JP3101800B2 - Manufacturing method of anisotropic sintered permanent magnet - Google Patents
Manufacturing method of anisotropic sintered permanent magnetInfo
- Publication number
- JP3101800B2 JP3101800B2 JP07206813A JP20681395A JP3101800B2 JP 3101800 B2 JP3101800 B2 JP 3101800B2 JP 07206813 A JP07206813 A JP 07206813A JP 20681395 A JP20681395 A JP 20681395A JP 3101800 B2 JP3101800 B2 JP 3101800B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnetic field
- magnetic
- permanent magnet
- magnet powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、異方性焼結磁石の
製造方法に関するものである。[0001] The present invention relates to a method for producing an anisotropic sintered magnet.
【0002】[0002]
【従来の技術】異方性焼結磁石としては、Baフェライ
ト系、Srフェライト系などのフェライト磁石、R−C
o系、R−Fe−B系などの希土類磁石が広く使用され
ているが、近年高性能磁石として希土類磁石の使用が急
激に伸びている。これら異方性焼結磁石は、磁性を担っ
ている各結晶粒の容易磁化方向をある一定の方向に揃え
たものであり、そのため、結晶粒の容易磁化方向がばら
ばらの方向を向いている等方性磁石に比較して、その容
易磁化方向に着磁されたときに残留磁束密度の値が大き
く、したがって、最大エネルギー積を大きくすることが
できる。また、焼結磁石であるため、樹脂などで結合さ
れたボンディッド磁石と比較して、非磁性物質の存在量
が少ないため、残留磁束密度の値が大きくなり、最大エ
ネルギー積を大きくできる。したがって、異方性焼結磁
石が、同じ材料を用いた磁石の中で、一番大きな最大エ
ネルギー積を得ることができるため、広く使用されてい
る。2. Description of the Related Art Ferrite magnets such as Ba ferrite and Sr ferrite magnets and RC
Rare-earth magnets such as o-based and R-Fe-B-based are widely used, but in recent years, the use of rare-earth magnets as high-performance magnets has been rapidly increasing. In these anisotropic sintered magnets, the direction of easy magnetization of each crystal grain that bears magnetism is aligned in a certain direction, and therefore, the direction of easy magnetization of crystal grains is oriented in different directions. Compared with an isotropic magnet, when magnetized in its easy magnetization direction, the value of the residual magnetic flux density is large, and therefore, the maximum energy product can be increased. Further, since it is a sintered magnet, the amount of the non-magnetic substance is smaller than that of a bonded magnet bonded with a resin or the like, so that the value of the residual magnetic flux density is increased and the maximum energy product can be increased. Therefore, anisotropic sintered magnets are widely used because they can obtain the largest maximum energy product among magnets using the same material.
【0003】異方性焼結磁石は、磁性結晶粒の容易磁化
方向をある一定の方向に揃えるために、その材料を、そ
れぞれの粉砕粉が単結晶になるまで粉砕し、その粉砕粉
に外部磁場を印加することにより磁石粉の磁化容易軸を
外部磁場の方向と平行な方向に揃え、圧力をかけて圧縮
し成形する。その後、成形された磁石粉は、所定の条件
で焼結され、異方性焼結磁石を製造する。材料によって
は、焼結後、熱処理を要する場合もある。例えば、R2
Co17系磁石では、焼結後、溶体化処理を行い、さらに
時効処理を行う。R−Fe−B系磁石では、焼結後、5
00℃近傍で熱処理を行うことにより磁石を製造してい
る。[0003] Anisotropic sintered magnets are made by pulverizing the material until each pulverized powder becomes a single crystal in order to align the direction of easy magnetization of the magnetic crystal grains to a certain direction, and apply the external powder to the pulverized powder. By applying a magnetic field, the axis of easy magnetization of the magnet powder is aligned in a direction parallel to the direction of the external magnetic field, and compressed and molded by applying pressure. Then, the formed magnet powder is sintered under predetermined conditions to produce an anisotropic sintered magnet. Depending on the material, heat treatment may be required after sintering. For example, R 2
After sintering, the Co 17 magnet is subjected to a solution treatment and then an aging treatment. For the R-Fe-B magnet, after sintering, 5
The magnet is manufactured by performing heat treatment at around 00 ° C.
【0004】成形工程で使用される磁場プレス機は、ダ
イス、上パンチ、下パンチおよび磁場発生手段からな
る。ダイス、上パンチおよび下パンチで構成されるキャ
ビティ内に磁石粉を供給し、磁場発生手段により配向磁
場を印加することにより磁石粉の容易磁化方向を一方向
に揃え、上パンチ、下パンチにより圧力を伝達し、キャ
ビティ内の磁石粉を成形する。成形は電磁石などで静磁
場を印加し、その静磁場を印加したまま行われるのが一
般的であるが、電磁石による静磁場では得られる磁場の
大きさが限定されてしまうので、大きな磁場で配向を行
いたい時には、磁場発生手段として空芯コイルによるパ
ルス磁場を用いることがある。パルス磁場を用いる時に
は、キャビティ内に磁石粉を供給した後、パルス磁場を
印加し、次いで成形を行う。しかしながら、パルス磁場
を発生させるとコイルの発熱が生じるなどの問題点が大
きく、生産方法としては好ましくない。[0004] The magnetic field press used in the molding process includes a die, an upper punch, a lower punch, and a magnetic field generating means. Magnet powder is supplied into a cavity composed of a die, an upper punch and a lower punch, and an orientation magnetic field is applied by a magnetic field generating means to align the direction of easy magnetization of the magnet powder in one direction. To form the magnet powder in the cavity. In general, molding is performed by applying a static magnetic field with an electromagnet or the like, and the static magnetic field is applied.However, the static magnetic field using an electromagnet limits the size of the magnetic field obtained. In some cases, a pulse magnetic field generated by an air-core coil is used as the magnetic field generating means. When a pulse magnetic field is used, a magnet powder is supplied into the cavity, a pulse magnetic field is applied, and then molding is performed. However, the generation of a pulsed magnetic field causes significant problems such as heat generation of the coil, which is not preferable as a production method.
