JP3101799B2 - Manufacturing method of anisotropic sintered permanent magnet - Google Patents

Manufacturing method of anisotropic sintered permanent magnet

Info

Publication number
JP3101799B2
JP3101799B2 JP07206812A JP20681295A JP3101799B2 JP 3101799 B2 JP3101799 B2 JP 3101799B2 JP 07206812 A JP07206812 A JP 07206812A JP 20681295 A JP20681295 A JP 20681295A JP 3101799 B2 JP3101799 B2 JP 3101799B2
Authority
JP
Japan
Prior art keywords
magnetic
die
magnetic field
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07206812A
Other languages
Japanese (ja)
Other versions
JPH0935978A (en
Inventor
武久 美濃輪
浩二 宮田
和博 高口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP07206812A priority Critical patent/JP3101799B2/en
Publication of JPH0935978A publication Critical patent/JPH0935978A/en
Application granted granted Critical
Publication of JP3101799B2 publication Critical patent/JP3101799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異方性焼結磁石の
製造方法に関するものである。
[0001] The present invention relates to a method for producing an anisotropic sintered magnet.

【0002】[0002]

【従来の技術】異方性焼結磁石としては、Baフェライ
ト系、Srフェライト系などのフェライト磁石、R−C
o系、R−Fe−B系などの希土類磁石が広く使用され
ているが、近年高性能磁石として希土類磁石の使用が急
激に伸びている。これら異方性焼結磁石は、磁性を担っ
ている各結晶粒の容易磁化方向をある一定の方向に揃え
たものであり、そのため、結晶粒の容易磁化方向がばら
ばらの方向を向いている等方性磁石に比較して、その容
易磁化方向に着磁されたときに残留磁束密度の値が大き
く、したがって、最大エネルギー積を大きくすることが
できる。また、焼結磁石であるため、樹脂などで結合さ
れたボンディッド磁石と比較して、非磁性物質の存在量
が少ないため、残留磁束密度の値が大きくなり、最大エ
ネルギー積を大きくできる。したがって、異方性焼結磁
石が、同じ材料を用いた磁石の中で、一番大きな最大エ
ネルギー積を得ることができるため、広く使用されてい
る。
2. Description of the Related Art Ferrite magnets such as Ba ferrite and Sr ferrite magnets and RC
Rare-earth magnets such as o-based and R-Fe-B-based are widely used, but in recent years, the use of rare-earth magnets as high-performance magnets has been rapidly increasing. In these anisotropic sintered magnets, the direction of easy magnetization of each crystal grain that bears magnetism is aligned in a certain direction, and therefore, the direction of easy magnetization of crystal grains is oriented in different directions. Compared with an isotropic magnet, when magnetized in its easy magnetization direction, the value of the residual magnetic flux density is large, and therefore, the maximum energy product can be increased. Further, since it is a sintered magnet, the amount of the non-magnetic substance is smaller than that of a bonded magnet bonded with a resin or the like, so that the value of the residual magnetic flux density is increased and the maximum energy product can be increased. Therefore, anisotropic sintered magnets are widely used because they can obtain the largest maximum energy product among magnets using the same material.

【0003】異方性焼結磁石は、磁性結晶粒の容易磁化
方向をある一定の方向に揃えるために、その材料を、そ
れぞれの粉砕粉が単結晶になるまで粉砕し、その粉砕粉
に外部磁場を印加することにより磁石粉の磁化容易軸を
外部磁場の方向と平行な方向に揃え、圧力をかけて圧縮
し成形する。その後、成形された磁石粉は、所定の条件
で焼結され、異方性焼結磁石を製造する。材料によって
は、焼結後、熱処理を要する場合もある。例えば、R2
Co17系磁石では、焼結後、溶体化処理を行い、さらに
時効処理を行う。R−Fe−B系磁石では、焼結後、5
00℃近傍で熱処理を行うことにより磁石を製造してい
る。
[0003] Anisotropic sintered magnets are made by pulverizing the material until each pulverized powder becomes a single crystal in order to align the direction of easy magnetization of the magnetic crystal grains to a certain direction, and apply the external powder to the pulverized powder. By applying a magnetic field, the axis of easy magnetization of the magnet powder is aligned in a direction parallel to the direction of the external magnetic field, and compressed and molded by applying pressure. Then, the formed magnet powder is sintered under predetermined conditions to produce an anisotropic sintered magnet. Depending on the material, heat treatment may be required after sintering. For example, R 2
After sintering, the Co 17 magnet is subjected to a solution treatment and then an aging treatment. For the R-Fe-B magnet, after sintering, 5
The magnet is manufactured by performing heat treatment at around 00 ° C.

【0004】成形工程で使用される磁場プレス機は、ダ
イス、上パンチ、下パンチおよび磁場発生手段からな
る。ダイス、上パンチおよび下パンチで構成されるキャ
ビティ内に磁石粉を供給し、磁場発生手段により配向磁
場を印加することにより磁石粉の容易磁化方向を一方向
に揃え、上パンチ、下パンチにより圧力を伝達し、キャ
ビティ内の磁石粉を成形する。成形は電磁石などで静磁
場を印加し、その静磁場を印加したまま行われるのが一
般的であるが、電磁石による静磁場では得られる磁場の
大きさが限定されてしまうので、大きな磁場で配向を行
いたい時には、磁場発生手段として空芯コイルによるパ
ルス磁場を用いることがある。パルス磁場を用いる時に
は、キャビティ内に磁石粉を供給した後、パルス磁場を
印加し、次いで成形を行う。しかしながら、パルス磁場
を発生させるとコイルの発熱が生じるなどの問題点が大
きく、生産方法としては好ましくない。キャビティ内に
充填された磁石粉に配向磁場をかける方向には、上下パ
ンチによる圧力印加の方向と平行方向に磁場をかける縦
磁場成形と、垂直方向に磁場を印加する横磁場成形とが
ある。横磁場成形を選択するか縦磁場成形を選択するか
は、製造される材料、特性、形状、着磁方向などによっ
て判断されるが、縦磁場成形により製造された焼結磁石
は横磁場成形の場合と比較して磁気特性が低下するの
で、横磁場成形を用いることが多い。
[0004] The magnetic field press used in the molding process includes a die, an upper punch, a lower punch, and a magnetic field generating means. Magnet powder is supplied into a cavity composed of a die, an upper punch and a lower punch, and an orientation magnetic field is applied by a magnetic field generating means to align the direction of easy magnetization of the magnet powder in one direction. To form the magnet powder in the cavity. In general, molding is performed by applying a static magnetic field with an electromagnet or the like and applying the static magnetic field.However, the static magnetic field using an electromagnet limits the size of the magnetic field that can be obtained. In some cases, a pulse magnetic field generated by an air-core coil is used as the magnetic field generating means. When a pulse magnetic field is used, a magnet powder is supplied into the cavity, a pulse magnetic field is applied, and then molding is performed. However, the generation of a pulsed magnetic field causes significant problems such as heat generation of the coil, which is not preferable as a production method. The directions in which the orientation magnetic field is applied to the magnet powder filled in the cavity include vertical magnetic field molding in which a magnetic field is applied in a direction parallel to the direction of pressure application by the upper and lower punches, and horizontal magnetic field molding in which a magnetic field is applied in the vertical direction. Whether to select horizontal magnetic field shaping or vertical magnetic field shaping is determined by the material to be manufactured, characteristics, shape, magnetization direction, etc.Sintered magnets manufactured by vertical magnetic field shaping Since magnetic properties are lower than in the case, transverse magnetic field shaping is often used.

【0005】[0005]

【発明が解決しようとする課題】ところで、磁場を印加
して成形、焼結を行い、磁石を製造した際に、一つの焼
結体の各部分により、磁気特性がばらつくことがある。
特に、焼結磁石の表面は中央部と比較して残留磁束密度
の劣化が著しく、これは、表面近傍では配向の乱れが大
きいためと考えられる。このように表面付近に配向の乱
れがあり、残留磁束密度が劣化していると、焼結体全体
として残留磁束密度が低くなってしまう。このような現
象は、焼結体の寸法が小さいときには特に顕著に現われ
る。特に近年は、異方性焼結磁石が使用される電子、電
気機器が小型化し、それに伴い異方性焼結磁石の寸法も
小さく薄型になってきているため、配向の乱れによる磁
気特性の劣化は無視することはできないようになってき
つつある。さらに、小型の磁石を製造する際、大型の焼
結体ブロックを切断して製造することもあるが、表面近
くから切り出された磁石は、残留磁束密度が低く使用に
耐えないことも多々あり、歩留りの低下を引き起こして
いる。
When a magnet is manufactured by applying a magnetic field to perform molding and sintering, magnetic properties may vary depending on each portion of one sintered body.
In particular, the residual magnetic flux density is significantly deteriorated on the surface of the sintered magnet as compared with the central portion, which is considered to be due to a large disturbance in the orientation near the surface. If the orientation is disturbed in the vicinity of the surface and the residual magnetic flux density is deteriorated, the residual magnetic flux density of the entire sintered body becomes low. Such a phenomenon appears particularly remarkably when the size of the sintered body is small. In particular, in recent years, the size of electronic and electric devices that use anisotropic sintered magnets has become smaller, and the size of anisotropic sintered magnets has become smaller and thinner. Is becoming impossible to ignore. In addition, when manufacturing small magnets, large sintered blocks may be cut and manufactured, but magnets cut from near the surface often have low residual magnetic flux density and cannot be used, This is causing a decrease in yield.

【0006】本発明者らは、前記問題点を解決するため
の手段として、ダイス、上パンチおよび下パンチの金型
部材の全て、あるいは、少なくとも一部を磁性を有する
金属材料とすることが有効であることを見いだし、既に
提案している。(特願平7−151093)
As a means for solving the above-mentioned problems, the present inventors have effective that all or at least a part of the die member of the die, the upper punch, and the lower punch is made of a magnetic metal material. And has already proposed. (Japanese Patent Application 7-151093)

【0007】特願平7−151093の発明は、ダイ
ス、上パンチおよび下パンチの金型部材の全て、あるい
は、少なくとも一部を磁性を有する金属材料とすること
により、成形体表面に磁極が現れるのを防止してキャビ
ティ空間内の磁束の分布を均一にし、また、磁束の方向
をなるべく平行に揃えようとするものである。
The invention of Japanese Patent Application No. Hei 7-15093 discloses that a magnetic pole appears on the surface of a molded product by using a metal material having magnetism for all or at least a part of a die, an upper punch and a lower punch. To make the distribution of the magnetic flux in the cavity space uniform and to make the direction of the magnetic flux as parallel as possible.

【0008】その結果、異方性焼結磁石の配向が、特
に、焼結体ブロックの表面近傍の配向が、格段に改善さ
れ、それにより磁石の残留磁束密度が顕著に向上し、ま
た、大型ブロックからの切り出しによる磁石製造歩留り
も大幅に改善された。しかしながら、磁石の高性能化、
すなわち、磁石の最大エネルギー積の向上に対する要求
も近年ますます高まり、さらなる高特性を目指す必要が
ある。
As a result, the orientation of the anisotropic sintered magnet, particularly in the vicinity of the surface of the sintered block, is remarkably improved, whereby the residual magnetic flux density of the magnet is remarkably improved. Magnet production yield by cutting from blocks has also been greatly improved. However, high performance magnets,
That is, the demand for the improvement of the maximum energy product of the magnet has been increasing more and more in recent years, and it is necessary to aim for further higher characteristics.

【0009】[0009]

【課題を解決するための手段】本発明者らは、磁石のさ
らなる高特性化を目指して鋭意努力した結果、本発明を
完成させたもので、その要旨は、異方性焼結磁石製造の
成形工程において、ダイスを飽和磁化4πIsが500
〜12000ガウスの磁性を有する金属材料とし、か
つ、該ダイスの配向磁場印加方向に平行な方向の断面形
状を楕円または円とし、なおかつ、上パンチおよび下パ
ンチの永久磁石粉末圧縮時にダイスに入り込む部分の飽
和磁化4πIsを500〜12000ガウスの磁性を有
する金属材料として、前記ダイス、上パンチおよび下パ
ンチからなる金型のキャビティ内に永久磁石粉末を供給
し、該永久磁石粉末の容易磁化方向を配向させるための
磁場を印加し、更に圧縮して成形を行うことを特徴とす
る異方性焼結磁石の製造方法であり、特に、前記永久磁
石粉末が、R−Fe−B系またはR−Co系の希土類永
久磁石粉末である異方性焼結磁石の製造方法である。
Means for Solving the Problems The inventors of the present invention have completed the present invention as a result of diligent efforts aimed at further improving the characteristics of a magnet. In the forming step, the die is set to a saturation magnetization of 4πIs of 500.
A portion made of a metal material having a magnetism of about 12,000 gauss and having a cross section in an ellipse or a circle in a direction parallel to the direction of application of the orientation magnetic field of the die, and which enters the die when the upper and lower punches are compressed with permanent magnet powder. A permanent magnet powder is supplied into a cavity of a die composed of the die, the upper punch and the lower punch as a metal material having a magnetic saturation of 4 to 12,000 gauss with a saturation magnetization of 4πIs, and the easy magnetization direction of the permanent magnet powder is oriented. A magnetic field for causing the anisotropic sintered magnet to be molded by applying a magnetic field for further compressing. In particular, the permanent magnet powder may be an R-Fe-B-based or R-Co This is a method for producing an anisotropic sintered magnet which is a rare earth permanent magnet powder.

【0010】一般に磁性体内部の磁束の向きは、その磁
性体が楕円形、円形の時にほとんど平行になる(図
1)。したがって、本発明においても、ダイス材質とし
て磁性材料を用い、またその形状をダイスの配向磁場印
加方向に平行な方向の断面形状を楕円または円とするこ
とで、ダイス内部の磁束の向きを平行にすることができ
る。ところが、ダイスには、上パンチ、下パンチおよび
成形体を挿入するための空間が開けられており、したが
って、キャビティ空間部分では、磁束の方向は若干乱れ
ている。
Generally, the direction of the magnetic flux inside the magnetic material is almost parallel when the magnetic material is elliptical or circular (FIG. 1). Therefore, also in the present invention, a magnetic material is used as a dice material, and the shape of the cross section in a direction parallel to the direction of application of the orientation magnetic field of the die is an ellipse or a circle, so that the direction of the magnetic flux inside the die is parallel. can do. However, the die has a space for inserting the upper punch, the lower punch, and the compact, and therefore, the direction of the magnetic flux is slightly disturbed in the cavity space.

【0011】本発明により磁石粉末圧縮時に前記ダイス
に開けられた空間を埋めるように上パンチおよび下パン
チの先端部分を飽和磁化4πIsが500〜12000
ガウスの磁性を有する金属材料とすることで、ダイス及
びパンチの磁性金属材料部分と成形体からなる部分をほ
とんど完全な円柱、楕円柱、球、楕円体とすることがで
き、そのためにキャビティ空間の磁束の方向をほとんど
完全に平行にすることができるようになるため、成形体
の配向、特に成形体の表面に近い部分の配向をさらに上
げることが可能となる。したがって、さらに高残留磁束
密度を有する永久磁石を製造することが可能である。
According to the present invention, the tip portions of the upper punch and the lower punch have a saturation magnetization of 4πIs of 500 to 12000 so as to fill the space opened in the die when the magnetic powder is compressed.
By using a metal material having Gaussian magnetism, the part consisting of the magnetic metal material part of the die and punch and the molded body can be made almost a perfect cylinder, elliptical cylinder, sphere, ellipsoid, and therefore, the cavity space Since the direction of the magnetic flux can be made almost completely parallel, it is possible to further increase the orientation of the molded article, particularly the orientation of the portion near the surface of the molded article. Therefore, it is possible to manufacture a permanent magnet having a higher residual magnetic flux density.

【0012】本発明では、ダイス材質、および上パン
チ、下パンチの永久磁石粉末圧縮時にダイスに入り込む
部分の材質として使用される磁性を有する金属材料の飽
和磁化4πIsを500〜12000ガウスと限定し
た。この範囲内でも、特に、1500〜8000ガウス
の範囲の飽和磁化4πIsを有する磁性金属材料を使用
するのが、本発明の効果が顕著に現われ、好ましい。5
00ガウス未満の飽和磁化4πIsを有する金属材料を
使用した場合、または非磁性材料で構成されている場合
には、成形体の表面に磁極が発生してしまい、そのた
め、成形体の表面近傍の磁束は方向が乱れるため、製造
された成形体の配向も乱れてしまい、その結果得られる
焼結磁石も配向が悪く、残留磁束密度の小さい磁石とな
ってしまう。また、飽和磁化4πIsが12000ガウ
スより大きい場合には、成形体の表面に飽和磁化4πI
sが500ガウス未満の金属材料を使用した時と逆の磁
極が発生してしまい、その結果、同様に成形体の配向が
乱れてしまう。
In the present invention, the saturation magnetization 4πIs of the magnetic material used as the material of the die and the magnetic material used as the material of the upper and lower punches that enter the die when the permanent magnet powder is compressed is limited to 500 to 12,000 gauss. Even within this range, it is particularly preferable to use a magnetic metal material having a saturation magnetization of 4πIs in the range of 1500 to 8000 Gauss, since the effect of the present invention is remarkably exhibited. 5
When a metal material having a saturation magnetization of 4πIs less than 00 Gauss is used, or when a non-magnetic material is used, magnetic poles are generated on the surface of the molded body, and therefore, the magnetic flux near the surface of the molded body is generated. Since the direction is disturbed, the orientation of the manufactured compact is also disturbed, and the resulting sintered magnet also has poor orientation and a magnet with a low residual magnetic flux density. When the saturation magnetization 4πIs is larger than 12000 gauss, the surface of the compact has a saturation magnetization of 4πIs.
When a metal material having a s of less than 500 Gauss is used, a magnetic pole opposite to that when a metal material is used is generated, and as a result, the orientation of the molded body is similarly disturbed.

【0013】本発明の磁性を有する金属材料としては、
超硬合金、合金炭素鋼が望ましい。超硬合金とは、W
C、TiC、MoC、NbC、TaC、Cr3 2 等の
IVa,Va,VIa族に属する金属の炭化物粉末をCo、
Ni、Mo、Fe、Cu、Pb、Sn、またはそれらの
合金を用いて焼結結合した合金であり、これらは、超硬
合金に含有される炭素量、および鉄、コバルト、ニッケ
ル等の量、さらに添加物の種類、添加量等によりその磁
性は様々に変化する。本発明では、所定の磁気特性を有
していれば、どのような超硬合金を使用しても差しつか
えない。また、合金炭素鋼とは、Fe−Cを主体とする
合金であり、特にダイス鋼、炭素工具鋼、合金工具鋼、
高速度鋼等を用いるのが好ましい。これらについても所
定の磁気特性を有していれば、どのような合金炭素鋼を
使用しても問題ない。
The metal material having magnetism according to the present invention includes:
Cemented carbides and alloyed carbon steels are desirable. What is cemented carbide?
C, TiC, MoC, NbC, TaC, Cr 3 C 2 etc.
Co, a carbide powder of a metal belonging to the group IVa, Va, VIa;
Ni, Mo, Fe, Cu, Pb, Sn, or alloys sintered and bonded using their alloys, these are the amount of carbon contained in the cemented carbide and the amount of iron, cobalt, nickel, etc. Further, the magnetism changes variously depending on the kind and amount of the additive. In the present invention, any cemented carbide may be used as long as it has a predetermined magnetic property. Further, the alloy carbon steel is an alloy mainly composed of Fe-C, and in particular, die steel, carbon tool steel, alloy tool steel,
It is preferable to use high-speed steel or the like. Any alloy carbon steel may be used as long as it has a predetermined magnetic property.

【0014】本発明では、さらに、ダイスの配向磁場印
加方向に平行な方向の断面形状を楕円または円とし、か
つ、上下パンチの永久磁石粉末圧縮時にダイスに入り込
む部分を飽和磁化4πIsが500〜12000ガウス
の磁性を有する金属材料とすることにより、磁性金属材
料と成形体からなる部分が完全な円柱、楕円柱、球、楕
円体とすることができ、そのために成形体内部の磁束の
方向を完全に平行にすることができるようになる。
In the present invention, the cross section of the die in the direction parallel to the direction of application of the orientation magnetic field is elliptical or circular, and the portion of the upper and lower punches entering the die when the permanent magnet powder is compressed has a saturation magnetization 4πIs of 500 to 12000. By using a metal material having Gaussian magnetism, the part consisting of the magnetic metal material and the compact can be made into a perfect cylinder, elliptic cylinder, sphere, or ellipsoid, and therefore the direction of the magnetic flux inside the compact is completely Can be made parallel.

【0015】ダイスの配向磁場印加方向に平行な方向の
断面形状を楕円または円にするためには、ダイス全体の
形状を円柱、楕円柱、球、楕円体にする必要がある。そ
の他の形状、例えば、立方体や直方体のような形状では
ダイス内の磁束の向きが平行にならないため、本発明に
は含まれない。特に、横磁場成形においてダイスを円
柱、楕円柱とする場合には、磁場印加方向に平行で、か
つ、圧縮方向に垂直な断面を円、楕円となるようにダイ
スを配置するのが、磁場成形機が簡略となり、また、成
形作業も簡便になるため、好ましい。
In order to make the cross-sectional shape of the dice parallel to the direction of application of the orientation magnetic field into an ellipse or a circle, the overall shape of the dice must be a cylinder, an ellipsoid, a sphere, or an ellipsoid. Other shapes, such as a cube or a rectangular parallelepiped, are not included in the present invention because the directions of the magnetic flux in the die are not parallel. In particular, when the dies are cylindrical or elliptical cylinders in the transverse magnetic field forming, the dies are arranged so that the cross section parallel to the magnetic field application direction and perpendicular to the compression direction becomes a circle or an ellipse. This is preferable because the machine is simplified and the molding operation is simplified.

【0016】上パンチおよび下パンチのダイスに入り込
む部分というのは、図2に示したように、上パンチの成
形体に接する面からダイス上面までの部分、下パンチの
成形体に接する面からダイス下面までの部分のことを指
しており、本発明では、これらの部分もまた飽和磁化4
πIsが500〜12000ガウスの磁性を有する金属
材料とすることが必要である。パンチの磁性金属材料
は、ダイスに使用されている磁性金属材料と異なってい
ても問題ないが、同一の材質であることが焼結磁石の磁
気特性上好ましい。上パンチおよび下パンチの内、飽和
磁化4πIsが500〜12000ガウスの磁性を有す
る金属材料からなる部分以外は、非磁性の物質からなっ
ていることが必要である。この非磁性物質で構成される
べき部分が磁性材料からなっている場合には、その部分
に磁束が流れ込んで磁束の流れが平行でなくなってしま
い、本発明の効果が得られない。また、上パンチの磁性
金属材料部と非磁性材料部との境界がダイス上面より上
にあったり下にあったりすると、磁性金属材料と成形体
からなる部分を完全な円柱、楕円柱、球、楕円体とする
ことができないので、キャビティ空間内の磁束を完全に
平行にすることができず、避ける必要がある。下パンチ
の磁性金属材料部と非磁性材料部との境界がダイス下面
より上にあったり下にあったりした場合も同様である。
As shown in FIG. 2, the portion of the upper punch and the lower punch that enters the die is defined as a portion from the surface in contact with the formed body of the upper punch to the upper surface of the die, and the die from the surface in contact with the formed body of the lower punch. In the present invention, these portions also refer to portions up to the lower surface.
It is necessary to use a metal material having magnetism of πIs of 500 to 12,000 gauss. There is no problem if the magnetic metal material of the punch is different from the magnetic metal material used for the die, but the same material is preferable in terms of the magnetic properties of the sintered magnet. Of the upper punch and the lower punch, it is necessary that the portion other than the portion made of a magnetic material having a magnetization of 4 to 12000 gauss in saturation magnetization 4πIs is made of a nonmagnetic substance. When the portion to be made of the non-magnetic substance is made of a magnetic material, the magnetic flux flows into the portion and the flow of the magnetic flux is not parallel, and the effect of the present invention cannot be obtained. Also, when the boundary between the magnetic metal material portion and the non-magnetic material portion of the upper punch is above or below the upper surface of the die, the portion made of the magnetic metal material and the compact is completely cylindrical, elliptical, spherical, Since it cannot be an ellipsoid, the magnetic flux in the cavity space cannot be made completely parallel and must be avoided. The same applies to the case where the boundary between the magnetic metal material portion and the non-magnetic material portion of the lower punch is above or below the lower surface of the die.

【0017】本発明では、所定の磁気特性を有する金属
材料により所定形状のダイスを作製し、そのダイスを非
磁性材料、例えば、非磁性ステンレス鋼などで焼きばめ
して使用してもよい。本発明の対象となる異方性焼結磁
石としては、Baフェライト系、Srフェライト系など
のフェライト磁石、R−Co系、R−Fe−B系などの
希土類磁石があるが、特に希土類磁石を製造する際に本
発明を適用すれば、本発明の効果が顕著に現れるため、
好ましい結果を得ることができる。これらの磁石は以下
のように製造される。R−Co系希土類磁石は、RCo
5 系、R2 Co17系などがあるが、実用に供されている
のは、ほとんどがR2 Co17系である。R2 Co17系希
土類磁石は、通常、重量百分率で、20〜28%のR、
5〜30%のFe、3〜10%のCu、1〜5%のZ
r、残部Coからなり、以下のような製造法により製造
される。まず、原料金属を秤量して溶解、鋳造し、得ら
れた合金を平均粒径1〜20μmまで微粉砕しR2 Co
17系希土類永久磁石粉末を得る。R2 Co17系希土類永
久磁石粉末は、本発明により磁場中で成形され、その
後、1100〜1250℃で0.5〜5時間焼結され、
次いで、焼結温度よりも0〜50℃低い温度で0.5〜
5時間溶体化され、そして最後に時効処理が施される。
時効処理は通常初段時効として700〜950℃で一定
の時間保持し、その後、連続冷却または多段時効を行
う。
In the present invention, a die having a predetermined shape may be formed from a metal material having predetermined magnetic characteristics, and the die may be shrink-fitted with a non-magnetic material, for example, non-magnetic stainless steel. Examples of the anisotropic sintered magnet that is the object of the present invention include ferrite magnets such as Ba ferrite and Sr ferrite, and rare earth magnets such as R-Co and R-Fe-B. If the present invention is applied during manufacturing, the effects of the present invention will be remarkably exhibited,
Good results can be obtained. These magnets are manufactured as follows. R-Co based rare earth magnets are RCo
Although there are 5 systems and R 2 Co 17 systems, most practically used are R 2 Co 17 systems. R 2 Co 17 based rare earth magnets usually have a R, of 20 to 28% by weight,
5-30% Fe, 3-10% Cu, 1-5% Z
r, the balance being Co, and manufactured by the following manufacturing method. First, a raw metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm, and R 2 Co
Obtain 17 series rare earth permanent magnet powder. R 2 Co 17 based rare earth permanent magnet powder is formed in a magnetic field according to the present invention, and then sintered at 1100 to 1250 ° C. for 0.5 to 5 hours,
Next, at a temperature lower by 0 to 50 ° C. than the sintering temperature,
The solution is solution-treated for 5 hours, and is finally subjected to an aging treatment.
In the aging treatment, the first-stage aging is usually held at 700 to 950 ° C. for a certain period of time, followed by continuous cooling or multi-stage aging.

【0018】R−Fe−B系希土類磁石は、通常、重量
百分率で、5〜40%のR、50〜90%のFe、0.
2〜8%のBからなる。磁気特性を改善するために、
C、Al、Si、Ti、V、Cr、Mn、Co、Ni、
Cu、Zn、Ga、Zr、Nb、Mo、Ag、Sn、H
f、Ta、Wなど添加元素を加えることが多い。これら
添加物の添加量は、Coの場合30重量%以下、その他
の元素の場合には8重量%以下とするのが普通である。
これ以上の添加物を加えると逆に磁気特性を劣化させて
しまう。R−Fe−B系希土類磁石の製造方法は以下の
通りである。原料金属を秤量して溶解、鋳造し、得られ
た合金を平均粒径1〜20μmになるまで微粉砕しR−
Fe−B系希土類永久磁石粉末を得る。R−Fe−B系
希土類永久磁石粉末は、本発明により磁場中で成形さ
れ、1000〜1200℃で0.5〜5時間焼結され
る。最後に400〜1000℃で時効処理を行い、R−
Fe−B系希土類磁石を得る。
R-Fe-B rare earth magnets are usually 5 to 40% of R, 50 to 90% of Fe, 0.1 to 0.5% by weight.
Consists of 2-8% B. To improve magnetic properties,
C, Al, Si, Ti, V, Cr, Mn, Co, Ni,
Cu, Zn, Ga, Zr, Nb, Mo, Ag, Sn, H
In many cases, additional elements such as f, Ta, and W are added. The amount of these additives is usually 30% by weight or less for Co, and 8% by weight or less for other elements.
Addition of more additives causes the magnetic properties to deteriorate. The method for producing the R-Fe-B rare earth magnet is as follows. The raw metal is weighed, melted and cast, and the obtained alloy is finely pulverized to an average particle size of 1 to 20 μm.
An Fe-B rare earth permanent magnet powder is obtained. The R-Fe-B-based rare earth permanent magnet powder is formed in a magnetic field according to the present invention, and sintered at 1000 to 1200C for 0.5 to 5 hours. Finally, aging treatment is performed at 400 to 1000 ° C.
An Fe-B based rare earth magnet is obtained.

【0019】[0019]

【発明の実施の形態】本発明の作用は、異方性焼結磁石
の成形工程において、ダイスを磁性を有する金属材料と
し、該ダイスの配向磁場印加方向に平行な方向の断面形
状を楕円または円とし、上パンチおよび下パンチの永久
磁石粉末圧縮時にダイスに入り込む部分を磁性を有する
金属料として、前記ダイス、上パンチおよび下パンチか
らなる金型のキャビティ内に永久磁石粉末を供給し、該
粉末に容易磁化方向を配向させるための磁場を印加し、
圧縮して成形するものであって、これによりキャビティ
内の磁束の方向の乱れを防止しほとんど完全に平行とす
ることができる。従って、残留磁束密度の改善された異
方性焼結磁石を歩留りよく製造することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The function of the present invention is to provide a process in which a die is made of a magnetic metal material in a molding step of an anisotropic sintered magnet, and the cross-sectional shape of the die in a direction parallel to the direction of application of an orientation magnetic field is elliptical or elliptical. The permanent magnet powder is supplied into a cavity of a die composed of the die, the upper punch and the lower punch as a circle, and the portion of the upper punch and the lower punch that enters the dice when the permanent magnet powder is compressed is used as a metal material having magnetism. Applying a magnetic field for orienting the magnetization direction to the powder,
The molding is performed by compressing, whereby the disturbance of the direction of the magnetic flux in the cavity can be prevented and almost completely parallel. Therefore, an anisotropic sintered magnet having an improved residual magnetic flux density can be manufactured with high yield.

【0020】[0020]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)原子%でNd13.8Dy1 Fe73.7Co4
6.5 Al1 の合金を、純度99.9wt%以上の各原料
金属を誘導加熱高周波溶解炉を用いてアルゴン雰囲気中
で溶解、鋳造し合金インゴットを作製した。この合金イ
ンゴットをアルゴン雰囲気中1100℃×24時間の均
質化熱処理を行った後、アルゴン雰囲気中でジョークラ
ッシャー、ブラウンミルを用いて粗粉砕し、次いで、窒
素ガスを用いたジェットミルで微粉砕を行い、平均粒径
5μmのR−Fe−B系磁石粉を作製した。
EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example 1) Nd 13.8 Dy 1 Fe 73.7 Co 4 B in atomic%
An alloy of 6.5 Al 1 was melted and cast in an argon atmosphere using an induction heating high-frequency melting furnace with each raw material metal having a purity of 99.9 wt% or more to prepare an alloy ingot. This alloy ingot was subjected to a homogenizing heat treatment at 1100 ° C. for 24 hours in an argon atmosphere, then coarsely ground using a jaw crusher and a brown mill in an argon atmosphere, and then finely ground using a jet mill using nitrogen gas. Then, an R—Fe—B-based magnet powder having an average particle size of 5 μm was prepared.

【0021】この磁石粉をキャビティ内に供給し、電磁
石により15kOeの磁場を印加し、磁場を印加したま
ま磁場印加方向と垂直方向に1ton/cm2 の圧力を
かけて成形を行った。成形に用いたダイスは、表1に示
したような種々の飽和磁化4πIsを有する超硬合金あ
るいはダイス鋼とした。ダイスの形状は、磁場印加方向
に平行で圧縮方向に垂直な面が円形である円柱状ダイス
を非磁性ステンレス鋼で焼きばめしてある。また、上パ
ンチおよび下パンチは圧縮時にダイスに入り込む部分を
ダイスと同材質とし、その他の部分を非磁性ステンレス
鋼とした。作製された成形体の高さは15mmである。
また、キャビティの圧縮方向に垂直な方向の断面形状は
30mm×20mmである。これら成形体を真空中にて
1060℃で90分焼結を行い、その後、さらに540
℃で時効熱処理を行った。得られたR−Fe−B系焼結
磁石の磁気特性をB−Hトレーサーを用いて測定した。
それらの残留磁束密度を表1に示した。
This magnet powder was supplied into the cavity, a magnetic field of 15 kOe was applied by an electromagnet, and molding was performed while applying a magnetic field and applying a pressure of 1 ton / cm 2 in a direction perpendicular to the magnetic field application direction. The dies used for forming were cemented carbide or die steel having various saturation magnetizations of 4πIs as shown in Table 1. The shape of the dice is such that a cylindrical die having a circular surface parallel to the magnetic field application direction and perpendicular to the compression direction is shrink-fitted with non-magnetic stainless steel. In the upper punch and the lower punch, the portion that enters the die during compression was made of the same material as the die, and the other portions were made of non-magnetic stainless steel. The height of the formed compact is 15 mm.
The cross-sectional shape of the cavity in a direction perpendicular to the compression direction is 30 mm × 20 mm. These compacts were sintered at 1060 ° C. for 90 minutes in a vacuum, and then 540
Aging heat treatment was performed at ℃. The magnetic properties of the obtained R—Fe—B sintered magnet were measured using a BH tracer.
Table 1 shows their residual magnetic flux densities.

【0022】 表1 ダイス、パンチの飽和磁化4πIs 磁石の残留磁束密度Br (ガウス) (kG) 0(非磁性) 12.38 300 12.45 500 12.61 1000 12.65 1500 12.73 3000 12.78 6000 12.82 8000 12.77 10000 12.62 12000 12.55 15000 12.46 表1により、ダイスや上下パンチのダイスに入り込む部
分の磁性金属材料の飽和磁化4πIsが500〜120
00ガウスの時に、磁石の残留磁束密度Brが改善さ
れ、特に1500〜8000ガウスの時にその効果が顕
著であることが認められる。
Table 1 Saturated magnetization of dice and punches 4πIs Residual magnetic flux density of a magnet Br (Gauss) (kG) 0 (nonmagnetic) 12.38 300 12.45 500 12.61 1000 12.65 1500 12.73 3000 12 .78 6000 12.82 8000 12.77 10000 12.62 12000 12.55 15000 12.46 According to Table 1, the saturation magnetization 4πIs of the magnetic metal material at the portion entering the dice or the upper and lower punch dies is 500 to 120.
It is recognized that the residual magnetic flux density Br of the magnet is improved at the time of 00 Gauss, and the effect is particularly remarkable at the time of 1500 to 8000 Gauss.

【0023】(実施例2)実施例1と同様な磁石合金粉
末をキャビティ内に供給し、電磁石により18kOeの
磁場を印加し、磁場印加方向と垂直方向に1.5ton
/cm2 の圧力をかけて成形を行った。ダイスは、飽和
磁化4πIsが3000ガウスの超硬合金で作製されて
おり、その形状を磁場印加方向に平行で圧縮方向に垂直
な断面が楕円形の楕円柱とした。また、上パンチ、下パ
ンチは圧縮時にダイスに入り込む部分をダイスと同材質
とし、その他の部分を非磁性ステンレス鋼とした。作製
された成形体の高さは20mmである。また、キャビテ
ィの圧縮方向に垂直な方向の断面形状は30mm×30
mmである。次いで、実施例1と同様な条件で焼結、時
効を行い、磁石を製造し、その磁気特性をB−Hトレー
サーを用いて測定した。その結果は、磁石の残留磁束密
度は12.80kGであった。比較例として、ダイスの
形状を直方体とし、その他は実施例2と同様にR−Fe
−B系永久磁石を作製し、その磁気特性を測定したとこ
ろ、残留磁束密度は、12.39kGであった。以上よ
り、ダイスの磁場印加方向に平行な断面の形状を楕円と
することにより磁石の残留磁束密度Brが向上するとい
う結果が得られた。
(Example 2) The same magnet alloy powder as in Example 1 was supplied into the cavity, and a magnetic field of 18 kOe was applied by an electromagnet, and 1.5 ton in a direction perpendicular to the magnetic field application direction.
/ Cm 2 under pressure. The dice is made of a cemented carbide having a saturation magnetization of 4πIs of 3000 Gauss, and has a shape of an elliptic cylinder having an elliptical cross section parallel to the direction in which the magnetic field is applied and perpendicular to the compression direction. The upper and lower punches were made of the same material as the dies at the portion that enters the dies when compressed, and the other portions were made of non-magnetic stainless steel. The height of the formed compact is 20 mm. The cross-sectional shape of the cavity in a direction perpendicular to the compression direction is 30 mm × 30 mm.
mm. Next, sintering and aging were performed under the same conditions as in Example 1 to produce a magnet, and its magnetic properties were measured using a BH tracer. As a result, the residual magnetic flux density of the magnet was 12.80 kG. As a comparative example, the shape of the die was a rectangular parallelepiped, and the other components were the same as those of the second embodiment.
When a -B-based permanent magnet was manufactured and its magnetic properties were measured, the residual magnetic flux density was 12.39 kG. From the above, the result was obtained that the residual magnetic flux density Br of the magnet was improved by making the cross section of the die parallel to the magnetic field application direction elliptical.

【0024】(実施例3)実施例1と同様な磁石合金粉
末をキャビティ内に供給し、電磁石により10kOeの
磁場を印加し、磁場印加方向と垂直方向に2ton/c
2 の圧力をかけて成形を行った。ダイスは、飽和磁化
4πIsが3000ガウスの超硬合金で作製されてお
り、ダイスの形状は、磁場印加方向に平行で圧縮方向に
垂直な面が楕円形である楕円体状とした。また、上パン
チ、下パンチは圧縮時にダイスに入り込む部分をダイス
と同材質とし、その他の部分を非磁性ステンレス鋼とし
た。作製された成形体の高さは40mmである。また、
キャビティの圧縮方向に垂直な方向の断面形状は30m
m×30mmである。次いで、実施例1と同様な条件で
焼結、時効を行い、磁石を製造し、その磁気特性をB−
Hトレーサーを用いて測定した。その結果は、12.7
8kGであった。比較例として、上パンチ、下パンチ全
体を非磁性超硬合金で作製した以外はすべて同条件で焼
結体を作製し、磁気特性を測定した。その結果、12.
54kGであった。以上より、上パンチ、下パンチのダ
イスに入り込む部分を磁性金属材料とすることで、磁石
の残留磁束密度Brの向上に効果があることが認められ
た。
Example 3 The same magnet alloy powder as in Example 1 was supplied into a cavity, a magnetic field of 10 kOe was applied by an electromagnet, and 2 ton / c was applied in a direction perpendicular to the magnetic field application direction.
Molding was performed with a pressure of m 2 . The die was made of a cemented carbide having a saturation magnetization of 4πIs of 3000 Gauss. The shape of the die was an ellipsoid whose surface parallel to the magnetic field application direction and perpendicular to the compression direction was elliptical. The upper and lower punches were made of the same material as the dies at the portion that enters the dies when compressed, and the other portions were made of non-magnetic stainless steel. The height of the formed compact is 40 mm. Also,
The cross-sectional shape in the direction perpendicular to the compression direction of the cavity is 30 m
mx 30 mm. Next, sintering and aging were performed under the same conditions as in Example 1 to produce a magnet, and the magnetic characteristics were measured using a B-
It was measured using an H tracer. The result is 12.7
It was 8 kG. As a comparative example, a sintered body was manufactured under the same conditions except that the entire upper punch and lower punch were made of a non-magnetic cemented carbide, and the magnetic properties were measured. As a result, 12.
It was 54 kG. From the above, it was confirmed that the use of the magnetic metal material for the portions of the upper punch and the lower punch that enter the dies was effective in improving the residual magnetic flux density Br of the magnet.

【0025】(実施例4)合金組成が重量%でSm2
5.5%、Fe14%、Cu4%、Zr2.5%、残C
oとなるように原料金属を秤量した後、これらを誘導加
熱高周波溶解炉を用いてアルゴン雰囲気中で溶解、鋳造
し合金インゴットを作製した。この合金インゴットをア
ルゴン雰囲気でジョークラッシャー、ブラウンミルを用
いて粗粉砕し、次いで、窒素ガスを用いたジェットミル
で微粉砕を行い、平均粒径5μmのR2 Co17系磁石粉
を作製した。この磁石粉をキャビティ内に供給し、電磁
石により15kOeの磁場を印加し、磁場を印加したま
ま磁場印加方向と垂直方向に1ton/cm2 の圧力を
かけて成形を行った。成形に用いたダイスは、表1に示
したような種々の飽和磁化4πIsを有する超硬合金あ
るいはダイス鋼とした。ダイスの形状は、磁場印加方向
に平行で圧縮方向に垂直な面が円形である円柱状ダイス
を非磁性ステンレス鋼で焼きばめしてある。また、上パ
ンチ、下パンチは圧縮時にダイスに入り込む部分をダイ
スと同材質とし、その他の部分を非磁性ステンレス鋼と
した。作製された成形体の高さは15mmである。ま
た、キャビティの圧縮方向に垂直な方向の断面形状は3
0mm×20mmである。この成形体のアルゴン雰囲気
下で1200℃で焼結、1180℃で溶体化した。時効
熱処理はまず初段時効として850℃で2時間保持した
後、1℃/minの冷却速度で400℃まで連続冷却を
行い、その後急冷した。得られたR2 Co17系焼結磁石
の磁気特性をB−Hトレーサーを用いて測定した。磁性
超硬合金の飽和磁化の値と作製されたR2 Co17系磁石
の残留磁束密度Brとの関係を表2に示す。
(Example 4) The alloy composition was Sm2 by weight%.
5.5%, Fe 14%, Cu 4%, Zr 2.5%, residual C
After weighing the raw materials so as to obtain o, they were melted and cast in an argon atmosphere using an induction heating high-frequency melting furnace to produce an alloy ingot. This alloy ingot was roughly pulverized using a jaw crusher and a brown mill in an argon atmosphere, and then finely pulverized using a jet mill using nitrogen gas to produce an R 2 Co 17- based magnetic powder having an average particle diameter of 5 μm. The magnet powder was supplied into the cavity, a magnetic field of 15 kOe was applied by an electromagnet, and molding was performed while applying a magnetic field and applying a pressure of 1 ton / cm 2 in a direction perpendicular to the magnetic field application direction. The dies used for forming were cemented carbide or die steel having various saturation magnetizations of 4πIs as shown in Table 1. The shape of the dice is such that a cylindrical die having a circular surface parallel to the magnetic field application direction and perpendicular to the compression direction is shrink-fitted with non-magnetic stainless steel. The upper and lower punches were made of the same material as the dies at the portion that enters the dies when compressed, and the other portions were made of non-magnetic stainless steel. The height of the formed compact is 15 mm. The cross-sectional shape of the cavity in the direction perpendicular to the compression direction is 3
It is 0 mm × 20 mm. The molded body was sintered at 1200 ° C. in an argon atmosphere and solution-formed at 1180 ° C. The aging heat treatment was performed by first holding at 850 ° C. for 2 hours as first-stage aging, then continuously cooling to 400 ° C. at a cooling rate of 1 ° C./min, and then rapidly cooling. The magnetic properties of the obtained R 2 Co 17 based sintered magnet were measured using a BH tracer. Table 2 shows the relationship between the value of the saturation magnetization of the magnetic cemented carbide and the residual magnetic flux density Br of the produced R 2 Co 17 magnet.

【0026】 表2 ダイス、パンチの飽和磁化4πIs 磁石の残留磁束密度Br (ガウス) (kG) 0(非磁性) 10.21 300 10.29 500 10.48 1000 10.52 1500 10.58 3000 10.63 6000 10.62 8000 10.57 10000 10.50 12000 10.44 15000 10.26 表2により、R2 Co17系希土類磁石においても、ダイ
スや上下パンチのダイスに入り込む部分の磁性金属材料
の飽和磁化4πIsを500〜12000ガウスとする
ことで、磁石の残留磁束密度Brが改善され、特に15
00〜8000ガウスの時にその効果が顕著であること
が認められる。
Table 2 Saturated magnetization of dice and punches 4πIs Residual magnetic flux density of the magnet Br (Gauss) (kG) 0 (nonmagnetic) 10.21 300 10.29 500 10.48 1000 10.52 1500 10.58 3000 10 0.63 6000 10.62 8000 10.57 10000 10.50 12000 10.44 15000 10.26 According to Table 2, even in the R 2 Co 17- based rare earth magnet, the magnetic metal material of the portion that enters the dice and the dice of the upper and lower punches can be obtained. By setting the saturation magnetization 4πIs to 500 to 12,000 gauss, the residual magnetic flux density Br of the magnet is improved.
It is recognized that the effect is remarkable at the time of 00 to 8000 Gauss.

【0027】[0027]

【発明の効果】本発明により、配向のよい異方性焼結磁
石を作製することが可能となり、残留磁束密度の大きな
異方性焼結磁石が作成できる。また、大型の異方性焼結
磁石ブロックを切断しても端部の磁気特性劣化が少な
く、歩留りよく異方性焼結磁石を製造できる。
According to the present invention, an anisotropic sintered magnet having a good orientation can be manufactured, and an anisotropic sintered magnet having a large residual magnetic flux density can be manufactured. Further, even when a large-sized anisotropic sintered magnet block is cut, the magnetic properties of the end portions are hardly deteriorated, and an anisotropic sintered magnet can be manufactured with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】楕円体内部の磁束Fig. 1 Magnetic flux inside an ellipsoid

【図2】本発明による製造方法の一例FIG. 2 shows an example of a manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 :上パンチ(磁性材料部) 1′:上パンチ(非磁性材料部) 2 :下パンチ(磁性材料部) 2′:下パンチ(非磁性材料部) 3 :ダイス(磁性材料) 4 :電磁石 5 :成形体 6 :楕円状磁性体 7 :磁束 1: Upper punch (magnetic material part) 1 ': Upper punch (non-magnetic material part) 2: Lower punch (magnetic material part) 2': Lower punch (non-magnetic material part) 3: Dice (magnetic material) 4: Electromagnet 5: molded body 6: elliptical magnetic body 7: magnetic flux

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 B22F 3/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 41/02 B22F 3/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 異方性焼結磁石製造の成形工程におい
て、ダイスを飽和磁化4πIsが500〜12000ガ
ウスの磁性を有する金属材料とし、かつ、該ダイスの配
向磁場印加方向に平行な方向の断面形状を楕円または円
とし、なおかつ、上パンチおよび下パンチの永久磁石粉
末圧縮時にダイスに入り込む部分の飽和磁化4πIsを
500〜12000ガウスの磁性を有する金属材料とし
て、前記ダイス、上パンチおよび下パンチからなる金型
のキャビティ内に永久磁石粉末を供給し、該永久磁石粉
末の容易磁化方向を配向させるための磁場を印加し、更
に圧縮して成形を行うことを特徴とする異方性焼結磁石
の製造方法。
In a forming step of manufacturing an anisotropic sintered magnet, a die is made of a metal material having a magnetism having a saturation magnetization of 4πIs of 500 to 12,000 gauss, and a cross section of the die in a direction parallel to a direction in which an orientation magnetic field is applied. The shape is an ellipse or a circle, and the saturation magnetization 4πIs of the portion that enters the die when the permanent magnet powder of the upper punch and the lower punch is compressed is set as a metal material having a magnetism of 500 to 12,000 gauss. A permanent magnet powder is supplied into the cavity of the mold, and a magnetic field for orienting the direction of easy magnetization of the permanent magnet powder is applied, followed by further compaction to perform molding. Manufacturing method.
【請求項2】 請求項1に記載の永久磁石粉末が、R−
Fe−B系またはR−Co系の希土類永久磁石粉末であ
る請求項1記載の異方性焼結磁石の製造方法。
2. The permanent magnet powder according to claim 1, wherein R-
The method for producing an anisotropic sintered magnet according to claim 1, wherein the magnet is an Fe-B or R-Co rare earth permanent magnet powder.
JP07206812A 1995-07-21 1995-07-21 Manufacturing method of anisotropic sintered permanent magnet Expired - Lifetime JP3101799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07206812A JP3101799B2 (en) 1995-07-21 1995-07-21 Manufacturing method of anisotropic sintered permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07206812A JP3101799B2 (en) 1995-07-21 1995-07-21 Manufacturing method of anisotropic sintered permanent magnet

Publications (2)

Publication Number Publication Date
JPH0935978A JPH0935978A (en) 1997-02-07
JP3101799B2 true JP3101799B2 (en) 2000-10-23

Family

ID=16529504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07206812A Expired - Lifetime JP3101799B2 (en) 1995-07-21 1995-07-21 Manufacturing method of anisotropic sintered permanent magnet

Country Status (1)

Country Link
JP (1) JP3101799B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176476C (en) 1999-12-09 2004-11-17 株式会社新王磁材 Method and device for supplying magnetic powder, and magnet mfg. method
CN1162235C (en) * 2000-03-28 2004-08-18 住友特殊金属株式会社 Powder pressing appts. and method for producing rere earch alloyed magnetic powder formed body
JP4134616B2 (en) 2001-10-02 2008-08-20 日立金属株式会社 Press apparatus and magnet manufacturing method

Also Published As

Publication number Publication date
JPH0935978A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
US5536334A (en) Permanent magnet and a manufacturing method thereof
JPS6181606A (en) Preparation of rare earth magnet
JP3101799B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPS6181603A (en) Preparation of rare earth magnet
JP2001217112A (en) R-t-b sintered magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP3307418B2 (en) Molding method and method for manufacturing sintered magnet
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP3937126B2 (en) Die for sintered magnet and method for producing sintered magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPS61252604A (en) Manufacture of rare earth magnet
JPS6245685B2 (en)
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof
JPH0997730A (en) Manufacture of sintered permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 13

EXPY Cancellation because of completion of term