JPH0935979A - Manufacture of anisotropic sintered permanent magnet - Google Patents
Manufacture of anisotropic sintered permanent magnetInfo
- Publication number
- JPH0935979A JPH0935979A JP20681395A JP20681395A JPH0935979A JP H0935979 A JPH0935979 A JP H0935979A JP 20681395 A JP20681395 A JP 20681395A JP 20681395 A JP20681395 A JP 20681395A JP H0935979 A JPH0935979 A JP H0935979A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetic field
- anisotropic sintered
- magnet
- magnet powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、異方性焼結磁石の
製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing an anisotropic sintered magnet.
【0002】[0002]
【従来の技術】異方性焼結磁石としては、Baフェライ
ト系、Srフェライト系などのフェライト磁石、R−C
o系、R−Fe−B系などの希土類磁石が広く使用され
ているが、近年高性能磁石として希土類磁石の使用が急
激に伸びている。これら異方性焼結磁石は、磁性を担っ
ている各結晶粒の容易磁化方向をある一定の方向に揃え
たものであり、そのため、結晶粒の容易磁化方向がばら
ばらの方向を向いている等方性磁石に比較して、その容
易磁化方向に着磁されたときに残留磁束密度の値が大き
く、したがって、最大エネルギー積を大きくすることが
できる。また、焼結磁石であるため、樹脂などで結合さ
れたボンディッド磁石と比較して、非磁性物質の存在量
が少ないため、残留磁束密度の値が大きくなり、最大エ
ネルギー積を大きくできる。したがって、異方性焼結磁
石が、同じ材料を用いた磁石の中で、一番大きな最大エ
ネルギー積を得ることができるため、広く使用されてい
る。2. Description of the Related Art As anisotropic sintered magnets, ferrite magnets such as Ba ferrite type and Sr ferrite type magnets, RC
Although rare earth magnets such as o type and R-Fe-B type are widely used, the use of rare earth magnets as high-performance magnets has been rapidly increasing in recent years. In these anisotropic sintered magnets, the easy magnetization directions of the crystal grains having magnetism are aligned in a certain direction. Therefore, the easy magnetization directions of the crystal grains are in different directions. Compared with the direction magnet, the value of the residual magnetic flux density is large when magnetized in its easy magnetization direction, and therefore the maximum energy product can be increased. Further, since it is a sintered magnet, the amount of non-magnetic substance is smaller than that of a bonded magnet bonded with a resin or the like, so that the value of the residual magnetic flux density is large and the maximum energy product can be increased. Therefore, anisotropic sintered magnets are widely used because they can obtain the largest maximum energy product among magnets using the same material.
【0003】異方性焼結磁石は、磁性結晶粒の容易磁化
方向をある一定の方向に揃えるために、その材料を、そ
れぞれの粉砕粉が単結晶になるまで粉砕し、その粉砕粉
に外部磁場を印加することにより磁石粉の磁化容易軸を
外部磁場の方向と平行な方向に揃え、圧力をかけて圧縮
し成形する。その後、成形された磁石粉は、所定の条件
で焼結され、異方性焼結磁石を製造する。材料によって
は、焼結後、熱処理を要する場合もある。例えば、R2
Co17系磁石では、焼結後、溶体化処理を行い、さらに
時効処理を行う。R−Fe−B系磁石では、焼結後、5
00℃近傍で熱処理を行うことにより磁石を製造してい
る。In order to align the easy magnetization direction of the magnetic crystal grains in a certain direction, the anisotropic sintered magnet pulverizes the material until each pulverized powder becomes a single crystal, and the pulverized powder is externally pulverized. By applying a magnetic field, the easy axis of magnetization of the magnet powder is aligned in a direction parallel to the direction of the external magnetic field, and pressure is applied to compress and shape. Then, the formed magnet powder is sintered under predetermined conditions to manufacture an anisotropic sintered magnet. Depending on the material, heat treatment may be required after sintering. For example, R 2
After sintering, the Co 17 system magnet is subjected to solution treatment and further aging treatment. For the R-Fe-B magnet, after sintering, 5
A magnet is manufactured by performing a heat treatment near 00 ° C.
【0004】成形工程で使用される磁場プレス機は、ダ
イス、上パンチ、下パンチおよび磁場発生手段からな
る。ダイス、上パンチおよび下パンチで構成されるキャ
ビティ内に磁石粉を供給し、磁場発生手段により配向磁
場を印加することにより磁石粉の容易磁化方向を一方向
に揃え、上パンチ、下パンチにより圧力を伝達し、キャ
ビティ内の磁石粉を成形する。成形は電磁石などで静磁
場を印加し、その静磁場を印加したまま行われるのが一
般的であるが、電磁石による静磁場では得られる磁場の
大きさが限定されてしまうので、大きな磁場で配向を行
いたい時には、磁場発生手段として空芯コイルによるパ
ルス磁場を用いることがある。パルス磁場を用いる時に
は、キャビティ内に磁石粉を供給した後、パルス磁場を
印加し、次いで成形を行う。しかしながら、パルス磁場
を発生させるとコイルの発熱が生じるなどの問題点が大
きく、生産方法としては好ましくない。The magnetic field press used in the molding process comprises a die, an upper punch, a lower punch and a magnetic field generating means. Magnet powder is supplied into the cavity composed of the die, upper punch and lower punch, and the magnetic field generating means applies an orientation magnetic field to align the easy magnetization direction of the magnet powder in one direction, and the upper and lower punches apply pressure. And the magnet powder in the cavity is molded. Molding is generally performed by applying a static magnetic field with an electromagnet, etc., but the static magnetic field generated by the electromagnet limits the size of the magnetic field that can be obtained. In some cases, a pulsed magnetic field generated by an air-core coil may be used as the magnetic field generating means. When a pulsed magnetic field is used, magnetic powder is supplied into the cavity, a pulsed magnetic field is applied, and then molding is performed. However, when a pulsed magnetic field is generated, there are many problems such as heat generation of the coil, which is not preferable as a production method.