【0005】キャビティ内に充填された磁石粉に配向磁
場をかける方向には、上下パンチによる圧力印加の方向
と平行方向に磁場をかける縦磁場成形と、垂直方向に磁
場を印加する横磁場成形とがある。横磁場成形を選択す
るか縦磁場成形を選択するかは、製造される材料、特
性、形状、着磁方向などによって判断されるが、縦磁場
成形により製造された焼結磁石は横磁場成形の場合と比
較して磁気特性が低下するので、横磁場成形を用いるこ
とが多い。[0005] In the direction in which an orientation magnetic field is applied to the magnet powder filled in the cavity, there are a vertical magnetic field forming in which a magnetic field is applied in a direction parallel to the direction of pressure application by the upper and lower punches, and a horizontal magnetic field forming in which a magnetic field is applied in the vertical direction. There is. Whether to select horizontal magnetic field molding or vertical magnetic field molding is determined by the material, properties, shape, magnetization direction, etc., to be manufactured. Since magnetic properties are lower than in the case, transverse magnetic field shaping is often used.
【0006】[0006]
【発明が解決しようとする課題】ところで、磁場を印加
して成形、焼結を行い、磁石を製造した際に、一つの焼
結体の各部分により、磁気特性がばらつくことがある。
特に、焼結磁石の表面は中央部と比較して残留磁束密度
の劣化が著しく、これは、表面近傍では配向の乱れが大
きいためと考えられる。このように表面付近に配向の乱
れがあり、残留磁束密度が劣化していると、焼結体全体
として残留磁束密度が低くなってしまう。このような現
象は、焼結体の寸法が小さいときには特に顕著に現われ
る。特に近年は、異方性焼結磁石が使用される電子、電
気機器が小型化し、それに伴い異方性焼結磁石の寸法も
小さく薄型になってきているため、配向の乱れによる磁
気特性の劣化は無視することはできないようになってき
つつある。さらに、小型の磁石を製造する際、大型の焼
結体ブロックを切断して製造することもあるが、表面近
くから切り出された磁石は、残留磁束密度が低く使用に
耐えないことも多々あり、歩留りの低下を引き起こして
いる。When a magnet is manufactured by applying a magnetic field to perform molding and sintering, magnetic properties may vary depending on each portion of one sintered body.
In particular, the residual magnetic flux density is significantly deteriorated on the surface of the sintered magnet as compared with the central portion, which is considered to be due to a large disturbance in the orientation near the surface. If the orientation is disturbed in the vicinity of the surface and the residual magnetic flux density is deteriorated, the residual magnetic flux density of the entire sintered body becomes low. Such a phenomenon appears particularly remarkably when the size of the sintered body is small. In particular, in recent years, the size of electronic and electric devices that use anisotropic sintered magnets has become smaller, and the size of anisotropic sintered magnets has become smaller and thinner. Is becoming impossible to ignore. In addition, when manufacturing small magnets, large sintered blocks may be cut and manufactured, but magnets cut from near the surface often have low residual magnetic flux density and cannot be used, This is causing a decrease in yield.
【0007】本発明者らは、前記問題点を解決するため
の手段として、ダイス、上パンチおよび下パンチの金型
部材の全て、あるいは、少なくとも一部を磁性を有する
金属材料とすることが有効であることを見いだし、既に
提案している。(特願平7−151093)As a means for solving the above-mentioned problems, the present inventors have effective that all or at least a part of the die member of the die, the upper punch, and the lower punch is made of a magnetic metal material. And has already proposed. (Japanese Patent Application 7-151093)
【0008】特願平7−151093の発明は、ダイ
ス、上パンチおよび下パンチの金型部材の全て、あるい
は、少なくとも一部を磁性を有する金属材料とすること
により、成形体表面に磁極が現れるのを防止してキャビ
ティ空間内の磁束の分布を均一にし、また、磁束の方向
をなるべく平行に揃えようとするものである。According to the invention of Japanese Patent Application No. Hei 7-15093, a magnetic pole appears on the surface of a molded body by using all or at least a part of a die member of a die, an upper punch and a lower punch with a metal material having magnetism. To make the distribution of the magnetic flux in the cavity space uniform and to make the direction of the magnetic flux as parallel as possible.
【0009】その結果、異方性焼結磁石の配向が、特
に、焼結体ブロックの表面近傍の配向が、格段に改善さ
れ、それにより磁石の残留磁束密度が顕著に向上し、ま
た、大型ブロックからの切り出しによる磁石製造歩留り
も大幅に改善された。しかしながら、特に上パンチおよ
び下パンチに磁性金属材料を用いた場合には、パンチに
磁化が残留するため、いったん磁場成形を行い、次い
で、得られた成形体をダイスより取り出して、次の成形
を行うために磁石粉をキャビティ内に供給する時に、キ
ャビティ内に磁石粉を均一に充填することが困難とな
り、充填密度にムラができやすくなる。そのため、成形
を行った時の成形体密度にもムラができ、そのまま焼結
を行うと、成形体密度の小さい部分は成形体密度の大き
い部分と比較して、焼結による収縮が大きいため、焼結
体の形状がいびつになってしまい、歩留りの低下をもた
らしていた。それを防止するため、設計通りの磁石形状
よりも大きめに永久磁石を製造し、所定の形状になるま
で加工する必要があったので、加工代が大きく材料歩留
りの低下をも引き起こすなど工程上の改善が要望されて
いた。As a result, the orientation of the anisotropic sintered magnet, especially the orientation near the surface of the sintered block is remarkably improved, so that the residual magnetic flux density of the magnet is remarkably improved, and Magnet production yield by cutting from blocks has also been greatly improved. However, in particular, when a magnetic metal material is used for the upper punch and the lower punch, since magnetization remains in the punch, magnetic field molding is performed once, and then the obtained molded body is taken out of the die and subjected to the next molding. When the magnet powder is supplied into the cavity for the purpose, it is difficult to uniformly fill the cavity with the magnet powder, and the filling density tends to be uneven. For this reason, the density of the compact when molding is performed also becomes uneven, and if the sintering is performed as it is, the shrinkage due to sintering is greater in a portion having a smaller compact density than a portion having a higher compact density, The shape of the sintered body was distorted, resulting in a decrease in yield. In order to prevent this, it was necessary to manufacture permanent magnets larger than the designed magnet shape and process them until they became the specified shape. Improvement was requested.
【0010】[0010]
【課題を解決するための手段】本発明者らは、前記問題
点を解決しようと鋭意努力した結果、本発明を完成させ
たもので、その要旨は、異方性焼結磁石製造の成形工程
において、上パンチおよび下パンチの少なくとも先端部
分を飽和磁化4πIsが500〜12000ガウス、か
つ、残留磁化4πIrが6000ガウス以下の磁性を有
する金属材料として、ダイス、前記上パンチおよび下パ
ンチで構成される金型のキャビティ内に永久磁石粉末を
供給し、該永久磁石粉末の容易磁化方向を配向させるた
めの磁場を印加し、更に圧縮して成形を行うことを特徴
とする異方性焼結磁石の製造方法であり、特に前記永久
磁石粉末が、R−Fe−B系またはR−Co系の希土類
永久磁石粉末である異方性焼結磁石の製造方法である。Means for Solving the Problems The present inventors have made intensive efforts to solve the above problems, and as a result, have completed the present invention. , At least the tip portions of the upper punch and the lower punch are formed of a die, the upper punch, and the lower punch as a metal material having a magnetization of 4πIs of 500 to 12,000 gauss and a remanence of 4πIr of 6000 gauss or less. A permanent magnet powder is supplied into a mold cavity, a magnetic field for orienting the direction of easy magnetization of the permanent magnet powder is applied, and further compaction is performed to perform molding. This is a method for producing an anisotropic sintered magnet, in which the permanent magnet powder is an R-Fe-B-based or R-Co-based rare earth permanent magnet powder.
【0011】上パンチおよび下パンチの少なくとも先端
部分の材質として飽和磁化4πIsが500〜1200
0ガウスの磁性を有する金属材料を選定するため、成形
体表面に磁極が現れるのを防止してキャビティ空間内の
磁束の分布を均一に、また、磁束の方向をなるべく平行
に揃えることができるようになる。これにより、異方性
焼結磁石の配向が、特に、焼結体ブロックの表面近傍の
配向が、格段に改善され、それにより磁石の残留磁束密
度が顕著に向上し、また、大型ブロックからの切り出し
による磁石製造歩留りも大幅に改善されるようになる。The material of at least the tip of the upper punch and the lower punch has a saturation magnetization of 4πIs of 500 to 1200.
In order to select a metal material having a magnetic property of 0 gauss, it is necessary to prevent the appearance of magnetic poles on the surface of the molded body, to make the distribution of magnetic flux in the cavity space uniform, and to make the direction of the magnetic flux as parallel as possible. become. Thereby, the orientation of the anisotropic sintered magnet, especially the orientation near the surface of the sintered block is remarkably improved, whereby the residual magnetic flux density of the magnet is remarkably improved. The yield of magnet production by cutting will be greatly improved.
【0012】さらに、上パンチおよび下パンチの少なく
とも先端部分の磁性金属材料の残留磁化4πIrが60
00ガウス以下であるため、磁石粉をキャビティ内に供
給する時に、均一に磁石粉をキャビティ内に充填するこ
とができる。したがって、成形時の作業効率が向上する
だけでなく、キャビティ内への充填密度が均一であるの
で、成形体密度も均一となり、したがって、焼結の際の
収縮のバラツキが生じることがないので、いびつな形状
の焼結体が製造されることがなく、焼結体形状を設計通
りのものとすることができるようになる。そのため、製
造歩留りが向上するとともに、加工代を小さくすること
が可能となり、材料歩留りも改善される。Further, the residual magnetization 4πIr of the magnetic metal material at least at the tip portions of the upper punch and the lower punch is 60.
Since it is not more than 00 Gauss, the magnet powder can be uniformly filled in the cavity when the magnet powder is supplied into the cavity. Therefore, not only the working efficiency at the time of molding is improved, but also the filling density in the cavity is uniform, so that the density of the molded body is also uniform, so that there is no variation in shrinkage during sintering. A sintered body having an irregular shape is not manufactured, and the shape of the sintered body can be made as designed. For this reason, the production yield is improved, the processing allowance can be reduced, and the material yield is also improved.
【0013】本発明においては、上パンチおよび下パン
チの少なくとも先端部分の材質として使用される磁性を
有する金属材料の飽和磁化4πIsを500〜1200
0ガウスと限定した。この範囲内でも、特に、1500
〜8000ガウスの範囲の飽和磁化を有する磁性金属材
料を使用するのが、本発明の効果が顕著に現われ、好ま
しい。500ガウス未満の飽和磁化4πIsを有する金
属材料を使用した場合、または非磁性材料で構成されて
いる場合には、成形体の表面に磁極が発生してしまい、
そのため、成形体の周辺部分の磁束は方向が乱れるた
め、製造された成形体の配向も乱れてしまい、その結果
が得られる焼結磁石も配向が悪く、残留磁束密度の小さ
い磁石となってしまう。また、飽和磁化4πIsが12
000ガウスより大きい場合には、成形体の表面に飽和
磁化4πIsが500ガウス未満の金属材料を使用した
時と逆の磁極が発生してしまい、その結果、同様に成形
体の配向が乱れてしまう。In the present invention, the saturation magnetization 4πIs of a magnetic metal material used as a material of at least the tip portions of the upper punch and the lower punch is set to 500 to 1200.
Limited to 0 Gauss. Even within this range, in particular, 1500
It is preferable to use a magnetic metal material having a saturation magnetization in the range of -8000 gauss, because the effect of the present invention is remarkably exhibited. When a metal material having a saturation magnetization of 4πIs of less than 500 Gauss is used, or when a nonmagnetic material is used, a magnetic pole is generated on the surface of the molded body,
Therefore, since the direction of the magnetic flux in the peripheral portion of the molded body is disturbed, the orientation of the produced molded body is also disturbed, and the resulting sintered magnet also has poor orientation and a magnet having a small residual magnetic flux density. . Further, when the saturation magnetization 4πIs is 12
If it is larger than 000 gauss, a magnetic pole opposite to that when a metal material having a saturation magnetization 4πIs of less than 500 gauss is used is generated on the surface of the compact, and as a result, the orientation of the compact is similarly disturbed. .
【0014】さらに、本発明では、上パンチおよび下パ
ンチの少なくとも先端部分の磁性金属材料の残留磁化4
πIrを6000ガウス以下と規定した。その範囲内で
も、2000ガウス以下になっていることが、本発明の
効果が顕著に現れ、好ましい。500ガウス以下であれ
ば、さらに好ましい結果が得られる。上パンチおよび下
パンチの少なくとも先端部分の残留磁化4πIrの値が
6000ガウスより大きい場合には、磁石粉をキャビテ
ィ空間内へ供給する際に、均一に充填することが困難と
なり、そのため、前述したような問題点が生じるため、
不適である。本発明の磁性を有する金属材料としては、
超硬合金、合金炭素鋼が望ましい。Further, according to the present invention, the remanent magnetization 4 of the magnetic metal material at least at the end portions of the upper punch and the lower punch is
πIr was specified to be 6000 Gauss or less. Even within this range, it is preferable that the value be 2000 Gauss or less, since the effect of the present invention is remarkably exhibited. If it is 500 Gauss or less, more preferable results can be obtained. If the value of the residual magnetization 4πIr of at least the tip portion of the upper punch and the lower punch is larger than 6000 Gauss, it becomes difficult to uniformly fill the magnet powder when supplying the magnet powder into the cavity space. Issues arise,
Not suitable. As the magnetic metal material of the present invention,
Cemented carbides and alloyed carbon steels are desirable.
【0015】超硬合金とは、WC、TiC、MoC、N
bC、TaC、Cr3 C2 等のIVa,Va,VIa族に属
する金属の炭化物粉末をCo、Ni、Mo、Fe、C
u、Pb、Sn、またはそれらの合金を用いて焼結結合
した合金であり、これらは、超硬合金に含有される炭素
量、および鉄、コバルト、ニッケル等の量、さらに添加
物の種類、添加量等によりその磁性は様々に変化する。
所定の磁気特性を有していれば、どのような超硬合金を
本発明に適用しても差しつかえない。Cemented carbides include WC, TiC, MoC, N
bC, TaC, Cr 3 C 2, etc. of the IVa, Va, a carbide powder of a metal belonging to Group VIa Co, Ni, Mo, Fe, C
u, Pb, Sn, or an alloy obtained by sintering using these alloys. These are the amounts of carbon contained in the cemented carbide, the amounts of iron, cobalt, nickel, etc., and the types of additives, The magnetism changes variously depending on the amount added.
Any cemented carbide may be applied to the present invention as long as it has a predetermined magnetic property.
【0016】また、合金炭素鋼とは、Fe−Cを主体と
する合金であり、特にダイス鋼、炭素工具鋼、合金工具
鋼、高速度鋼等を用いるのが好ましい。これらについて
も所定の磁気特性を有していれば、どのような合金炭素
鋼を使用しても問題ない。上パンチ、下パンチの先端部
分とは、上パンチおよび下パンチの圧縮成形時に成形体
と接する部分のことを指している。本発明では、上パン
チおよび下パンチの少なくとも先端部分を所定の磁気特
性を有する金属材料で構成されていることが必要であ
り、先端部分のみ磁性金属材料で構成されていてもよい
し、パンチ全体が磁性金属材料で構成されていてもよい
が、磁性金属材料の厚みが少なくとも5mm以上あるの
が好ましい。さらに好ましい本発明の形態は、上下パン
チの圧縮時にダイスに入り込む部分、すなわち、上パン
チの成形体に接する面からダイス上面までの部分および
下パンチの成形体に接する面からダイス下面までの部分
が、本発明で規定した磁性金属材料で構成されているこ
とである。本発明では、上パンチおよび下パンチの両者
ともに、その少なくとも先端部分が磁性金属材料からな
っていることが必要であって、どちらか一方のみが磁性
を有する金属材料からなる場合には、もう一方側の成形
体の表面に磁極が発生してしまい、本発明の効果が現れ
ないので、不適である。The alloy carbon steel is an alloy mainly composed of Fe—C, and it is particularly preferable to use die steel, carbon tool steel, alloy tool steel, high-speed steel, or the like. Any alloy carbon steel may be used as long as it has a predetermined magnetic property. The tip portions of the upper punch and the lower punch refer to portions that come into contact with the molded body during compression molding of the upper punch and the lower punch. In the present invention, at least the tip portions of the upper punch and the lower punch need to be made of a metal material having predetermined magnetic characteristics, and only the tip portions may be made of a magnetic metal material. May be made of a magnetic metal material, but the thickness of the magnetic metal material is preferably at least 5 mm or more. In a more preferred form of the present invention, the part that enters the die when the upper and lower punches are compressed, that is, the part from the surface in contact with the molded body of the upper punch to the upper surface of the die and the part from the surface in contact with the molded body of the lower punch to the lower surface of the die And the magnetic metal material defined in the present invention. In the present invention, both the upper punch and the lower punch need to have at least the tip portion made of a magnetic metal material, and when only one of the upper punch and the lower punch is made of a magnetic metal material, the other is used. This is unsuitable because a magnetic pole is generated on the surface of the molding on the side and the effect of the present invention does not appear.
【0017】本発明では、横磁場成形の時でも十分な効
果があるが、特に縦磁場成形の際に効果が大きい。ま
た、本発明においては、上パンチ、下パンチだけでな
く、ダイスも飽和磁化4πIsが500〜12000ガ
ウスで残留磁化4πIrが6000ガウス以下の磁性を
有する金属材料で構成されているのが好ましい。これに
より、成形体表面の磁極の発生を抑制するという効果が
さらに顕著に現れ、また、キャビティ内への磁石粉の供
給もより均一に行うことができる。本発明の対象となる
異方性焼結磁石としては、Baフェライト系、Srフェ
ライト系などのフェライト磁石、R−Co系、R−Fe
−B系などの希土類磁石があるが、特に希土類磁石を製
造する際に本発明を適用すれば、本発明の効果が顕著に
現れるため、好ましい結果を得ることができる。これら
の磁石は以下のように製造される。In the present invention, a sufficient effect is obtained even when forming a horizontal magnetic field, but the effect is particularly large when forming a vertical magnetic field. In the present invention, not only the upper punch and the lower punch, but also the die, is preferably made of a metal material having a saturation magnetization of 4πIs of 500 to 12,000 gauss and a residual magnetization of 4πIr of 6000 gauss or less. As a result, the effect of suppressing the generation of magnetic poles on the surface of the compact is more remarkably exhibited, and the supply of the magnet powder into the cavity can be performed more uniformly. Examples of the anisotropic sintered magnet that is an object of the present invention include ferrite magnets such as Ba ferrite and Sr ferrite, R—Co, and R—Fe.
Although there are rare-earth magnets such as -B series, particularly when the present invention is applied to the production of a rare-earth magnet, the effect of the present invention is remarkably exhibited, so that preferable results can be obtained. These magnets are manufactured as follows.
【0018】R−Co系希土類磁石は、RCo5 系、R
2 Co17系などがあるが、実用に供されているのは、ほ
とんどがR2 Co17系である。R2 Co17系希土類磁石
は、通常、重量百分率で、20〜28%のR、5〜30
%のFe、3〜10%のCu、1〜5%のZr、残部C
oからなり、以下のような製造法により製造される。ま
ず、原料金属を秤量して溶解、鋳造し、得られた合金を
平均粒径1〜20μmまで微粉砕しR2 Co17系希土類
永久磁石粉末を得る。R2 Co17系希土類永久磁石粉末
は、本発明により磁場中で成形され、その後、1100
〜1250℃で0.5〜5時間焼結され、次いで、焼結
温度よりも0〜50℃低い温度で0.5〜5時間溶体化
され、そして最後に時効処理が施される。時効処理は通
常初段時効として700〜950℃で一定の時間保持
し、その後、連続冷却または多段時効を行う。R-Co based rare earth magnets are RCo 5 based, R
Although there is a 2 Co 17 system and the like, most practically used are R 2 Co 17 systems. R 2 Co 17 based rare earth magnets are usually 20 to 28% R, 5 to 30% by weight.
% Fe, 3-10% Cu, 1-5% Zr, balance C
o, and is manufactured by the following manufacturing method. First, a raw metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm to obtain an R 2 Co 17- based rare earth permanent magnet powder. R 2 Co 17 rare earth permanent magnet powder is formed in a magnetic field according to the present invention,
It is sintered at 121250 ° C. for 0.5-5 hours, then solution-hardened at 0-50 ° C. below the sintering temperature for 0.5-5 hours, and finally subjected to an aging treatment. In the aging treatment, the first-stage aging is usually held at 700 to 950 ° C. for a certain period of time, followed by continuous cooling or multi-stage aging.
【0019】R−Fe−B系希土類磁石は、通常、重量
百分率で、5〜40%のR、50〜90%のFe、0.
2〜8%のBからなる。磁気特性を改善するために、
C、Al、Si、Ti、V、Cr、Mn、Co、Ni、
Cu、Zn、Ga、Zr、Nb、Mo、Ag、Sn、H
f、Ta、Wなど添加元素を加えることが多い。これら
添加物の添加量は、Coの場合30重量%以下、その他
の元素の場合には8重量%以下とするのが普通である。
これ以上の添加物を加えると逆に磁気特性を劣化させて
しまう。R−Fe−B系希土類磁石の製造方法は以下の
通りである。原料金属を秤量して溶解、鋳造し、得られ
た合金を平均粒径1〜20μmになるまで微粉砕しR−
Fe−B系希土類永久磁石粉末を得る。R−Fe−B系
希土類永久磁石粉末は、本発明により磁場中で成形さ
れ、1000〜1200℃で0.5〜5時間焼結され
る。最後に400〜1000℃で時効処理を行い、R−
Fe−B系希土類磁石を得る。The R-Fe-B rare earth magnet is usually 5 to 40% of R, 50 to 90% of Fe, 0.1 to 0.5% by weight.
Consists of 2-8% B. To improve magnetic properties,
C, Al, Si, Ti, V, Cr, Mn, Co, Ni,
Cu, Zn, Ga, Zr, Nb, Mo, Ag, Sn, H
In many cases, additional elements such as f, Ta, and W are added. The amount of these additives is usually 30% by weight or less for Co, and 8% by weight or less for other elements.
Addition of more additives causes the magnetic properties to deteriorate. The method for producing the R-Fe-B rare earth magnet is as follows. The raw metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm.
An Fe-B rare earth permanent magnet powder is obtained. The R-Fe-B-based rare earth permanent magnet powder is formed in a magnetic field according to the present invention, and sintered at 1000 to 1200C for 0.5 to 5 hours. Finally, aging treatment is performed at 400 to 1000 ° C.
An Fe-B based rare earth magnet is obtained.
【0020】[0020]
【発明の実施の形態】本発明の作用は異方性磁石の成形
工程において、上パンチおよび下パンチの少なくとも先
端部分を磁性を有する金属材料としてダイス、上パンチ
および下パンチで構成される金型のキャビティ内に永久
磁石粉末を供給し、該粉末に容易磁化方向を配向させる
ための磁場を印加し、圧縮して成形するものであって、
これにより、成形体表面に磁極が現れるのを防止して磁
束の分布を均一に、また磁束の方向を平行に揃えること
ができるようになる。さらに永久磁石粉末をキャビティ
内へ均一に充填することができる。従って残留磁束密度
が改善された異方性焼結磁石を歩留りよく製造すること
ができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The function of the present invention is to provide a mold in which at least the tip portions of an upper punch and a lower punch are formed of a metal material having magnetism, a die, an upper punch, and a lower punch in a step of forming an anisotropic magnet. Supplying permanent magnet powder into the cavity, applying a magnetic field for orienting the magnetization direction to the powder, compressing and molding,
As a result, it is possible to prevent the magnetic poles from appearing on the surface of the molded body, to make the distribution of the magnetic flux uniform, and to make the direction of the magnetic flux parallel. Further, the permanent magnet powder can be uniformly filled in the cavity. Therefore, an anisotropic sintered magnet with improved residual magnetic flux density can be manufactured with high yield.
【0021】[0021]
【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例)原子%でNd13.8Dy1 Fe73.7
Co4 B6.5 Al1 の合金を、純度99.9wt%以上
の各原料金属を誘導加熱高周波溶解炉を用いてアルゴン
雰囲気中で溶解、鋳造し合金インゴットを作製した。こ
の合金インゴットをアルゴン雰囲気中1100℃×24
時間の均質化熱処理を行った後、アルゴン雰囲気中でジ
ョークラッシャー、ブラウンミルを用いて粗粉砕し、次
いで、窒素ガスを用いたジェットミルで微粉砕を行い、
平均粒径5μmのR−Fe−B系磁石粉を作製した。EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example 1, Comparative Example) Nd 13.8 Dy 1 Fe 73.7 in atomic%
An alloy of Co 4 B 6.5 Al 1 was melted and cast in an argon atmosphere using an induction heating high-frequency melting furnace with each raw material metal having a purity of 99.9 wt% or more to prepare an alloy ingot. This alloy ingot was placed in an argon atmosphere at 1100 ° C. × 24
After performing the homogenization heat treatment for a time, coarse grinding is performed using a jaw crusher and a brown mill in an argon atmosphere, and then fine grinding is performed using a jet mill using nitrogen gas.
An R—Fe—B-based magnet powder having an average particle size of 5 μm was prepared.
【0022】この磁石粉を用いて成形を行った。上パン
チおよび下パンチは、それぞれ先端から50mmの部分
を、表1に示したような種々の飽和磁化4πIsおよび
残留磁化4πIrを有する超硬合金あるいは合金炭素鋼
とした。キャビティ内に磁石粉を供給し、電磁石により
15kOeの磁場を印加し、磁場を印加したまま磁場印
加方向と垂直方向に1ton/cm2 の圧力をかけて成
形を行った。作製された成形体の高さは30mmであ
る。また、キャビティの圧縮方向に垂直な方向の断面形
状は30mm×20mmである。磁場印加方向は、成形
体の20mmの辺に平行な方向である。Molding was performed using this magnet powder. For the upper punch and the lower punch, a portion 50 mm from the tip was made of a cemented carbide or alloy carbon steel having various saturated magnetizations 4πIs and residual magnetizations 4πIr as shown in Table 1. Magnet powder was supplied into the cavity, a magnetic field of 15 kOe was applied by an electromagnet, and molding was performed by applying a pressure of 1 ton / cm 2 in a direction perpendicular to the magnetic field application direction while the magnetic field was applied. The height of the formed compact is 30 mm. The cross-sectional shape of the cavity in a direction perpendicular to the compression direction is 30 mm × 20 mm. The magnetic field application direction is a direction parallel to the 20 mm side of the molded body.
【0023】これら成形体を真空中にて1060℃で9
0分焼結を行い、その後、さらに540℃で時効熱処理
を行った。得られたR−Fe−B系焼結磁石の磁気特性
をB−Hトレーサーを用いて測定した。それらの残留磁
束密度を表1に示した。また、焼結体表面の配向方向に
垂直な面の平面度も測定し、表1に示した。These compacts are placed in a vacuum at 1060 ° C. for 9 hours.
Sintering was performed for 0 minutes, and then aging heat treatment was further performed at 540 ° C. The magnetic properties of the obtained R—Fe—B sintered magnet were measured using a BH tracer. Table 1 shows their residual magnetic flux densities. In addition, the flatness of a surface perpendicular to the orientation direction of the surface of the sintered body was also measured.
【0024】[0024]
【表1】 [Table 1]
【0025】(実施例2)実施例1と同様なR−Fe−
B系磁石合金粉末をキャビティ内に供給し、電磁石によ
り18kOeの磁場を印加し、磁場印加方向と平行方向
に1.2ton/cm2 の圧力をかけて縦磁場成形を行
った。上パンチおよび下パンチの先端から30mmの部
分は、飽和磁化4πIsが3500ガウス、残留磁化4
πIr300ガウスの超硬合金で作製されている。作製
された成形体の高さは50mmであり、また、キャビテ
ィの圧縮方向に垂直な方向の断面形状は30mm×30
mmである。(Embodiment 2) The same R-Fe-
The B-based magnet alloy powder was supplied into the cavity, a magnetic field of 18 kOe was applied by an electromagnet, and a vertical magnetic field was formed by applying a pressure of 1.2 ton / cm 2 in a direction parallel to the magnetic field application direction. The portion 30 mm from the tip of the upper punch and the lower punch has a saturation magnetization 4πIs of 3500 gauss and a residual magnetization of 4500 gauss.
It is made of cemented carbide of πIr300 Gauss. The height of the produced molded body was 50 mm, and the cross-sectional shape in the direction perpendicular to the compression direction of the cavity was 30 mm × 30.
mm.
【0026】得られた成形体を、実施例1と同様な条件
で焼結、時効熱処理を行い、焼結磁石を製造した。この
焼結体は、形状に歪みは見られず、また、その残留磁束
密度Brは、12.09kGであった。比較例として、
上パンチおよび下パンチ全体を非磁性超硬合金として、
同様に焼結磁石を製造したところ、焼結体の形状は歪ん
でおり、また、その残留磁束密度Brは、11.84k
Gであった。The obtained compact was subjected to sintering and aging heat treatment under the same conditions as in Example 1 to produce a sintered magnet. This sintered body did not show any distortion in its shape, and its residual magnetic flux density Br was 12.09 kG. As a comparative example,
The entire upper and lower punches are made of non-magnetic cemented carbide,
Similarly, when a sintered magnet was manufactured, the shape of the sintered body was distorted, and its residual magnetic flux density Br was 11.84 k.
G.
【0027】(実施例3)合金組成が重量%でSm2
5.5%、Fe14%、Cu4%、Zr2.5%、残C
oとなるように原料金属を秤量した後、これらを誘導加
熱高周波溶解炉を用いてアルゴン雰囲気中で溶解、鋳造
し合金インゴットを作製した。この合金インゴットをア
ルゴン雰囲気でジョークラッシャー、ブラウンミルを用
いて粗粉砕し、次いで、窒素ガスを用いたジェットミル
で微粉砕を行い、平均粒径5μmのR2 Co17系磁石粉
を作製した。この磁石粉を用いて成形を行った。上パン
チおよび下パンチはその全体を、表2に示したような種
々の飽和磁化4πIsおよび残留磁化4πIrを有する
超硬合金あるいは合金炭素鋼とした。キャビティ内に磁
石粉を供給し、電磁石により15kOeの磁場を印加
し、磁場を印加したまま磁場印加方向と垂直方向に0.
8ton/cm2 の圧力をかけて成形を行った。作製さ
れた成形体の高さは30mmである。また、キャビティ
の圧縮方向に垂直な方向の断面形状は30mm×20m
mである。磁場印加方向は、成形体の20mmの辺に平
行な方向である。この成形体をアルゴン雰囲気下で12
00℃で焼結、1180℃で溶体化した。時効熱処理は
まず初段時効として850℃で2時間保持した後、1℃
/minの冷却速度で400℃まで連続冷却を行い、そ
の後急冷した。得られたR2 Co17系焼結磁石の磁気特
性をB−Hトレーサーを用いて測定した。それらの残留
磁束密度を表2に示した。また、焼結体表面の配向方向
に垂直な面の平面度も測定し、表2に示した。Example 3 The alloy composition was Sm2 in weight%.
5.5%, Fe 14%, Cu 4%, Zr 2.5%, residual C
After weighing the raw materials so as to obtain o, they were melted and cast in an argon atmosphere using an induction heating high-frequency melting furnace to produce an alloy ingot. This alloy ingot was roughly pulverized using a jaw crusher and a brown mill in an argon atmosphere, and then finely pulverized using a jet mill using nitrogen gas to produce an R 2 Co 17- based magnetic powder having an average particle diameter of 5 μm. Molding was performed using this magnet powder. The upper punch and the lower punch were entirely made of cemented carbide or alloyed carbon steel having various saturation magnetizations 4πIs and residual magnetizations 4πIr as shown in Table 2. A magnet powder is supplied into the cavity, and a magnetic field of 15 kOe is applied by an electromagnet.
The molding was performed by applying a pressure of 8 ton / cm 2 . The height of the formed compact is 30 mm. The cross section of the cavity in a direction perpendicular to the compression direction is 30 mm × 20 m.
m. The magnetic field application direction is a direction parallel to the 20 mm side of the molded body. This molded body was placed under an argon atmosphere for 12 hours.
Sintered at 00 ° C and solution-solutioned at 1180 ° C. Aging heat treatment is first held at 850 ° C for 2 hours as aging, then at 1 ° C
The sample was continuously cooled to 400 ° C. at a cooling rate of / min, and then rapidly cooled. The magnetic properties of the obtained R 2 Co 17 based sintered magnet were measured using a BH tracer. Table 2 shows their residual magnetic flux densities. In addition, the flatness of a surface perpendicular to the orientation direction of the surface of the sintered body was also measured.
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】本発明により、残留磁束密度の大きな異
方性焼結磁石を歩留りよく製造することができる。According to the present invention, an anisotropic sintered magnet having a large residual magnetic flux density can be manufactured with good yield.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 B22F 3/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 41/02 B22F 3/02
Claims (2)
て、上パンチおよび下パンチの少なくとも先端部分を飽
和磁化4πIsが500〜12000ガウス、かつ、残
留磁化4πIrが6000ガウス以下の磁性を有する金
属材料として、ダイス、前記上パンチおよび下パンチで
構成される金型のキャビティ内に永久磁石粉末を供給
し、該永久磁石粉末の容易磁化方向を配向させるための
磁場を印加し、更に圧縮して成形を行うことを特徴とす
る異方性焼結磁石の製造方法。In a molding process for manufacturing an anisotropic sintered magnet, at least the tip portions of an upper punch and a lower punch have a magnetic property of a saturation magnetization 4πIs of 500 to 12,000 gauss and a remanence magnetization 4πIr of 6000 gauss or less. As a material, a permanent magnet powder is supplied into a cavity of a die constituted by a die, the upper punch and the lower punch, a magnetic field for orienting the easy magnetization direction of the permanent magnet powder is applied, and further compressed. A method for producing an anisotropic sintered magnet, comprising molding.
Fe−B系またはR−Co系の希土類永久磁石粉末であ
る請求項1記載の異方性焼結磁石の製造方法。2. The permanent magnet powder according to claim 1, wherein R-
The method for producing an anisotropic sintered magnet according to claim 1, wherein the magnet is an Fe-B or R-Co rare earth permanent magnet powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07206813A JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07206813A JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0935979A JPH0935979A (en) | 1997-02-07 |
JP3101800B2 true JP3101800B2 (en) | 2000-10-23 |
Family
ID=16529521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07206813A Expired - Lifetime JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3101800B2 (en) |
-
1995
- 1995-07-21 JP JP07206813A patent/JP3101800B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0935979A (en) | 1997-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07307211A (en) | Hot press magnet formed of anisotropic powder | |
JP2596835B2 (en) | Rare earth anisotropic powder and rare earth anisotropic magnet | |
EP1479787B1 (en) | Sinter magnet made from rare earth-iron-boron alloy powder for magnet | |
CN100394521C (en) | Forming method in magnetic field, and method for producing rare-earth sintered magnet | |
JP3540438B2 (en) | Magnet and manufacturing method thereof | |
US5085716A (en) | Hot worked rare earth-iron-carbon magnets | |
US6136099A (en) | Rare earth-iron series permanent magnets and method of preparation | |
EP0348038B1 (en) | Manufacturing method of a permanent magnet | |
JP3101798B2 (en) | Manufacturing method of anisotropic sintered magnet | |
JPS6181603A (en) | Preparation of rare earth magnet | |
JP6691667B2 (en) | Method for manufacturing RTB magnet | |
JP3101799B2 (en) | Manufacturing method of anisotropic sintered permanent magnet | |
JP3101800B2 (en) | Manufacturing method of anisotropic sintered permanent magnet | |
JP3307418B2 (en) | Molding method and method for manufacturing sintered magnet | |
JPS6348805A (en) | Manufacture of rare-earth magnet | |
JP3526493B2 (en) | Manufacturing method of anisotropic sintered magnet | |
JP2745042B2 (en) | Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet | |
JP3357421B2 (en) | Method for forming magnetic field of magnet powder and method for manufacturing magnet | |
JP4618437B2 (en) | Method for producing rare earth permanent magnet and raw material alloy thereof | |
CA2034632C (en) | Hot worked rare earth-iron-carbon magnets | |
JP3937126B2 (en) | Die for sintered magnet and method for producing sintered magnet | |
JPH0562814A (en) | Method of manufacturing rare-earth element-fe-b magnet | |
JPH07110965B2 (en) | Method for producing alloy powder for resin-bonded permanent magnet | |
JP2631380B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
JP2005213544A (en) | Compacting method in magnetic field and method for producing rare-earth sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |