
は、使用するパンチの少なくとも一方のパンチ面に強磁
性体を配置し、キャビティ内の磁性体の厚さをみかけ上
厚くする。そのため、磁石粉末に発生する反磁界が磁石
粉末の配向に及ぼす影響を低下させることができ、配向
不良による磁気特性の低下を防止できる。
Such an effect of the demagnetizing field is caused by the punch,
It depends on the shape of the cavity between the dies, and generally the cavity thickness between punches, that is, the thinner the thickness of the compact in the vertical punch axial direction, the larger. Therefore, in the present invention, a ferromagnetic material is arranged on at least one punch surface of the punch to be used, and the thickness of the magnetic material in the cavity is apparently increased. Therefore, it is possible to reduce the influence of the demagnetizing field generated in the magnet powder on the orientation of the magnet powder, and it is possible to prevent the deterioration of the magnetic characteristics due to the orientation failure.

【0010】なお、特開昭61−272915号公報に
は、異方性永久磁石の製造の際、パルス磁場の存在下
で、上下のうち少なくとも片方が強磁性体のパンチを用
いてプレス成形する方法が開示されている。強磁性体の
パンチを用いる目的は、印加したパルス磁場による磁気
的吸引力により、前記強磁性体製のパンチを移動・加圧
し、成形することにある。しかし、このようなパンチ吸
引が行われると、成形圧力のコントロールが難しく、成
形密度が一定にできず、焼結後の形状バラツキが大きく
なる等の不都合が生じることになるため好ましくない。
In Japanese Unexamined Patent Publication No. 61-272915, in manufacturing an anisotropic permanent magnet, press molding is performed in the presence of a pulsed magnetic field using a punch of which at least one of the upper and lower sides is a ferromagnetic material. A method is disclosed. The purpose of using the ferromagnetic punch is to move / pressurize the ferromagnetic punch by a magnetic attraction force by an applied pulse magnetic field to form the punch. However, such punch suction is not preferable because it is difficult to control the molding pressure, the molding density cannot be made constant, and the shape variation after sintering becomes large.

【0011】[0011]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0012】本発明の磁場成形方法は、R(Rは、Yを
含む希土類元素の少なくとも1種である。)および遷移
元素を含有する磁石粉末に適用される。
The magnetic field molding method of the present invention is applied to a magnet powder containing R (R is at least one kind of rare earth element containing Y) and a transition element.

【0013】磁石粉末の組成は特に限定されず、希土類
元素および遷移元素を含むものであれば特に制限はない
が、本発明は特に、R−T−B系磁石(Tは、Feまた
はFeおよびCoである。)、R−Co系磁石あるいは
R−T−N系磁石の製造に好適である。
The composition of the magnet powder is not particularly limited as long as it contains a rare earth element and a transition element, but in the present invention, an RTB-based magnet (T is Fe or Fe and Co)), R-Co type magnet or R-T-N type magnet.

【0014】R−T−B系の磁石粉末は、通常、Rを2
7〜38重量%、Tを51〜72重量%、Bを0.5〜
4.5重量%含有することが好ましい。R含有量が少な
すぎると鉄に富む相が析出して高保磁力が得られなくな
り、R含有量が多すぎると高残留磁束密度が得られなく
なる。B含有量が少なすぎると高保磁力が得られなくな
り、B含有量が多すぎると高残留磁束密度が得られなく
なる。なお、T中のCo量は30重量%以下とすること
が好ましい。さらに、保磁力を改善するために、Al、
Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、
V、Zr、Ti、Moなどの元素を添加してもよいが、
添加量が6重量%を超えると残留磁束密度が低下してく
る。
In the R-T-B type magnet powder, R is usually 2
7-38 wt%, T 51-72 wt%, B 0.5-
It is preferable to contain 4.5% by weight. If the R content is too low, a phase rich in iron precipitates and high coercive force cannot be obtained, and if the R content is too high, high residual magnetic flux density cannot be obtained. If the B content is too small, a high coercive force cannot be obtained, and if the B content is too large, a high residual magnetic flux density cannot be obtained. The amount of Co in T is preferably 30% by weight or less. Further, in order to improve the coercive force, Al,
Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W,
Elements such as V, Zr, Ti and Mo may be added,
If the added amount exceeds 6% by weight, the residual magnetic flux density will decrease.

【0015】磁石粉末中には、これらの元素の他、不可
避的不純物あるいは微量添加物として、例えば炭素や酸
素が含有されていてもよい。
In addition to these elements, the magnet powder may contain carbon and oxygen as unavoidable impurities or trace additives.

【0016】このような組成を有する磁石粉末は、実質
的に正方晶系の結晶構造の主相を有する。そして、通
常、体積比で0.5〜10%程度の非磁性相を含むもの
である。
The magnet powder having such a composition has a main phase having a substantially tetragonal crystal structure. It usually contains a non-magnetic phase in a volume ratio of about 0.5 to 10%.

【0017】磁石粉末の製造方法は特に限定されない
が、通常、母合金インゴットを鋳造し、これを粉砕して
製造するか、還元拡散法によって得られた合金粉末を粉
砕して製造する。磁石粉末の平均粒子径は、通常、1〜
10μm 程度とする。
The method for producing the magnet powder is not particularly limited, but it is usually produced by casting a mother alloy ingot and crushing it, or by crushing the alloy powder obtained by the reduction diffusion method. The average particle size of the magnet powder is usually 1 to
It is about 10 μm.

【0018】R−Co系の磁石粉末は、Rと、Fe、N
i、MnおよびCrから選ばれる1種以上の金属と、C
oとを含有する。この場合、好ましくは前記に加えさら
にCuまたは、Nb、Zr、Ta、Hf、TiおよびV
から選ばれる1種以上の金属を含有し、特に好ましくは
前記に加えさらにCuと、Nb、Zr、Ta、Hf、T
iおよびVから選ばれる1種以上の金属とを含有する。
これらのうち特に、SmとCoとの金属間化合物、好ま
しくはSmCo5 金属間化合物や、Sm2 Co17金属間
化合物を主相とするもので、特にSm2 Co17金属間化
合物を主相とし、この主相が実質的にロンボヘドラルの
結晶構造を有するものが好ましい。Sm2 Co17金属間
化合物を主相とする場合、粒界には、SmCo5 系を主
体とする副相が存在する。具体的組成は、製造方法や要
求される磁気特性等に応じて適宜選択すればよいが、例
えばSm2 Co17金属間化合物を主相とする場合の好ま
しい組成例を下記に示す。
The R-Co type magnet powder is composed of R, Fe and N.
at least one metal selected from i, Mn and Cr, and C
contains o and. In this case, preferably, in addition to the above, Cu or Nb, Zr, Ta, Hf, Ti and V
Containing at least one metal selected from among the above, particularly preferably Cu, Nb, Zr, Ta, Hf, and T in addition to the above.
and one or more metals selected from i and V.
Among them, intermetallic compounds of Sm and Co, preferably SmCo 5 intermetallic compounds and Sm 2 Co 17 intermetallic compounds are the main phases, and particularly Sm 2 Co 17 intermetallic compounds are the main phases. It is preferable that the main phase has a substantially rhombohedral crystal structure. When the Sm 2 Co 17 intermetallic compound is used as the main phase, the grain boundary has a subphase mainly composed of the SmCo 5 system. The specific composition may be appropriately selected according to the production method, required magnetic properties, etc., but preferable composition examples in the case of using, for example, an Sm 2 Co 17 intermetallic compound as the main phase are shown below.

【0019】R:20〜30重量%、特に22〜28重
量%程度、Fe、Ni、MnおよびCrの1種以上:1
〜35重量%程度、Nb、Zr、Ta、Hf、Tiおよ
びVの1種以上:0〜6重量%、特に0.5〜4重量%
程度、Cu:0〜10重量%、特に1〜10重量%程
度、Co:残部。
R: 20 to 30% by weight, particularly about 22 to 28% by weight, one or more of Fe, Ni, Mn and Cr: 1
~ 35 wt%, one or more of Nb, Zr, Ta, Hf, Ti and V: 0-6 wt%, especially 0.5-4 wt%
%, Cu: 0 to 10% by weight, particularly about 1 to 10% by weight, Co: balance.

【0020】前記希土類元素の具体例としては、例え
ば、Y、La、Ce、Pr、Nb、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げる
ことができ、特に、Smおよび/またはCeを含むこと
が好ましい。
Specific examples of the rare earth element include, for example, Y, La, Ce, Pr, Nb, Sm, Eu, Gd,
Examples thereof include Tb, Dy, Ho, Er, Tm, Yb and Lu, and it is particularly preferable that Sm and / or Ce are contained.

【0021】また、Fe、Ni、MnおよびCrの1種
以上としては、Feが好ましく、特に、Feを含み必要
に応じNi、MnおよびCrの1種以上を含むことが好
ましい。
Further, as one or more kinds of Fe, Ni, Mn and Cr, Fe is preferable, and particularly, it is preferable to contain Fe and optionally one or more kinds of Ni, Mn and Cr.

【0022】また、Nb、Zr、Ta、Hf、Tiおよ
びVの1種以上としてはZrが好ましく、特に、Zrを
含み必要に応じNb、Ta、Hf、TiおよびVの1種
以上を含むことが好ましい。
Further, Zr is preferable as one or more of Nb, Zr, Ta, Hf, Ti and V. Particularly, Zr is contained and, if necessary, one or more of Nb, Ta, Hf, Ti and V is contained. Is preferred.

【0023】また、必要に応じて前記元素の他、Si、
Mo、Ca、O、C等の他の元素の1種以上を全体の3
重量%程度以下添加してもよい。なお、これらは不純物
として全体の3重量%程度以下含まれていてもよい。
In addition to the above elements, Si,
One or more of other elements such as Mo, Ca, O, and C can be added to the total 3
You may add about less than weight%. Note that these may be contained as impurities in an amount of about 3% by weight or less based on the whole.

【0024】R−Co系磁石粉末の製造方法は、特に限
定されない。磁石粉末の平均粒子径は、通常、1〜20
μm 程度とする。
The method for producing the R-Co magnet powder is not particularly limited. The average particle size of the magnet powder is usually 1 to 20.
It is about μm.

【0025】R−T−N系の磁石粉末は、R、Nおよび
Tを含有する。
The R-T-N magnet powder contains R, N and T.

【0026】Rは、Sm単独、あるいはSmおよびその
他の希土類元素の1種以上である。Sm以外の希土類元
素としては、例えばY、La、Ce、Pr、Nd、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu
等が挙げられる。Sm以外の希土類元素が多すぎると結
晶磁気異方性が低下するため、Sm以外の希土類元素は
Rの70%以下とすることが好ましい。Rの含有率は、
5〜15原子%、好ましくは7〜14原子%とする。R
の含有率が前記範囲未満であると保磁力が低下し、前記
範囲を超えると残留磁束密度が低下してしまう。
R is Sm alone or one or more of Sm and other rare earth elements. Examples of rare earth elements other than Sm include Y, La, Ce, Pr, Nd, and E.
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
Etc. If the amount of rare earth elements other than Sm is too large, the crystal magnetic anisotropy decreases, so the content of rare earth elements other than Sm is preferably 70% or less of R. The content rate of R is
It is 5 to 15 atom%, preferably 7 to 14 atom%. R
If the content is less than the above range, the coercive force will decrease, and if it exceeds the above range, the residual magnetic flux density will decrease.

【0027】Nの含有率は、0.5〜25原子%、好ま
しくは5〜20原子%とする。本発明では、Nの一部に
換えてCおよび/またはSiを含有する構成としてもよ
い。この場合、Nの含有率は0.5原子%以上であり、
N、CおよびSiの合計含有率は25原子%以下であ
る。Nの含有率が前記範囲未満となると、キュリー温度
の上昇と飽和磁化の向上が不十分であり、N、Cおよび
Siの合計含有率が前記範囲を超えると残留磁束密度が
低下する。Nの一部に換えて含有されるCおよび/また
はSiは、飽和磁化、保磁力およびキュリー温度向上効
果を示す。CおよびSiの合計含有率の下限は特にない
が、合計含有率が0.25原子%以上であれば、前記し
た効果は十分に発揮される。
The N content is 0.5 to 25 atom%, preferably 5 to 20 atom%. In the present invention, a part of N may be replaced with C and / or Si. In this case, the N content is 0.5 atomic% or more,
The total content of N, C and Si is 25 atomic% or less. If the N content is less than the above range, the Curie temperature is not sufficiently increased and the saturation magnetization is not improved enough. If the total content of N, C and Si exceeds the above range, the residual magnetic flux density is reduced. C and / or Si contained in place of a part of N exhibits an effect of improving saturation magnetization, coercive force and Curie temperature. The lower limit of the total content of C and Si is not particularly limited, but if the total content is 0.25 atom% or more, the above-mentioned effects are sufficiently exhibited.

【0028】なお、磁石のキュリー温度は、組成によっ
て異なるが430〜650℃程度である。
The Curie temperature of the magnet is about 430 to 650 ° C. although it depends on the composition.

【0029】残部は実質的にTである。TはFe、また
はFeおよびCoであり、T中のFeの含有率は20原
子%以上、特に30原子%以上であることが好ましい。
T中のFeの含有率が前記範囲未満となると残留磁束密
度が低下する。なお、T中のFe含有率の上限は特にな
いが、80原子%を超えると残留磁束密度が低下する傾
向にある。
The balance is substantially T. T is Fe, or Fe and Co, and the content of Fe in T is preferably 20 atom% or more, and more preferably 30 atom% or more.
When the content of Fe in T is less than the above range, the residual magnetic flux density decreases. There is no particular upper limit to the Fe content in T, but if it exceeds 80 atomic%, the residual magnetic flux density tends to decrease.

【0030】磁石中には、母合金中に含まれる元素M
や、Mn、Ni、Zn等の上記以外の元素が含有されて
いてもよく、また、B、O、P、S等の元素が含有され
ていてもよい。
The element M contained in the mother alloy is contained in the magnet.
Alternatively, elements other than the above, such as Mn, Ni, and Zn, may be contained, and elements such as B, O, P, and S may be contained.

【0031】なお、磁石は、Th2 Zn17型の菱面体晶
系の結晶構造を主相として有する。
The magnet has a Th 2 Zn 17 type rhombohedral crystal structure as a main phase.

【0032】R−T−N系の磁石粉末の製造方法は、通
常用いられている方法であれば特に限定されない。磁石
粉末の平均粒子径は、通常、1〜10μm 程度とする。
The method for producing the R-T-N magnet powder is not particularly limited as long as it is a commonly used method. The average particle size of the magnet powder is usually about 1 to 10 μm.

【0033】次に、図1を用い、成形工程を説明する。
なお、図1に示す例は本発明を説明する一例であり、そ
の構造等はいわゆる加圧方向と印加磁場方向とがほぼ平
行となる縦磁場成形をおこなうものであれば特に限定さ
れない。
Next, the molding process will be described with reference to FIG.
The example shown in FIG. 1 is an example for explaining the present invention, and the structure and the like are not particularly limited as long as so-called pressurizing direction and applied magnetic field direction are substantially parallel to each other as long as longitudinal magnetic field molding is performed.

【0034】本発明は、前記希土類磁石粉末を用いる磁
石の磁場成形時、磁石粉末6の成形後の厚さ(パンチ
4、4押圧方向厚さ)Lcが20mm≧Lc≧1mmである
成形体を得るためのものである。Lcは、磁石粉末6の
成形後の体積をパンチ面の面積で除した値であり、この
場合のパンチ面の面積とは投影面積である。Lcがこの
範囲より大きすぎると反磁界等が配向におよぼす影響は
ほとんどなくなり、本発明の効果はほとんどなくなる。
また、前記未満の厚さの成形は実質的に不可能である。
According to the present invention, there is provided a molded body having a thickness (punch 4, 4 pressing direction thickness) Lc of the magnet powder 6 after molding at the time of magnetic field molding of a magnet using the rare earth magnet powder of 20 mm ≧ Lc ≧ 1 mm. To get it. Lc is a value obtained by dividing the volume of the magnet powder 6 after molding by the area of the punch surface, and the area of the punch surface in this case is the projected area. When Lc is larger than this range, the influence of the demagnetizing field and the like on the orientation is almost eliminated, and the effect of the present invention is almost eliminated.
Also, molding with a thickness less than the above is practically impossible.

【0035】本発明では、上または下のパンチ4、4の
少なくとも一方のパンチ面に、強磁性体5を配置したパ
ンチ4、4を具えた成形装置1を用いる。この場合、上
のみあるいは下のみに強磁性体5を有するパンチ4、4
を用いても、上下に強磁性体5、5を有するパンチ4、
4を用いてもよい。
In the present invention, the forming apparatus 1 is provided with the punches 4 and 4 in which the ferromagnetic material 5 is arranged on at least one punch surface of the upper and lower punches 4 and 4. In this case, the punches 4, 4 having the ferromagnetic material 5 only on the top or bottom
, The punch 4 having the ferromagnetic bodies 5 and 5 on the upper and lower sides,
4 may be used.

【0036】配置される強磁性体5、5の総厚Lmは、
成形装置1に設置されている磁界を印加するために用い
るコイル2の有効長をCLとすると、(CL−Lc)≧
Lm≧1mmである。
The total thickness Lm of the ferromagnetic bodies 5, 5 arranged is
When the effective length of the coil 2 used for applying the magnetic field installed in the molding apparatus 1 is CL, (CL−Lc) ≧
Lm ≧ 1 mm.

【0037】Lmは、この範囲であれば反磁界の影響を
うち消すためには充分であり、Lmがこの範囲より短す
ぎると本発明の実効がなくなってくる。また、長すぎて
も得られる磁石の配向性に基づく磁気特性の向上は期待
できず、磁場により生じた強磁性体5、5を吸引する力
により、成形圧力の制御が難しくなり、磁石の形状バラ
ツキが大きくなりやすい。
If Lm is in this range, it is sufficient to cancel the influence of the demagnetizing field, and if Lm is too short, the effect of the present invention will be lost. Further, if it is too long, improvement in magnetic properties based on the orientation of the obtained magnet cannot be expected, and it becomes difficult to control the molding pressure due to the force of attracting the ferromagnetic bodies 5, 5 generated by the magnetic field, and the shape of the magnet Variations tend to be large.

【0038】さらに、LcとLmとの和は、CL≧(L
c+Lm)>20mmである。Lc+Lmがこの範囲より
短すぎると反磁界の影響により配向不良となりやすく、
また長すぎても得られる磁石の配向性に基づく磁気特性
の向上は期待できない。
Further, the sum of Lc and Lm is CL ≧ (L
c + Lm)> 20 mm. If Lc + Lm is shorter than this range, orientation failure tends to occur due to the influence of the demagnetizing field,
Further, if it is too long, improvement in magnetic properties based on the orientation of the obtained magnet cannot be expected.

【0039】なお、本明細書中において磁界を印加する
ために用いるコイルの有効長CLとは、コイル2の巻線
部分のパンチ軸方向の一方の端部から他方の端部までの
長さとする。
In the present specification, the effective length CL of the coil used for applying the magnetic field is the length from one end of the winding portion of the coil 2 in the punch axis direction to the other end. .

【0040】本発明でパンチの一部を構成する強磁性体
5、5に用いる強磁性材料は、飽和磁化Bsが1000
0G 以上のダイス鋼や超硬合金等を用いることができ
る。強磁性材料としては飽和磁化Bsが高いほど好まし
いが、通常用いられる材料では15000G 程度以下で
ある。
In the present invention, the ferromagnetic material used for the ferromagnetic bodies 5 and 5 forming a part of the punch has a saturation magnetization Bs of 1000.
It is possible to use die steel or cemented carbide of 0 G or more. As the ferromagnetic material, the higher the saturation magnetization Bs is, the more preferable. However, in the case of a commonly used material, it is about 15,000 G or less.

【0041】強磁性体5、5に用いる材料の飽和磁化B
sが前記より低すぎると印加する高い磁界により磁性材
料が磁気的に飽和するため、磁石粉末6に生じた反磁界
の影響を低下させることができない。
Saturation magnetization B of the material used for the ferromagnetic bodies 5 and 5
If s is lower than the above value, the magnetic field is magnetically saturated by the high magnetic field applied, and the influence of the demagnetizing field generated in the magnet powder 6 cannot be reduced.

【0042】また、強磁性体5、5はパンチの少なくと
も一部を構成するため、ロックウェル硬さ試験のCスケ
ールにおける硬さの値がHRC40程度以上の強度を有
する強磁性体であることが好ましい。
Further, since the ferromagnetic bodies 5 and 5 constitute at least a part of the punch, it is preferable that the hardness value on the C scale in the Rockwell hardness test has a strength of about HRC 40 or more. preferable.

【0043】これら強磁性体はパンチ4にロー付け等の
方法で一体化される。
These ferromagnetic materials are integrated with the punch 4 by a method such as brazing.

【0044】また、本発明で用いる成形装置1では、通
常、強磁性体5、5は非磁性材のパンチ4、4のパンチ
面全面に設けられるが、必要に応じてパンチ面の一部の
みを強磁性体とすることもできる。パンチ面の一部のみ
強磁性体とするときの強磁性体5と非磁性材料部分との
面積比や強磁性体5のパンチ面の形状はどのようであっ
てもよい。
In the molding apparatus 1 used in the present invention, the ferromagnetic bodies 5 and 5 are usually provided on the entire punch surface of the punches 4 and 4 made of a non-magnetic material, but if necessary, only a part of the punch surface is provided. Can also be a ferromagnetic material. When only a part of the punch surface is made of a ferromagnetic material, the area ratio between the ferromagnetic material 5 and the non-magnetic material portion and the shape of the punch surface of the ferromagnetic material 5 may be arbitrary.

【0045】また、これらパンチ面は印加する磁界によ
り生じる磁束方向に必ずしも垂直である必要はない。す
なわち、これらの面部分や強磁性体を種々の形状とする
ことで、例えば、磁石粉末6への印加磁界の磁束方向を
変化させることができ、配向方向を部分的に変化させる
等の制御も容易に可能となる。また、強磁性体5とパン
チ4との接合面も必ずしも平面でなくてもよい。これら
の場合、強磁性体5、5の厚さLmとは、強磁性体の全
体積をパンチ面積で除した値であり、この場合のパンチ
面積とは投影面積である。
Further, these punch surfaces do not necessarily have to be perpendicular to the magnetic flux direction generated by the applied magnetic field. That is, by forming these surface portions and the ferromagnetic material into various shapes, for example, the magnetic flux direction of the magnetic field applied to the magnet powder 6 can be changed, and control such as partially changing the orientation direction can also be performed. It is easily possible. Also, the joint surface between the ferromagnetic body 5 and the punch 4 does not necessarily have to be a flat surface. In these cases, the thickness Lm of the ferromagnetic bodies 5 and 5 is a value obtained by dividing the total volume of the ferromagnetic bodies by the punch area, and the punch area in this case is the projected area.

【0046】なお、磁場成形に用いる磁性粉末6は、焼
結磁石とするための成形体を成形するときは、通常、実
質的に前記磁石粉末のみとすることが好ましく、例えば
ボンド磁石とするための成形体を成形するときは、通
常、磁性粉末6にエポキシ系あるいはフェノール系等の
樹脂をあらかじめ混合し、分散させた後に磁場成形を行
なうことが好ましい。なお、これら樹脂の混合量は1〜
5重量%が好ましい。
The magnetic powder 6 used for magnetic field molding is usually preferably substantially only the above-mentioned magnetic powder when a molded body for forming a sintered magnet is molded, for example, because it is a bonded magnet. When molding the molded body of (1), it is usually preferable to mix the magnetic powder 6 with an epoxy-based or phenol-based resin in advance and disperse the resin, and then perform magnetic field molding. The mixing amount of these resins is 1 to
5% by weight is preferred.

【0047】本発明では、印加する磁界の印加方向を、
後述する成形のための圧力印加方向とほぼ平行とするこ
とが好ましい。磁界印加方向と圧力印加方向とがほぼ直
交するいわゆる横磁場成形法では、本発明の強磁性体
5、5をもつパンチ4、4を具えた成形装置では、磁界
印加により生じる反磁界の磁石粉末の配向への影響を防
止できない。
In the present invention, the application direction of the applied magnetic field is
It is preferable to be substantially parallel to the pressure application direction for molding described later. In the so-called transverse magnetic field forming method in which the magnetic field applying direction and the pressure applying direction are substantially orthogonal to each other, in the forming apparatus having the punches 4 and 4 having the ferromagnetic bodies 5 and 5 of the present invention, the magnet powder of the demagnetizing field generated by the magnetic field application It is impossible to prevent the influence on the orientation of.

【0048】本発明では、このような強磁性体5、5を
もつパンチ4、4を使用した成形の際に、配向のために
印加する磁界の強度は、好ましくは20kOe 以上、より
好ましくは30kOe 以上である。
In the present invention, the strength of the magnetic field applied for orientation during molding using the punches 4 and 4 having such ferromagnetic materials 5 and 5 is preferably 20 kOe or more, more preferably 30 kOe. That is all.

【0049】このような高い磁界を印加する方法として
は、パルス磁界を用いることが好ましい。また、パルス
磁界を用い、複数回パルス磁界を印加する場合は、少な
くとも1回、好ましくはすべてのパルス磁界を前記範囲
以上とする。印加する磁界の強度が前記範囲未満となる
と磁石粉末6の配向が不十分となる傾向がある。なお、
印加する磁界の強度の上限は特にないが、磁界発生装置
が大型化することや、50kOe を超える強度としても配
向度の向上は殆どみられないことなどから、通常、50
kOe 以下とする。
As a method of applying such a high magnetic field, it is preferable to use a pulsed magnetic field. When a pulsed magnetic field is applied a plurality of times and the pulsed magnetic field is applied a plurality of times, the pulsed magnetic field is at least once, and preferably all of the pulsed magnetic fields are within the above range. If the strength of the applied magnetic field is less than the above range, the orientation of the magnet powder 6 tends to be insufficient. In addition,
Although there is no particular upper limit to the strength of the applied magnetic field, it is usually 50 because the size of the magnetic field generator becomes large and there is almost no improvement in the orientation degree even when the strength exceeds 50 kOe.
kOe or less.

【0050】パルス磁界を用いる場合、持続時間は通
常、10μs 〜0.5sec 程度とすることが好ましい。
持続時間が前記範囲未満となると配向が不十分となる傾
向にあり、前記範囲を超えると磁界印加用コイル2の発
熱が大きくなりすぎる傾向にある。なお、本明細書にお
いて持続時間とは磁界印加の開始から終了までの時間で
ある。
When a pulsed magnetic field is used, the duration is usually preferably about 10 μs to 0.5 sec.
If the duration is less than the above range, the orientation tends to be insufficient, and if it exceeds the above range, the heat generation of the magnetic field applying coil 2 tends to be too large. In this specification, the duration is the time from the start to the end of the magnetic field application.

【0051】パルス磁界印加の間隔は特に限定されな
い。
The interval for applying the pulse magnetic field is not particularly limited.

【0052】成形圧力は、成形開始から終了まで一定で
あってもよく、漸増または漸減してもよく、不規則変化
してもよい。成形圧力に特に制限はない。成形圧力が低
いほど配向性は良好となるが、成形圧力が低すぎると成
形体の強度が不足してハンドリングに問題が生じるた
め、通常、0.5〜4ton/cm2 程度とすることが好まし
い。
The molding pressure may be constant from the start to the end of molding, may be gradually increased or decreased, and may be irregularly changed. There is no particular limitation on the molding pressure. The lower the molding pressure is, the better the orientation is. However, when the molding pressure is too low, the strength of the molded product is insufficient, which causes a problem in handling. Therefore, it is usually preferably about 0.5 to 4 ton / cm 2. .

【0053】本発明では、成形に際しパルス磁界を印加
する場合は、前記の条件内であれば特に制限はないが、
以下に示す条件を満足することで、配向の効果が増加す
る。
In the present invention, when the pulsed magnetic field is applied at the time of molding, there is no particular limitation as long as it is within the above conditions,
By satisfying the following conditions, the effect of orientation increases.

【0054】すなわち、磁石粉末6の成形体の相対密度
が25〜55%、好ましくは30〜45%の範囲内にあ
るときに、少なくとも3回の前記条件のパルス磁界を成
形体に印加する。本明細書において相対密度とは、実測
密度を理論密度で除した値の百分率である。実測密度
は、成形装置1の成形空間内に充填した磁石粉末6の重
量と、成形空間の内容積から算出する。
That is, when the relative density of the compact of the magnet powder 6 is within the range of 25 to 55%, preferably 30 to 45%, the pulse magnetic field under the above conditions is applied to the compact at least three times. In this specification, the relative density is a percentage of a value obtained by dividing the measured density by the theoretical density. The measured density is calculated from the weight of the magnet powder 6 filled in the molding space of the molding apparatus 1 and the internal volume of the molding space.

【0055】成形体の相対密度が前記範囲以外のときに
印加されたパルス磁界は、磁石粉末6の配向度向上に対
する寄与率が低い。従って、パルス磁界の印加回数が3
回以上であっても、成形体相対密度が前記範囲であると
きに少なくとも3回のパルス磁界が印加されなければ、
十分な配向度が得られない。
The pulse magnetic field applied when the relative density of the compact is outside the above range has a low contribution to the improvement of the orientation degree of the magnet powder 6. Therefore, the number of pulsed magnetic fields applied is 3
If the pulsed magnetic field is not applied at least three times when the relative density of the compact is within the above range,
A sufficient degree of orientation cannot be obtained.

【0056】また、成形体の密度を増加させながら少な
くとも3回のパルス磁界を印加してもよく、成形体の密
度をほぼ一定に保って少なくとも3回のパルス磁界を印
加してもよい。
Further, the pulse magnetic field may be applied at least three times while increasing the density of the compact, or the pulse magnetic field may be applied at least three times while keeping the density of the compact substantially constant.

【0057】さらに、成形体の相対密度が前記範囲外で
あるときにも磁界を印加してよい。すなわち、前記密度
範囲においてパルス磁界を印加する前および/または印
加した後に、パルス磁界や、定常磁界、断続的な磁界な
どを印加してもよい。
Further, the magnetic field may be applied even when the relative density of the molded body is out of the above range. That is, a pulse magnetic field, a steady magnetic field, an intermittent magnetic field, etc. may be applied before and / or after applying the pulse magnetic field in the density range.

【0058】なお、成形体の最終的な相対密度、すなわ
ち成形体の相対密度は、通常、50〜60%程度であ
る。また、成形体の平面寸法、形状等には制限はない。
The final relative density of the molded body, that is, the relative density of the molded body is usually about 50 to 60%. Further, there is no limitation on the plane size, shape, etc. of the molded body.

【0059】前記のようにして得られた成形体は、後述
するように焼結されて焼結磁石としたり、あらかじめ前
記樹脂等を混合した後に磁場成形した成形体を、キュア
リング処理等を施してボンド磁石としたりする。
The molded body obtained as described above is sintered as described later to form a sintered magnet, or the molded body which is magnetically molded after previously mixing the resin or the like is subjected to a curing treatment or the like. And make it a bond magnet.

【0060】焼結磁石とする際の焼結時の各種条件に特
に制限はないが、例えば1000〜1250℃で0.5
〜12時間、特に1〜5時間程度焼結し、その後、急冷
することが好ましい。なお、焼結雰囲気は、真空中また
はArガス等の非酸化性ガス雰囲気であることが好まし
い。さらに焼結後、時効処理、着磁処理等が必要に応じ
て施される。
There are no particular restrictions on the various conditions during sintering of the sintered magnet, but it is, for example, 0.5 at 1000 to 1250 ° C.
It is preferable to sinter for about 12 hours, particularly for about 1 to 5 hours, and then quench. The sintering atmosphere is preferably vacuum or a non-oxidizing gas atmosphere such as Ar gas. Further, after the sintering, an aging treatment, a magnetizing treatment and the like are performed if necessary.

【0061】[0061]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0062】実施例1 組成が31.0Nd−1.5Dy−68.5Fe−1.
0B(重量%)の合金インゴットを鋳造により作製し
た。この合金インゴットをジョークラッシャおよびブラ
ウンミルにより−#32にまで粗粉砕し、次いで、ジェ
ットミルにより微粉砕し、平均粒子径4μm の磁石粉末
6を得た。
Example 1 The composition was 31.0 Nd-1.5 Dy-68.5 Fe-1.
A 0B (wt%) alloy ingot was made by casting. This alloy ingot was roughly crushed to-# 32 by a jaw crusher and a brown mill, and then finely crushed by a jet mill to obtain a magnet powder 6 having an average particle diameter of 4 µm.

【0063】用いた成形装置の一部は、図1に示す構成
をもつ。この装置の金型部分は非磁性材料製のダイス3
と、一部に強磁性体5をもち、残り部分が非磁性金属製
のパンチ4、4とから構成され、印加する磁界により生
じる磁束方向と垂直な平面に、3.2cm×3.2cmの面
積の成形空間(キャビティ)を有する。なお、CL=1
20mmである。
A part of the molding apparatus used has the structure shown in FIG. The mold part of this device is a die 3 made of non-magnetic material.
And a punch 4 and 4 made of non-magnetic metal and having a ferromagnetic material 5 in a part and the rest being 3.2 cm × 3.2 cm in a plane perpendicular to the magnetic flux direction generated by the applied magnetic field. It has a molding space (cavity) of area. CL = 1
It is 20 mm.

【0064】強磁性体5、5として飽和磁化(Bs)が
12kGで厚さが10mmのダイス鋼を具えたパンチ4、4
(すなわちLmは20mm)と、強磁性体5、5を具えて
いないパンチ4、4とを用い、前記磁石粉末6の成形後
の厚さ(Lc)を表1になるように磁石粉末6の量を変
化させて前記成形空間内に充填し、以下の条件で磁場成
形を行った。
Punches 4 and 4 with a die steel having a saturation magnetization (Bs) of 12 kG and a thickness of 10 mm as the ferromagnetic bodies 5 and 5.
(That is, Lm is 20 mm) and the punches 4 and 4 having no ferromagnetic materials 5 and 5 are used to obtain the thickness (Lc) of the magnet powder 6 after molding as shown in Table 1. The amount was changed to fill the molding space, and magnetic field molding was performed under the following conditions.

【0065】磁場成形条件は、印加圧力を1ton/cm2
し、前記成形空間の中心におけるパルス磁界の印加強度
を30kOe として、磁石粉末の相対密度が30〜45%
の間に、前記パルス磁界を6回印加した。得られた成形
体の最終密度は相対密度として53%であった。なお、
実測密度を求めるために、必要な成形空間の内容積は、
パンチ4の移動量から算出した。また、理論密度は7.
62g/cm2 とした。
The magnetic field molding conditions were that the applied pressure was 1 ton / cm 2 , the applied strength of the pulse magnetic field at the center of the molding space was 30 kOe, and the relative density of the magnet powder was 30 to 45%.
In the meantime, the pulsed magnetic field was applied 6 times. The final density of the obtained molded body was 53% as a relative density. In addition,
In order to obtain the measured density, the required internal volume of the molding space is
It was calculated from the moving amount of the punch 4. The theoretical density is 7.
It was set to 62 g / cm 2 .

【0066】このようにして得られた成形体を、110
0℃、2時間真空焼結し、時効処理を施し、焼結磁石を
得た。得られた磁石について、Bsが12kGのダイス鋼
を具えたパンチ4、4で成形したものを試料番号1〜6
とし、強磁性体を具えていないパンチ4、4で成形した
ものを試料番号7〜12として、配向方向の残留磁束密
度(Br)を測定した。結果を表1にまとめて示す。な
お、表示単位はkGとした。
The molded body thus obtained was treated with 110
Vacuum sintering was performed at 0 ° C. for 2 hours, and aging treatment was performed to obtain a sintered magnet. The magnets obtained were molded with punches 4 and 4 equipped with a die steel having Bs of 12 kG. Sample Nos. 1 to 6
And the residual magnetic flux density (Br) in the orientation direction was measured using samples punched with punches 4 and 4 having no ferromagnetic material as sample numbers 7 to 12. The results are summarized in Table 1. The display unit was kG.

【0067】[0067]

【表1】 [Table 1]

【0068】表1より、強磁性体5,5としてBsが1
2kGのダイス鋼を具えたパンチ4、4を用いた試料番号
1〜6はLc≦20mmであってもBrの低下は認められ
なかった。一方、強磁性体5,5を具えていないパンチ
4、4を用いた試料番号7〜12では、Lc≦20mmで
磁気特性が低下した。そのためLc≦20mmでは設計上
の磁気特性が得られず、本発明の成形方法を用いない場
合は組成変更等での対応が必要である。
From Table 1, Bs is 1 as the ferromagnetic materials 5 and 5.
In samples Nos. 1 to 6 using punches 4 and 4 equipped with a die steel of 2 kG, Br was not decreased even when Lc ≦ 20 mm. On the other hand, in Sample Nos. 7 to 12 using the punches 4 and 4 having no ferromagnetic materials 5 and 5, the magnetic characteristics were deteriorated when Lc ≦ 20 mm. Therefore, when Lc ≦ 20 mm, the designed magnetic properties cannot be obtained, and when the molding method of the present invention is not used, it is necessary to take measures such as changing the composition.

【0069】比較例1 強磁性体5、5の部分に、実施例1で用いたダイス鋼に
かえて飽和磁化Bsが6kGで、厚さが10mmの磁性超硬
金属を用い、他は実施例1と同様にして磁場成形、焼結
および時効処理を施して焼結磁石を得た。得られた磁石
について、実施例1と同様にBrを測定した。その結
果、Lc≦20mmの試料では、試料番号7〜11と同様
に磁気特性が低下した結果が得られた。
Comparative Example 1 In the ferromagnetic materials 5 and 5, a magnetic cemented carbide having a saturation magnetization Bs of 6 kG and a thickness of 10 mm was used instead of the die steel used in Example 1, and the other examples were used. In the same manner as in 1, magnetic field molding, sintering and aging treatment were performed to obtain a sintered magnet. Br of the obtained magnet was measured in the same manner as in Example 1. As a result, in the sample with Lc ≦ 20 mm, the result that the magnetic characteristics were deteriorated was obtained similarly to the sample numbers 7 to 11.

【0070】実施例2 組成が26.0Sm−15.0Fe−7.0Cu−2.
5Zr−Bal.Co(重量%)の合金インゴットを鋳
造により作成した。この合金インゴットをブラウンミル
およびジェットミルを用いて粉砕し、平均粒径4μm の
磁石粉末6を得た。
Example 2 The composition was 26.0 Sm-15.0Fe-7.0Cu-2.
5Zr-Bal. An alloy ingot of Co (wt%) was created by casting. The alloy ingot was crushed using a brown mill and a jet mill to obtain a magnet powder 6 having an average particle size of 4 μm.

【0071】この磁石粉末6を、強磁性体5、5として
Bsが12kGで厚さが10mmのダイス鋼を具えたパンチ
4、4(すなわちLmは20mm)と強磁性体5、5を具
えていないパンチ4、4とを用い、実施例1の装置を用
いてLcを表2のように変化させ、以下の条件で磁場成
形を行った。
This magnet powder 6 was provided with punches 4 and 4 (that is, Lm is 20 mm) and ferromagnets 5 and 5 which were made of die steel having Bs of 12 kG and a thickness of 10 mm as ferromagnets 5 and 5. Using the punches 4 and 4 which were not provided, Lc was changed as shown in Table 2 using the apparatus of Example 1, and magnetic field molding was performed under the following conditions.

【0072】磁場成形条件は、印加圧力を3ton/cm2
し、実施例1と同様の磁場を印加して成形体を得た。こ
の成形体を1200℃、1時間Arガス雰囲気中で焼結
し、時効処理を施して焼結磁石を得た。得られた磁石に
ついて、Bsが12kGのダイス鋼を具えたパンチ4、4
を用いたものを試料番号13、15とし、強磁性体5,
5を具えていないパンチ4、4を用いたものを試料番号
14、16として、Brを測定した。結果を表2にまと
めて示す。なお、表示単位はkGとした。
The magnetic field molding conditions were an applied pressure of 3 ton / cm 2 and the same magnetic field as in Example 1 was applied to obtain a molded body. This molded body was sintered at 1200 ° C. for 1 hour in an Ar gas atmosphere and subjected to an aging treatment to obtain a sintered magnet. About the obtained magnet, punches 4 and 4 with die steel having Bs of 12 kG
Samples Nos. 13 and 15 using
Br was measured using Samples Nos. 14 and 16 in which punches 4 and 4 not including No. 5 were used. The results are summarized in Table 2. The display unit was kG.

【0073】[0073]

【表2】 [Table 2]

【0074】表2より、R−Co系磁石においても、本
発明の成形方法を用た磁石ではLc≦20mmでの磁気特
性の低下がなく、本発明の効果が認められた。
From Table 2, even in the R-Co type magnet, the magnet using the molding method of the present invention showed no deterioration of the magnetic characteristics when Lc≤20 mm, and the effect of the present invention was recognized.

【0075】実施例3 組成が24.0Sm−72.5Fe−3.5N(重量
%)で、平均粒径2μmの磁石粉末6を作成した。
Example 3 A magnet powder 6 having a composition of 24.0Sm-72.5Fe-3.5N (wt%) and an average particle size of 2 μm was prepared.

【0076】この磁石粉末6に3重量%となるようにエ
ポキシ樹脂を混合し、強磁性体5、5としてBsが12
kGで厚さが10mmのダイス鋼を具えたパンチ4、4(す
なわちLmは20mm)と強磁性体5、5を具えていない
パンチ4、4とを用い、実施例1と同じ装置によりLc
を表3のように変化させ、実施例1と同じ条件で磁場成
形を行い、キュアリング処理してボンド磁石を得た。得
られた磁石について、Bsが12kGのダイス鋼を具えた
パンチ4、4を用いたものを試料番号17、19とし、
強磁性体を具えていないパンチ4、4を用いたものを試
料番号18、20として、Brを測定した。結果を表3
にまとめて示す。なお、表示単位はkGとした。
Epoxy resin was mixed with this magnet powder 6 so as to be 3% by weight, and Bs was 12 as the ferromagnetic materials 5 and 5.
Using punches 4 and 4 (that is, Lm is 20 mm) provided with die steel having a thickness of 10 mm and a thickness of 10 mm and punches 4 and 4 having no ferromagnetic materials 5 and 5, Lc was obtained by the same apparatus as in Example 1.
Was changed as shown in Table 3, magnetic field molding was performed under the same conditions as in Example 1, and a curing treatment was performed to obtain a bonded magnet. Of the obtained magnets, punches 4 and 4 having die steel having Bs of 12 kG were used as sample numbers 17 and 19,
Br using the punches 4 and 4 having no ferromagnetic material was measured as sample numbers 18 and 20. The results are shown in Table 3.
Are shown together. The display unit was kG.

【0077】[0077]

【表3】 [Table 3]

【0078】表3より、R−T−N系磁石においても、
本発明の成形方法を用た磁石ではLc≦20mmでの磁気
特性の低下がなく、本発明の効果が認められた。
From Table 3, also in the R-T-N magnet,
In the magnet using the molding method of the present invention, the magnetic characteristics were not deteriorated when Lc ≦ 20 mm, and the effect of the present invention was confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の成形方法で用いる、好ましいパンチの
一例を有する成形装置の一部を示す断面図である。
FIG. 1 is a sectional view showing a part of a molding apparatus having an example of a preferable punch used in a molding method of the present invention.

【符号の説明】 1 成形装置(一部) 2 コイル 3 ダイス 4 パンチ 5 強磁性体 6 磁石粉末[Explanation of reference numerals] 1 molding device (part) 2 coil 3 die 4 punch 5 ferromagnetic material 6 magnet powder

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R(Rは、Yを含む希土類元素の少なく
とも1種である。)および遷移元素を含有する磁石粉末
を上下パンチ間で、この上下パンチ軸方向成分を有する
磁界中で磁場成形する際に、 上パンチおよび/または下パンチのパンチ面に、前記軸
方向の総厚Lmが、 (CL−Lc)≧Lm≧1mmでありかつ CL≧(Lm+Lc)>20mm (CLは磁界を印加するために用いるコイルの有効長で
あり、Lcは磁石粉末の成形後の前記軸方向の厚さであ
る。)である強磁性体を配置し、磁界を印加して上下パ
ンチで押圧し、20mm≧Lc≧1mmの成形体を得る磁石
粉末の磁場成形方法。
1. Magnetic field forming in a magnetic field having an upper and lower punch axial component magnetic powder containing R (R is at least one rare earth element including Y) and a transition element between upper and lower punches. In this case, the total thickness Lm in the axial direction is (CL-Lc) ≧ Lm ≧ 1 mm and CL ≧ (Lm + Lc)> 20 mm on the punch surface of the upper punch and / or the lower punch (CL applies a magnetic field). The effective length of the coil used for this purpose, and Lc is the thickness in the axial direction after the magnet powder has been molded.), A magnetic field is applied and pressed by the upper and lower punches, 20 mm A magnetic powder magnetic field molding method for obtaining a molded body of ≧ Lc ≧ 1 mm.
【請求項2】 前記強磁性体は、飽和磁化Bsが100
00G 以上である請求項1の磁石用粉末の磁場成形方
法。
2. The ferromagnetic material has a saturation magnetization Bs of 100.
The magnetic field molding method for magnet powder according to claim 1, which has a magnetic field strength of at least 00G.
【請求項3】 前記磁界は、印加方向が成形圧力印加方
向とほぼ一致している請求項1または2の磁石用粉末の
磁場成形方法。
3. The magnetic powder magnetic field molding method according to claim 1, wherein the magnetic field has an application direction substantially coinciding with a molding pressure application direction.
【請求項4】 前記磁界は、強度が20kOe 以上である
請求項1〜3のいずれかの磁石用粉末の磁場成形方法。
4. The magnetic field molding method for magnet powder according to claim 1, wherein the magnetic field has an intensity of 20 kOe or more.
【請求項5】 前記磁界は、持続時間が10μs 〜0.
5sec のパルス磁界である請求項1〜4のいずれかの磁
石用粉末の磁場成形方法。
5. The magnetic field has a duration of 10 μs to 0.
The magnetic field molding method for magnet powder according to any one of claims 1 to 4, wherein the pulsed magnetic field is 5 sec.
【請求項6】 前記パルス磁界は、前記磁石粉末の成形
体の相対密度が25〜55%の範囲内にあるときに、少
なくとも3回のパルス磁界を前記成形体に印加する請求
項5の磁石用粉末の磁場成形方法。
6. The magnet according to claim 5, wherein the pulsed magnetic field applies the pulsed magnetic field to the compacted body at least three times when the relative density of the compacted body of the magnet powder is within the range of 25 to 55%. Magnetic field molding method for powders.
【請求項7】 前記磁石粉末が、R−T−B系の磁石粉
末(Tは、FeまたはFeおよびCoである。)、R−
Co系の磁石粉末またはR−T−N系の磁石粉末のいず
れかである請求項1〜6のいずれかの磁石用粉末の磁場
成形方法。
7. The magnet powder is an RTB-based magnet powder (T is Fe or Fe and Co), R—.
The magnetic field molding method for magnet powder according to any one of claims 1 to 6, which is either a Co magnet powder or an RTN magnet powder.
【請求項8】 請求項1〜7のいずれかに記載の方法に
より成形された磁石の製造方法。
8. A method for manufacturing a magnet molded by the method according to claim 1.
JP14004093A 1993-05-19 1993-05-19 Method for forming magnetic field of magnet powder and method for manufacturing magnet Expired - Lifetime JP3357421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14004093A JP3357421B2 (en) 1993-05-19 1993-05-19 Method for forming magnetic field of magnet powder and method for manufacturing magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14004093A JP3357421B2 (en) 1993-05-19 1993-05-19 Method for forming magnetic field of magnet powder and method for manufacturing magnet

Publications (2)

Publication Number Publication Date
JPH06330102A true JPH06330102A (en) 1994-11-29
JP3357421B2 JP3357421B2 (en) 2002-12-16

Family

ID=15259575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14004093A Expired - Lifetime JP3357421B2 (en) 1993-05-19 1993-05-19 Method for forming magnetic field of magnet powder and method for manufacturing magnet

Country Status (1)

Country Link
JP (1) JP3357421B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413457B1 (en) 1998-12-28 2002-07-02 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus, punch, method for pressing powder and method for manufacturing the punch
WO2003031168A1 (en) * 2001-10-02 2003-04-17 Sumitomo Special Metals Co., Ltd. Press and magnet manufacturing method
US7828988B2 (en) 2004-08-24 2010-11-09 Panasonic Corporation Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
DE102013205421A1 (en) * 2013-03-27 2014-10-16 Siemens Aktiengesellschaft Pressing tool for producing a magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413457B1 (en) 1998-12-28 2002-07-02 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus, punch, method for pressing powder and method for manufacturing the punch
WO2003031168A1 (en) * 2001-10-02 2003-04-17 Sumitomo Special Metals Co., Ltd. Press and magnet manufacturing method
US7314530B2 (en) 2001-10-02 2008-01-01 Neomax Co., Ltd. Press and magnet manufacturing method
US7604468B2 (en) 2001-10-02 2009-10-20 Hitachi Metals, Ltd. Press machine and method for producing magnet
US7828988B2 (en) 2004-08-24 2010-11-09 Panasonic Corporation Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
DE102013205421A1 (en) * 2013-03-27 2014-10-16 Siemens Aktiengesellschaft Pressing tool for producing a magnet

Also Published As

Publication number Publication date
JP3357421B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US8846136B2 (en) Production method of rare earth magnet
EP1970924B1 (en) Rare earth permanent magnets and their preparation
KR100524340B1 (en) Solid Material for Magnet
US5538565A (en) Rare earth cast alloy permanent magnets and methods of preparation
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
EP2608224A1 (en) Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
JP4484063B2 (en) Magnetic field forming method, rare earth sintered magnet manufacturing method
KR101918975B1 (en) MAGNET of Nd-Fe-B SYSTEM AND THE MANUFACTURING METHOD THEREOF
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2001210508A (en) Method of manufacturing arc segment magnet, ring magnet, and rare earth sintered magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPH06302417A (en) Permanent magnet and its manufacture
JP4687267B2 (en) Method for producing powder compact
JPS61179801A (en) Alloy powder for bond magnet and its production
JP3604853B2 (en) Manufacturing method of anisotropic bonded magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP2006328517A (en) Method for producing rare earth alloy powder molding
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JPH0532459B2 (en)
JPS6230847A (en) Production of permanent magnet material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

EXPY Cancellation because of completion of term