【0005】キャビティ内に充填された磁石粉に配向磁
場をかける方向には、上下パンチによる圧力印加の方向
と平行方向に磁場をかける縦磁場成形と、垂直方向に磁
場を印加する横磁場成形とがある。横磁場成形を選択す
るか縦磁場成形を選択するかは、製造される材料、特
性、形状、着磁方向などによって判断されるが、縦磁場
成形により製造された焼結磁石は横磁場成形の場合と比
較して磁気特性が低下するので、横磁場成形を用いるこ
とが多い。In the direction in which the orientation magnetic field is applied to the magnet powder filled in the cavity, there are longitudinal magnetic field molding in which a magnetic field is applied in the direction parallel to the direction of pressure application by the upper and lower punches, and transverse magnetic field molding in which a magnetic field is applied in the vertical direction. There is. Whether to select transverse magnetic field molding or longitudinal magnetic field molding is determined by the material to be manufactured, characteristics, shape, magnetization direction, etc. Since the magnetic characteristics are lower than in the case, transverse magnetic field molding is often used.
【0006】[0006]
【発明が解決しようとする課題】ところで、磁場を印加
して成形、焼結を行い、磁石を製造した際に、一つの焼
結体の各部分により、磁気特性がばらつくことがある。
特に、焼結磁石の表面は中央部と比較して残留磁束密度
の劣化が著しく、これは、表面近傍では配向の乱れが大
きいためと考えられる。このように表面付近に配向の乱
れがあり、残留磁束密度が劣化していると、焼結体全体
として残留磁束密度が低くなってしまう。このような現
象は、焼結体の寸法が小さいときには特に顕著に現われ
る。特に近年は、異方性焼結磁石が使用される電子、電
気機器が小型化し、それに伴い異方性焼結磁石の寸法も
小さく薄型になってきているため、配向の乱れによる磁
気特性の劣化は無視することはできないようになってき
つつある。さらに、小型の磁石を製造する際、大型の焼
結体ブロックを切断して製造することもあるが、表面近
くから切り出された磁石は、残留磁束密度が低く使用に
耐えないことも多々あり、歩留りの低下を引き起こして
いる。By the way, when a magnet is manufactured by applying a magnetic field to perform molding and sintering, magnetic characteristics may vary depending on each part of one sintered body.
In particular, the surface of the sintered magnet is significantly deteriorated in the residual magnetic flux density as compared with the central portion, and it is considered that this is because the orientation disorder is large near the surface. When the orientation is disturbed near the surface and the residual magnetic flux density is deteriorated as described above, the residual magnetic flux density becomes low as the whole sintered body. Such a phenomenon is particularly remarkable when the size of the sintered body is small. In particular, in recent years, electronic and electric devices in which anisotropic sintered magnets are used have become smaller, and the size of anisotropic sintered magnets has become smaller and thinner, resulting in deterioration of magnetic properties due to disordered orientation. Is becoming irreducible. Furthermore, when manufacturing a small magnet, a large sintered body block may be cut and manufactured, but a magnet cut out from near the surface often has a low residual magnetic flux density and cannot be used, This causes a decrease in yield.
【0007】本発明者らは、前記問題点を解決するため
の手段として、ダイス、上パンチおよび下パンチの金型
部材の全て、あるいは、少なくとも一部を磁性を有する
金属材料とすることが有効であることを見いだし、既に
提案している。(特願平7−151093)As a means for solving the above problems, it is effective for the present inventors to use all or at least a part of the die member of the die, the upper punch and the lower punch as a metallic material having magnetism. I have already proposed it. (Japanese Patent Application No. 7-151093)
【0008】特願平7−151093の発明は、ダイ
ス、上パンチおよび下パンチの金型部材の全て、あるい
は、少なくとも一部を磁性を有する金属材料とすること
により、成形体表面に磁極が現れるのを防止してキャビ
ティ空間内の磁束の分布を均一にし、また、磁束の方向
をなるべく平行に揃えようとするものである。According to the invention of Japanese Patent Application No. 7-151093, magnetic poles appear on the surface of the molded body by using all or at least a part of the die member of the die, the upper punch and the lower punch as a metallic material having magnetism. This is intended to make the distribution of the magnetic flux in the cavity space uniform and to make the directions of the magnetic flux as parallel as possible.
【0009】その結果、異方性焼結磁石の配向が、特
に、焼結体ブロックの表面近傍の配向が、格段に改善さ
れ、それにより磁石の残留磁束密度が顕著に向上し、ま
た、大型ブロックからの切り出しによる磁石製造歩留り
も大幅に改善された。しかしながら、特に上パンチおよ
び下パンチに磁性金属材料を用いた場合には、パンチに
磁化が残留するため、いったん磁場成形を行い、次い
で、得られた成形体をダイスより取り出して、次の成形
を行うために磁石粉をキャビティ内に供給する時に、キ
ャビティ内に磁石粉を均一に充填することが困難とな
り、充填密度にムラができやすくなる。そのため、成形
を行った時の成形体密度にもムラができ、そのまま焼結
を行うと、成形体密度の小さい部分は成形体密度の大き
い部分と比較して、焼結による収縮が大きいため、焼結
体の形状がいびつになってしまい、歩留りの低下をもた
らしていた。それを防止するため、設計通りの磁石形状
よりも大きめに永久磁石を製造し、所定の形状になるま
で加工する必要があったので、加工代が大きく材料歩留
りの低下をも引き起こすなど工程上の改善が要望されて
いた。As a result, the orientation of the anisotropic sintered magnet, in particular, the orientation in the vicinity of the surface of the sintered body block is remarkably improved, whereby the residual magnetic flux density of the magnet is remarkably improved, and the large size is large. The yield of magnet production by cutting from blocks was also greatly improved. However, especially when a magnetic metal material is used for the upper punch and the lower punch, magnetization remains in the punch, so magnetic field molding is performed once, and then the obtained molded body is taken out from the die and the next molding is performed. Therefore, when the magnet powder is supplied into the cavity, it becomes difficult to uniformly fill the cavity with the magnet powder, and the packing density tends to be uneven. Therefore, there is unevenness in the density of the molded body at the time of molding, and if the sintering is performed as it is, the shrinkage due to the sintering is larger in the portion where the molded body density is smaller than the portion where the molded body density is large, The shape of the sintered body became distorted, leading to a decrease in yield. In order to prevent this, it was necessary to manufacture permanent magnets with a size larger than the magnet shape as designed and process it until it had a predetermined shape, so the machining allowance was large and the material yield was also reduced. Improvement was requested.
【0010】[0010]
【課題を解決するための手段】本発明者らは、前記問題
点を解決しようと鋭意努力した結果、本発明を完成させ
たもので、その要旨は、異方性焼結磁石製造の成形工程
において、上パンチおよび下パンチの少なくとも先端部
分を飽和磁化4πIsが500〜12000ガウス、か
つ、残留磁化4πIrが6000ガウス以下の磁性を有
する金属材料として、ダイス、前記上パンチおよび下パ
ンチで構成される金型のキャビティ内に永久磁石粉末を
供給し、該永久磁石粉末の容易磁化方向を配向させるた
めの磁場を印加し、更に圧縮して成形を行うことを特徴
とする異方性焼結磁石の製造方法であり、特に前記永久
磁石粉末が、R−Fe−B系またはR−Co系の希土類
永久磁石粉末である異方性焼結磁石の製造方法である。The inventors of the present invention have completed the present invention as a result of diligent efforts to solve the above-mentioned problems, and the gist thereof is the molding step for producing an anisotropic sintered magnet. In at least the tip portions of the upper punch and the lower punch, a die, the upper punch and the lower punch are formed as a magnetic metal material having a saturation magnetization 4πIs of 500 to 12000 gauss and a residual magnetization 4πIr of 6000 gauss or less. An anisotropic sintered magnet characterized in that permanent magnet powder is supplied into a cavity of a mold, a magnetic field for orienting an easy magnetization direction of the permanent magnet powder is applied, and further compression is performed to perform molding. A method for producing an anisotropic sintered magnet, in which the permanent magnet powder is an R-Fe-B-based or R-Co-based rare earth permanent magnet powder.
【0011】上パンチおよび下パンチの少なくとも先端
部分の材質として飽和磁化4πIsが500〜1200
0ガウスの磁性を有する金属材料を選定するため、成形
体表面に磁極が現れるのを防止してキャビティ空間内の
磁束の分布を均一に、また、磁束の方向をなるべく平行
に揃えることができるようになる。これにより、異方性
焼結磁石の配向が、特に、焼結体ブロックの表面近傍の
配向が、格段に改善され、それにより磁石の残留磁束密
度が顕著に向上し、また、大型ブロックからの切り出し
による磁石製造歩留りも大幅に改善されるようになる。As a material for at least the tip portions of the upper punch and the lower punch, the saturation magnetization 4πIs is 500 to 1200.
Since a metallic material having a magnetism of 0 Gauss is selected, it is possible to prevent the magnetic pole from appearing on the surface of the molded body, to make the distribution of the magnetic flux in the cavity space uniform, and to make the magnetic flux directions as parallel as possible. become. This significantly improves the orientation of the anisotropic sintered magnet, particularly the orientation near the surface of the sintered body block, which significantly improves the residual magnetic flux density of the magnet. The yield of magnet manufacturing by cutting out will also be greatly improved.
【0012】さらに、上パンチおよび下パンチの少なく
とも先端部分の磁性金属材料の残留磁化4πIrが60
00ガウス以下であるため、磁石粉をキャビティ内に供
給する時に、均一に磁石粉をキャビティ内に充填するこ
とができる。したがって、成形時の作業効率が向上する
だけでなく、キャビティ内への充填密度が均一であるの
で、成形体密度も均一となり、したがって、焼結の際の
収縮のバラツキが生じることがないので、いびつな形状
の焼結体が製造されることがなく、焼結体形状を設計通
りのものとすることができるようになる。そのため、製
造歩留りが向上するとともに、加工代を小さくすること
が可能となり、材料歩留りも改善される。Further, the residual magnetization 4πIr of the magnetic metal material of at least the tip portions of the upper punch and the lower punch is 60.
Since it is less than 00 Gauss, the magnet powder can be uniformly filled in the cavity when the magnet powder is supplied into the cavity. Therefore, not only the working efficiency at the time of molding is improved, but also the packing density in the cavity is uniform, so that the density of the molded body is also uniform, and therefore there is no variation in shrinkage during sintering. A sintered body having a distorted shape is not manufactured, and the shape of the sintered body can be designed. Therefore, the manufacturing yield is improved, the machining allowance can be reduced, and the material yield is also improved.
【0013】本発明においては、上パンチおよび下パン
チの少なくとも先端部分の材質として使用される磁性を
有する金属材料の飽和磁化4πIsを500〜1200
0ガウスと限定した。この範囲内でも、特に、1500
〜8000ガウスの範囲の飽和磁化を有する磁性金属材
料を使用するのが、本発明の効果が顕著に現われ、好ま
しい。500ガウス未満の飽和磁化4πIsを有する金
属材料を使用した場合、または非磁性材料で構成されて
いる場合には、成形体の表面に磁極が発生してしまい、
そのため、成形体の周辺部分の磁束は方向が乱れるた
め、製造された成形体の配向も乱れてしまい、その結果
が得られる焼結磁石も配向が悪く、残留磁束密度の小さ
い磁石となってしまう。また、飽和磁化4πIsが12
000ガウスより大きい場合には、成形体の表面に飽和
磁化4πIsが500ガウス未満の金属材料を使用した
時と逆の磁極が発生してしまい、その結果、同様に成形
体の配向が乱れてしまう。In the present invention, the saturation magnetization 4πIs of the metallic material having magnetism used as the material of at least the tip portions of the upper punch and the lower punch is 500 to 1200.
Limited to 0 gauss. Even within this range, especially 1500
It is preferable to use a magnetic metal material having a saturation magnetization in the range of up to 8000 gauss, since the effect of the present invention is remarkably exhibited. When a metal material having a saturation magnetization of 4πIs of less than 500 Gauss is used, or when it is made of a non-magnetic material, a magnetic pole is generated on the surface of the molded body,
Therefore, the magnetic flux in the peripheral portion of the molded body is disturbed in direction, so that the orientation of the manufactured molded body is also disturbed, and the resulting sintered magnet also has poor orientation and becomes a magnet with a small residual magnetic flux density. . Further, the saturation magnetization 4πIs is 12
If it is larger than 000 Gauss, a magnetic pole opposite to that when a metal material having a saturation magnetization of 4πIs of less than 500 Gauss is used on the surface of the molded body, and as a result, the orientation of the molded body is also disturbed. .
【0014】さらに、本発明では、上パンチおよび下パ
ンチの少なくとも先端部分の磁性金属材料の残留磁化4
πIrを6000ガウス以下と規定した。その範囲内で
も、2000ガウス以下になっていることが、本発明の
効果が顕著に現れ、好ましい。500ガウス以下であれ
ば、さらに好ましい結果が得られる。上パンチおよび下
パンチの少なくとも先端部分の残留磁化4πIrの値が
6000ガウスより大きい場合には、磁石粉をキャビテ
ィ空間内へ供給する際に、均一に充填することが困難と
なり、そのため、前述したような問題点が生じるため、
不適である。本発明の磁性を有する金属材料としては、
超硬合金、合金炭素鋼が望ましい。Further, according to the present invention, the remanent magnetization 4 of the magnetic metal material at least at the tip portions of the upper punch and the lower punch.
πIr was defined as 6000 Gauss or less. Even within this range, it is preferable that the amount is 2000 gauss or less, because the effect of the present invention is remarkably exhibited. If it is 500 gauss or less, more preferable results can be obtained. When the value of the residual magnetization 4πIr of at least the tip portion of the upper punch and the lower punch is larger than 6000 Gauss, it becomes difficult to uniformly fill the magnet powder when it is supplied into the cavity space. Because there are various problems
Not suitable. As the magnetic metal material of the present invention,
Cemented carbide and alloy carbon steel are preferred.
【0015】超硬合金とは、WC、TiC、MoC、N
bC、TaC、Cr3 C2 等のIVa,Va,VIa族に属
する金属の炭化物粉末をCo、Ni、Mo、Fe、C
u、Pb、Sn、またはそれらの合金を用いて焼結結合
した合金であり、これらは、超硬合金に含有される炭素
量、および鉄、コバルト、ニッケル等の量、さらに添加
物の種類、添加量等によりその磁性は様々に変化する。
所定の磁気特性を有していれば、どのような超硬合金を
本発明に適用しても差しつかえない。Cemented carbide means WC, TiC, MoC, N
Carbide powders of metals belonging to the IVa, Va, and VIa groups such as bC, TaC, and Cr 3 C 2 are Co, Ni, Mo, Fe, and C.
An alloy obtained by sinter-bonding with u, Pb, Sn, or an alloy thereof, which contains the amount of carbon contained in the cemented carbide, the amount of iron, cobalt, nickel, etc., and the type of additive, Its magnetism changes variously depending on the amount added.
Any cemented carbide may be applied to the present invention as long as it has predetermined magnetic properties.
【0016】また、合金炭素鋼とは、Fe−Cを主体と
する合金であり、特にダイス鋼、炭素工具鋼、合金工具
鋼、高速度鋼等を用いるのが好ましい。これらについて
も所定の磁気特性を有していれば、どのような合金炭素
鋼を使用しても問題ない。上パンチ、下パンチの先端部
分とは、上パンチおよび下パンチの圧縮成形時に成形体
と接する部分のことを指している。本発明では、上パン
チおよび下パンチの少なくとも先端部分を所定の磁気特
性を有する金属材料で構成されていることが必要であ
り、先端部分のみ磁性金属材料で構成されていてもよい
し、パンチ全体が磁性金属材料で構成されていてもよい
が、磁性金属材料の厚みが少なくとも5mm以上あるの
が好ましい。さらに好ましい本発明の形態は、上下パン
チの圧縮時にダイスに入り込む部分、すなわち、上パン
チの成形体に接する面からダイス上面までの部分および
下パンチの成形体に接する面からダイス下面までの部分
が、本発明で規定した磁性金属材料で構成されているこ
とである。本発明では、上パンチおよび下パンチの両者
ともに、その少なくとも先端部分が磁性金属材料からな
っていることが必要であって、どちらか一方のみが磁性
を有する金属材料からなる場合には、もう一方側の成形
体の表面に磁極が発生してしまい、本発明の効果が現れ
ないので、不適である。The alloy carbon steel is an alloy mainly composed of Fe-C, and it is particularly preferable to use die steel, carbon tool steel, alloy tool steel, high speed steel and the like. Also for these, any alloy carbon steel may be used as long as it has predetermined magnetic characteristics. The tip portions of the upper punch and the lower punch refer to portions of the upper punch and the lower punch that come into contact with the compact during compression molding. In the present invention, it is necessary that at least the tip portions of the upper punch and the lower punch are made of a metal material having predetermined magnetic characteristics, and only the tip portions may be made of a magnetic metal material, or the entire punch. May be made of a magnetic metal material, but the thickness of the magnetic metal material is preferably at least 5 mm or more. A more preferable embodiment of the present invention is that the portion that enters the die during compression of the upper and lower punches, that is, the portion from the surface in contact with the molded body of the upper punch to the upper surface of the die and the portion from the surface in contact with the molded body of the lower punch to the lower surface of the die. It is composed of the magnetic metal material defined in the present invention. In the present invention, both of the upper punch and the lower punch are required to have at least their tip portions made of a magnetic metal material, and when only one of them is made of a magnetic metal material, the other punch. A magnetic pole is generated on the surface of the molded body on the side, and the effect of the present invention does not appear, which is not suitable.
【0017】本発明では、横磁場成形の時でも十分な効
果があるが、特に縦磁場成形の際に効果が大きい。ま
た、本発明においては、上パンチ、下パンチだけでな
く、ダイスも飽和磁化4πIsが500〜12000ガ
ウスで残留磁化4πIrが6000ガウス以下の磁性を
有する金属材料で構成されているのが好ましい。これに
より、成形体表面の磁極の発生を抑制するという効果が
さらに顕著に現れ、また、キャビティ内への磁石粉の供
給もより均一に行うことができる。本発明の対象となる
異方性焼結磁石としては、Baフェライト系、Srフェ
ライト系などのフェライト磁石、R−Co系、R−Fe
−B系などの希土類磁石があるが、特に希土類磁石を製
造する際に本発明を適用すれば、本発明の効果が顕著に
現れるため、好ましい結果を得ることができる。これら
の磁石は以下のように製造される。The present invention has a sufficient effect even in the case of forming a horizontal magnetic field, but it is particularly effective in forming a vertical magnetic field. Further, in the present invention, not only the upper punch and the lower punch, but also the die is preferably made of a metal material having magnetism with a saturation magnetization 4πIs of 500 to 12000 gauss and a residual magnetization 4πIr of 6000 gauss or less. As a result, the effect of suppressing the generation of magnetic poles on the surface of the molded body becomes more prominent, and the magnet powder can be supplied into the cavity more uniformly. Examples of anisotropic sintered magnets to which the present invention is applied include ferrite magnets such as Ba ferrite and Sr ferrite magnets, R—Co magnets, and R—Fe magnets.
There are rare earth magnets such as -B type. However, if the present invention is applied particularly when manufacturing a rare earth magnet, the effect of the present invention is remarkably exhibited, so that a preferable result can be obtained. These magnets are manufactured as follows.
【0018】R−Co系希土類磁石は、RCo5 系、R
2 Co17系などがあるが、実用に供されているのは、ほ
とんどがR2 Co17系である。R2 Co17系希土類磁石
は、通常、重量百分率で、20〜28%のR、5〜30
%のFe、3〜10%のCu、1〜5%のZr、残部C
oからなり、以下のような製造法により製造される。ま
ず、原料金属を秤量して溶解、鋳造し、得られた合金を
平均粒径1〜20μmまで微粉砕しR2 Co17系希土類
永久磁石粉末を得る。R2 Co17系希土類永久磁石粉末
は、本発明により磁場中で成形され、その後、1100
〜1250℃で0.5〜5時間焼結され、次いで、焼結
温度よりも0〜50℃低い温度で0.5〜5時間溶体化
され、そして最後に時効処理が施される。時効処理は通
常初段時効として700〜950℃で一定の時間保持
し、その後、連続冷却または多段時効を行う。R-Co rare earth magnets are RCo 5 series, R
Although there are 2 Co 17 series, etc., most of them are practically used R 2 Co 17 series. R 2 Co 17 based rare earth magnets are usually 20 to 28% R, 5 to 30% by weight.
% Fe, 3-10% Cu, 1-5% Zr, balance C
and is manufactured by the following manufacturing method. First, a raw material metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm to obtain R 2 Co 17 rare earth permanent magnet powder. R 2 Co 17 based rare earth permanent magnet powders are compacted in a magnetic field according to the present invention and then 1100
It is sintered at ˜1250 ° C. for 0.5 to 5 hours, then solutionized at a temperature 0 to 50 ° C. below the sintering temperature for 0.5 to 5 hours, and finally subjected to an aging treatment. The aging treatment is usually a first-stage aging, which is held at 700 to 950 ° C. for a certain period of time, and then continuously cooled or multi-stage aging.
【0019】R−Fe−B系希土類磁石は、通常、重量
百分率で、5〜40%のR、50〜90%のFe、0.
2〜8%のBからなる。磁気特性を改善するために、
C、Al、Si、Ti、V、Cr、Mn、Co、Ni、
Cu、Zn、Ga、Zr、Nb、Mo、Ag、Sn、H
f、Ta、Wなど添加元素を加えることが多い。これら
添加物の添加量は、Coの場合30重量%以下、その他
の元素の場合には8重量%以下とするのが普通である。
これ以上の添加物を加えると逆に磁気特性を劣化させて
しまう。R−Fe−B系希土類磁石の製造方法は以下の
通りである。原料金属を秤量して溶解、鋳造し、得られ
た合金を平均粒径1〜20μmになるまで微粉砕しR−
Fe−B系希土類永久磁石粉末を得る。R−Fe−B系
希土類永久磁石粉末は、本発明により磁場中で成形さ
れ、1000〜1200℃で0.5〜5時間焼結され
る。最後に400〜1000℃で時効処理を行い、R−
Fe−B系希土類磁石を得る。The R-Fe-B type rare earth magnet is usually 5 to 40% R, 50 to 90% Fe, 0.
It consists of 2-8% B. To improve magnetic properties,
C, Al, Si, Ti, V, Cr, Mn, Co, Ni,
Cu, Zn, Ga, Zr, Nb, Mo, Ag, Sn, H
Additive elements such as f, Ta, and W are often added. The addition amount of these additives is usually 30% by weight or less for Co and 8% by weight or less for other elements.
Addition of more additives causes the magnetic properties to deteriorate. The method for manufacturing the R-Fe-B rare earth magnet is as follows. Raw metal is weighed, melted and cast, and the resulting alloy is finely pulverized to an average particle size of 1 to 20 μm and R-
An Fe-B rare earth permanent magnet powder is obtained. The R—Fe—B rare earth permanent magnet powder is molded in a magnetic field according to the present invention and sintered at 1000 to 1200 ° C. for 0.5 to 5 hours. Finally, aging treatment is performed at 400 to 1000 ° C, and R-
An Fe-B based rare earth magnet is obtained.
【0020】[0020]
【発明の実施の形態】本発明の作用は異方性磁石の成形
工程において、上パンチおよび下パンチの少なくとも先
端部分を磁性を有する金属材料としてダイス、上パンチ
および下パンチで構成される金型のキャビティ内に永久
磁石粉末を供給し、該粉末に容易磁化方向を配向させる
ための磁場を印加し、圧縮して成形するものであって、
これにより、成形体表面に磁極が現れるのを防止して磁
束の分布を均一に、また磁束の方向を平行に揃えること
ができるようになる。さらに永久磁石粉末をキャビティ
内へ均一に充填することができる。従って残留磁束密度
が改善された異方性焼結磁石を歩留りよく製造すること
ができる。BEST MODE FOR CARRYING OUT THE INVENTION The function of the present invention is that, in the process of forming an anisotropic magnet, at least the tip portions of the upper punch and the lower punch are made of a metallic material having magnetism. A permanent magnet powder is supplied into the cavity of, and a magnetic field for orienting the easy magnetization direction is applied to the powder, and the powder is compacted and molded.
This makes it possible to prevent the magnetic poles from appearing on the surface of the molded body, to make the magnetic flux distribution uniform, and to make the magnetic flux directions parallel. Furthermore, the permanent magnet powder can be uniformly filled in the cavity. Therefore, an anisotropic sintered magnet having an improved residual magnetic flux density can be manufactured with high yield.
【0021】[0021]
【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例)原子%でNd13.8Dy1 Fe73.7
Co4 B6.5 Al1 の合金を、純度99.9wt%以上
の各原料金属を誘導加熱高周波溶解炉を用いてアルゴン
雰囲気中で溶解、鋳造し合金インゴットを作製した。こ
の合金インゴットをアルゴン雰囲気中1100℃×24
時間の均質化熱処理を行った後、アルゴン雰囲気中でジ
ョークラッシャー、ブラウンミルを用いて粗粉砕し、次
いで、窒素ガスを用いたジェットミルで微粉砕を行い、
平均粒径5μmのR−Fe−B系磁石粉を作製した。EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Example) Nd 13.8 Dy 1 Fe 73.7 in atomic%
The alloy of Co 4 B 6.5 Al 1 was melted and cast in an argon atmosphere by using an induction heating high frequency melting furnace to melt each raw material metal having a purity of 99.9 wt% or more to produce an alloy ingot. This alloy ingot was placed in an argon atmosphere at 1100 ° C x 24
After performing a homogenizing heat treatment for a time, coarse pulverization is performed using a jaw crusher and a brown mill in an argon atmosphere, and then fine pulverization is performed using a jet mill using nitrogen gas,
R-Fe-B based magnet powder having an average particle size of 5 μm was produced.
【0022】この磁石粉を用いて成形を行った。上パン
チおよび下パンチは、それぞれ先端から50mmの部分
を、表1に示したような種々の飽和磁化4πIsおよび
残留磁化4πIrを有する超硬合金あるいは合金炭素鋼
とした。キャビティ内に磁石粉を供給し、電磁石により
15kOeの磁場を印加し、磁場を印加したまま磁場印
加方向と垂直方向に1ton/cm2 の圧力をかけて成
形を行った。作製された成形体の高さは30mmであ
る。また、キャビティの圧縮方向に垂直な方向の断面形
状は30mm×20mmである。磁場印加方向は、成形
体の20mmの辺に平行な方向である。Molding was performed using this magnet powder. The upper punch and the lower punch are made of cemented carbide or alloy carbon steel having various saturation magnetizations of 4πIs and remanent magnetization of 4πIr as shown in Table 1 at portions of 50 mm from the tip. Magnet powder was supplied into the cavity, a magnetic field of 15 kOe was applied by an electromagnet, and a pressure of 1 ton / cm 2 was applied in the direction perpendicular to the magnetic field application direction while applying the magnetic field to perform molding. The height of the produced molded body is 30 mm. The sectional shape of the cavity in the direction perpendicular to the compression direction is 30 mm × 20 mm. The magnetic field application direction is parallel to the 20 mm side of the molded body.
【0023】これら成形体を真空中にて1060℃で9
0分焼結を行い、その後、さらに540℃で時効熱処理
を行った。得られたR−Fe−B系焼結磁石の磁気特性
をB−Hトレーサーを用いて測定した。それらの残留磁
束密度を表1に示した。また、焼結体表面の配向方向に
垂直な面の平面度も測定し、表1に示した。These compacts were vacuumed at 1060 ° C. for 9 minutes.
After 0 minute sintering, aging heat treatment was further performed at 540 ° C. The magnetic characteristics of the obtained R-Fe-B system sintered magnet were measured using a B-H tracer. Table 1 shows those residual magnetic flux densities. Further, the flatness of the surface perpendicular to the orientation direction of the surface of the sintered body was also measured and shown in Table 1.
【0024】[0024]
【表1】 [Table 1]
【0025】(実施例2)実施例1と同様なR−Fe−
B系磁石合金粉末をキャビティ内に供給し、電磁石によ
り18kOeの磁場を印加し、磁場印加方向と平行方向
に1.2ton/cm2 の圧力をかけて縦磁場成形を行
った。上パンチおよび下パンチの先端から30mmの部
分は、飽和磁化4πIsが3500ガウス、残留磁化4
πIr300ガウスの超硬合金で作製されている。作製
された成形体の高さは50mmであり、また、キャビテ
ィの圧縮方向に垂直な方向の断面形状は30mm×30
mmである。Example 2 R-Fe-similar to Example 1
The B-based magnet alloy powder was supplied into the cavity, a magnetic field of 18 kOe was applied by an electromagnet, and a pressure of 1.2 ton / cm 2 was applied in a direction parallel to the magnetic field application direction to perform longitudinal magnetic field molding. Saturation magnetization 4πIs is 3500 gauss and residual magnetization 4 is 30 mm from the tips of the upper and lower punches.
It is made of πIr300 Gauss cemented carbide. The height of the produced molded body is 50 mm, and the sectional shape of the cavity in the direction perpendicular to the compression direction is 30 mm × 30.
mm.
【0026】得られた成形体を、実施例1と同様な条件
で焼結、時効熱処理を行い、焼結磁石を製造した。この
焼結体は、形状に歪みは見られず、また、その残留磁束
密度Brは、12.09kGであった。比較例として、
上パンチおよび下パンチ全体を非磁性超硬合金として、
同様に焼結磁石を製造したところ、焼結体の形状は歪ん
でおり、また、その残留磁束密度Brは、11.84k
Gであった。The obtained compact was sintered under the same conditions as in Example 1 and subjected to an aging heat treatment to produce a sintered magnet. No distortion was observed in the shape of this sintered body, and its residual magnetic flux density Br was 12.09 kG. As a comparative example,
The entire upper punch and lower punch are made of non-magnetic cemented carbide,
Similarly, when a sintered magnet was manufactured, the shape of the sintered body was distorted, and the residual magnetic flux density Br thereof was 11.84 k.
G.
【0027】(実施例3)合金組成が重量%でSm2
5.5%、Fe14%、Cu4%、Zr2.5%、残C
oとなるように原料金属を秤量した後、これらを誘導加
熱高周波溶解炉を用いてアルゴン雰囲気中で溶解、鋳造
し合金インゴットを作製した。この合金インゴットをア
ルゴン雰囲気でジョークラッシャー、ブラウンミルを用
いて粗粉砕し、次いで、窒素ガスを用いたジェットミル
で微粉砕を行い、平均粒径5μmのR2 Co17系磁石粉
を作製した。この磁石粉を用いて成形を行った。上パン
チおよび下パンチはその全体を、表2に示したような種
々の飽和磁化4πIsおよび残留磁化4πIrを有する
超硬合金あるいは合金炭素鋼とした。キャビティ内に磁
石粉を供給し、電磁石により15kOeの磁場を印加
し、磁場を印加したまま磁場印加方向と垂直方向に0.
8ton/cm2 の圧力をかけて成形を行った。作製さ
れた成形体の高さは30mmである。また、キャビティ
の圧縮方向に垂直な方向の断面形状は30mm×20m
mである。磁場印加方向は、成形体の20mmの辺に平
行な方向である。この成形体をアルゴン雰囲気下で12
00℃で焼結、1180℃で溶体化した。時効熱処理は
まず初段時効として850℃で2時間保持した後、1℃
/minの冷却速度で400℃まで連続冷却を行い、そ
の後急冷した。得られたR2 Co17系焼結磁石の磁気特
性をB−Hトレーサーを用いて測定した。それらの残留
磁束密度を表2に示した。また、焼結体表面の配向方向
に垂直な面の平面度も測定し、表2に示した。(Embodiment 3) The alloy composition is Sm2 in wt%.
5.5%, Fe14%, Cu4%, Zr2.5%, balance C
After weighing the raw material metals so as to be o, these were melted and cast in an argon atmosphere using an induction heating high frequency melting furnace to produce an alloy ingot. This alloy ingot was roughly crushed in an argon atmosphere using a jaw crusher and a brown mill, and then finely crushed in a jet mill using nitrogen gas to produce R 2 Co 17 magnet powder having an average particle diameter of 5 μm. Molding was performed using this magnet powder. The upper punch and the lower punch were entirely made of cemented carbide or alloy carbon steel having various saturation magnetizations 4πIs and remanent magnetization 4πIr as shown in Table 2. Magnet powder was supplied into the cavity, a magnetic field of 15 kOe was applied by an electromagnet, and a magnetic field of 0.
Molding was performed by applying a pressure of 8 ton / cm 2 . The height of the produced molded body is 30 mm. The cross-sectional shape of the cavity in the direction perpendicular to the compression direction is 30 mm x 20 m.
m. The magnetic field application direction is parallel to the 20 mm side of the molded body. This molded body is placed under an argon atmosphere for 12
Sintering at 00 ° C and solutionizing at 1180 ° C. The aging heat treatment is as follows: First-stage aging, holding at 850 ° C for 2 hours, then 1 ° C
It was continuously cooled to 400 ° C. at a cooling rate of / min, and then rapidly cooled. The magnetic characteristics of the obtained R 2 Co 17 system sintered magnet were measured using a BH tracer. The residual magnetic flux densities are shown in Table 2. Further, the flatness of the surface perpendicular to the orientation direction of the surface of the sintered body was also measured and shown in Table 2.
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】本発明により、残留磁束密度の大きな異
方性焼結磁石を歩留りよく製造することができる。According to the present invention, anisotropic sintered magnets having a large residual magnetic flux density can be manufactured with high yield.
Claims (2)
て、上パンチおよび下パンチの少なくとも先端部分を飽
和磁化4πIsが500〜12000ガウス、かつ、残
留磁化4πIrが6000ガウス以下の磁性を有する金
属材料として、ダイス、前記上パンチおよび下パンチで
構成される金型のキャビティ内に永久磁石粉末を供給
し、該永久磁石粉末の容易磁化方向を配向させるための
磁場を印加し、更に圧縮して成形を行うことを特徴とす
る異方性焼結磁石の製造方法。1. A metal having a magnetism with a saturation magnetization of 4πIs of 500 to 12000 gauss and a residual magnetization of 4πIr of 6000 gauss or less in at least the tip portions of the upper punch and the lower punch in the forming step of manufacturing the anisotropic sintered magnet. As a material, a permanent magnet powder is supplied into a cavity of a die composed of a die, the upper punch and the lower punch, a magnetic field for orienting an easy magnetization direction of the permanent magnet powder is applied, and further compressed. A method for producing an anisotropic sintered magnet, which comprises molding.
Fe−B系またはR−Co系の希土類永久磁石粉末であ
る請求項1記載の異方性焼結磁石の製造方法。2. The permanent magnet powder according to claim 1, wherein R-
The method for producing an anisotropic sintered magnet according to claim 1, wherein the anisotropic sintered magnet is Fe-B-based or R-Co-based rare earth permanent magnet powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07206813A JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07206813A JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0935979A true JPH0935979A (en) | 1997-02-07 |
JP3101800B2 JP3101800B2 (en) | 2000-10-23 |
Family
ID=16529521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07206813A Expired - Lifetime JP3101800B2 (en) | 1995-07-21 | 1995-07-21 | Manufacturing method of anisotropic sintered permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3101800B2 (en) |
-
1995
- 1995-07-21 JP JP07206813A patent/JP3101800B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3101800B2 (en) | 2000-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1479787B2 (en) | Sinter magnet made from rare earth-iron-boron alloy powder for magnet | |
CN100394521C (en) | Forming method in magnetic field, and method for producing rare-earth sintered magnet | |
JP3101798B2 (en) | Manufacturing method of anisotropic sintered magnet | |
JPS6181603A (en) | Preparation of rare earth magnet | |
JP3101799B2 (en) | Manufacturing method of anisotropic sintered permanent magnet | |
JPS6348805A (en) | Manufacture of rare-earth magnet | |
JP3526493B2 (en) | Manufacturing method of anisotropic sintered magnet | |
JP3101800B2 (en) | Manufacturing method of anisotropic sintered permanent magnet | |
JP2745042B2 (en) | Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet | |
JP2007254813A (en) | Method for producing rare earth sintered magnet and die for molding used therefor | |
JPH05234789A (en) | Molding method and manufacture of sintered magnet | |
JP3937126B2 (en) | Die for sintered magnet and method for producing sintered magnet | |
JP2018152526A (en) | Method for manufacturing rare earth-iron-boron based sintered magnet | |
KR100225497B1 (en) | Method for manufacturing permanent magnet based on re-tm-b alloy | |
JPH04143221A (en) | Production of permanent magnet | |
JPH05152119A (en) | Hot-worked rare earth element-iron-carbon magnet | |
JP2730441B2 (en) | Manufacturing method of alloy powder for permanent magnet | |
JP3227613B2 (en) | Manufacturing method of powder for rare earth sintered magnet | |
JPH0562814A (en) | Method of manufacturing rare-earth element-fe-b magnet | |
JPH01175207A (en) | Manufacture of permanent magnet | |
JP2005213544A (en) | Compacting method in magnetic field and method for producing rare-earth sintered magnet | |
JP2004106041A (en) | Press, and manufacturing method of magnet | |
JPS61252604A (en) | Manufacture of rare earth magnet | |
JPH04246803A (en) | Rare earth-fe-b anisotropic magnet | |
JPH08279406A (en) | R-tm-b permanent magnet and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |