JPS61179801A - Alloy powder for bond magnet and its production - Google Patents

Alloy powder for bond magnet and its production

Info

Publication number
JPS61179801A
JPS61179801A JP60020747A JP2074785A JPS61179801A JP S61179801 A JPS61179801 A JP S61179801A JP 60020747 A JP60020747 A JP 60020747A JP 2074785 A JP2074785 A JP 2074785A JP S61179801 A JPS61179801 A JP S61179801A
Authority
JP
Japan
Prior art keywords
powder
particle size
atomic
alloy powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60020747A
Other languages
Japanese (ja)
Other versions
JPH0653882B2 (en
Inventor
Setsuo Fujimura
藤村 節夫
Masato Sagawa
佐川 真人
Hitoshi Yamamoto
日登志 山本
Yutaka Matsuura
裕 松浦
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60020747A priority Critical patent/JPH0653882B2/en
Publication of JPS61179801A publication Critical patent/JPS61179801A/en
Publication of JPH0653882B2 publication Critical patent/JPH0653882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain alloy powder for a bond magnet having excellent magnetic characteristics such as coercive force by press-molding pulverous powder consisting essentially of rare earth elements, B and Fe then disintegrating the molding and disintegrating further the same after heating. CONSTITUTION:12-20atom% >=1 kinds of rare earth elements such as Nd and Dy, 4-20% B and 60-84% Fe as essential components are melted and cast to obtain an ingot of which the main phase consists of a tetragonal crystal. The ingot is pulverized to the pulverous powder having <=15mum grain size. The pulverous powder is oriented in a magnetic field and is press-molded, then the molding is disintegrated to prescribed grain size. The disintegrated powder is heated at 800-1,000 deg.C and is thereafter disintegrated to obtain the pulverous powder having <=15mum grain size. Such pulverous powder consists of the aggregate powder having 100-1,000mum aggregate grain size and 5-15 KO8 coercive force.

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種>、B、Feを主成分とする永久磁石用合金粉
末と、樹脂または非磁性合金からなるボンド磁石用合金
粉末とその製造方法に関する。
Detailed Description of the Invention Field of Application This invention relates to an alloy powder for permanent magnets whose main components are R (R is at least one rare earth element including Y), B, and Fe, and a resin or a nonmagnetic alloy. The present invention relates to an alloy powder for bonded magnets consisting of the following: and a method for producing the same.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。
As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 30 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials.

一方、希土類コバルト磁石はコバルトを50〜60wt
%も含むうえ、希土類鉱石中にあまり含まれていないS
mを使用するため大変高価であるが、他の磁石に比べて
、磁気特性が格段に高いため、主として小型で付加価値
の高い磁気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets contain 50 to 60wt of cobalt.
% and S, which is not contained in rare earth ores very much.
Although it is very expensive because it uses m, it has much higher magnetic properties than other magnets, so it has come to be used mainly in small, high-value-added magnetic circuits.

希土類コバルト磁石は、通常の焼結法により製造される
が、製品化には研削加工が必要であるため、製品歩留が
悪い問題があり、一層価格を高騰させていた。これを解
決するために、磁石用粉末゛を樹脂あるいは金属バイン
ダーと結合固化させるボンド法が提案されている。
Rare earth cobalt magnets are manufactured by a normal sintering method, but since grinding is required for commercialization, there is a problem of poor product yield, which further increases the price. To solve this problem, a bonding method has been proposed in which magnet powder is bonded and solidified with a resin or metal binder.

また、希土類コバルト磁石が、RICos系からR2C
0I7系に高性能、省資源化されたが、ボンド法を用い
ても、高価なSm、Coが主成分であり、根本的な解決
にはならない。
In addition, rare earth cobalt magnets have changed from RICos to R2C magnets.
Although high performance and resource saving have been achieved in the 0I7 series, even if the bonding method is used, expensive Sm and Co are the main components, and it is not a fundamental solution.

上記の問題を解決するため、本出願人は先に、高価なS
mやらを含有しない新しい高性能永久磁石としてFs−
B−R系(Rt、l: Yを含む希土類元素のうち少な
くとも1種)永久磁石を提案(特願昭57−14507
2号)し、さらに、ボンド磁石用に最適なFa−B−R
系合金粉末(特開昭59−219904号)を提案した
In order to solve the above problem, the applicant first developed an expensive S
Fs- as a new high-performance permanent magnet that does not contain m.
Proposed a B-R system (Rt, l: at least one rare earth element including Y) permanent magnet (Patent application 14507/1982)
No. 2), and in addition, Fa-B-R, which is optimal for bonded magnets.
system alloy powder (Japanese Unexamined Patent Publication No. 59-219904) was proposed.

上記のFs−B−R系ボンド磁石用合金粉末は、該成分
の鋳塊を機械的に粗粉砕、微粉砕して得られた3、Jl
以下の微細粉であるが、合金粉末の保磁力(iHC)は
3 kos程度であるため、さらにすぐれた磁気特性の
ボンド磁石を得るには、高保磁力合金粉末が望まれてい
た。
The above alloy powder for Fs-B-R bonded magnets is 3, Jl obtained by mechanically crushing and finely crushing an ingot of the component.
Although the following fine powder is used, since the coercive force (iHC) of the alloy powder is about 3 kos, a high coercive force alloy powder has been desired in order to obtain a bonded magnet with even better magnetic properties.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
ボンド永久磁石の磁気特性の改善を目的とし、保磁力な
どの磁気特性がすぐれたボンド磁石用の合金粉末並びに
その製造方法を目的としている。
Purpose of the Invention The present invention aims to improve the magnetic properties of a new bonded permanent magnet mainly composed of rare earth elements, boron, and iron, and provides an alloy powder for bonded magnets with excellent magnetic properties such as coercive force, and a method for producing the same. It is an object.

発明の構成と効果 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)12原子%〜20原子%、B44原子〜20
原子%、Fe60原子%〜84原子%を主成分とし主相
が正方晶相からなる粒度15項以下の微粉末より構成さ
れ、保磁力(if−1c) 5 kos〜15 koa
を有した集合粒度1001a〜1000加の集合粉末か
らなることを特徴するボンド磁石用合金粉末であり、さ
らに、R(RはYを含む希土類元素のうち少なくとも1
種)12原子%〜20原子%、B44原子〜20原子%
、l”e60原子%〜84原子%を主成分とし主相が正
方晶相からなる粒度151s以下の微粉末を、加圧成形
したのち解砕し、さらに800℃〜1100℃で加熱し
たのち解砕し、粒度15JJn以下の微粉末より構成さ
れ、保磁力(iHC) 5 kOe〜15 kOeを有
した集合粒度100Ia〜100OJIの集合粉末を得
ることを特徴する耐食性のすぐれたボンド磁石用合金粉
末の製造方法である。
Structure and effect of the invention This invention provides R (R is at least one kind of rare earth elements including Y) 12 at % to 20 at %, B44 atoms to 20
It is composed of fine powder with a particle size of 15 terms or less, whose main component is Fe 60 atomic % to 84 atomic %, and whose main phase is a tetragonal phase, and has a coercive force (if-1c) of 5 kos to 15 koa.
This is an alloy powder for a bonded magnet, characterized in that it consists of an aggregate powder with an aggregate particle size of 1001a to 1000+, and further includes R (R is at least one of rare earth elements including Y).
Species) 12 atom% to 20 atom%, B44 atom to 20 atom%
A fine powder with a particle size of 151 s or less consisting of 60 at % to 84 at % of l"e as a main component and a main phase of tetragonal phase is crushed after being pressure-molded, further heated at 800 to 1100 ° C, and then disintegrated. An alloy powder for bonded magnets with excellent corrosion resistance characterized by being crushed to obtain an aggregate powder having an aggregate particle size of 100 Ia to 100 OJI and consisting of fine powder with a particle size of 15 JJn or less and having a coercive force (iHC) of 5 kOe to 15 kOe. This is the manufacturing method.

この発明による合金粉末を用いてボンド磁石を製造する
方法としては、合金粉末と混合、成形。
A method for manufacturing a bonded magnet using the alloy powder according to the present invention includes mixing with the alloy powder and molding.

同化などに用いるバインダーの種類あるいは製品の種類
などにより適宜選択してボンド磁石を製作することがで
き、バインダー量は永久磁石材料の磁石特性の発現のた
め、体積構成比において50%以下である。
A bonded magnet can be manufactured by appropriately selecting the type of binder used for assimilation or the like or the type of product, and the amount of binder is 50% or less in terms of volume composition in order to express the magnetic properties of the permanent magnet material.

合金粉末を焼結せずに成形し、樹脂バインダーを含浸固
化させてボンド磁石としたり、あるいは合金粉末に合金
粉末バインダーを混合して成形し、これを焼結後に熱処
理などでボンド磁石を得ることができる。また、成形方
法としては、通常のプレス成形のほかに射出成形や押出
し成形、静水圧成形を採用することもできる。
Forming alloy powder without sintering and impregnating and solidifying it with a resin binder to make a bonded magnet, or mixing alloy powder with an alloy powder binder and forming it, and then heat-treating it after sintering to obtain a bonded magnet. I can do it. Further, as a molding method, in addition to normal press molding, injection molding, extrusion molding, and isostatic pressing can also be employed.

バインダーとして用いる合成樹脂は、熱硬化性、熱可塑
性のいずれの性質を有するものも利用できるが、熱的に
安定な樹脂が好ましく、例えば、ポリアミド、ポリイミ
ド、フェノール樹脂、弗素樹脂、けい素樹脂、エポキシ
樹脂などを適宜選定できる。また、該合金粉末を均一に
分散混合させて磁石特性を発現させるために、バインダ
ーとして合金粉末を併用することもできる。
The synthetic resin used as the binder can be either thermosetting or thermoplastic, but thermally stable resins are preferred, such as polyamides, polyimides, phenolic resins, fluororesins, silicone resins, Epoxy resin etc. can be selected as appropriate. Further, in order to uniformly disperse and mix the alloy powder to exhibit magnetic properties, an alloy powder can also be used as a binder.

また、バインダーとして、合成樹脂以外のものを用いる
場合は、Cu、 AIを始め、TiH2,5nSPbな
どのはんだ合金があり、合金の場合は粉末で用いられる
Furthermore, when using something other than synthetic resin as a binder, there are Cu, AI, and solder alloys such as TiH2,5nSPb, and in the case of alloys, they are used in powder form.

この発明による合金粉末を用いたボンド磁石は、最大エ
ネルギー積(BH)maXが108GOe以上を示し、
最も好ましい組成範囲では、(BH)maX≧158G
Oaを示す。
The bonded magnet using the alloy powder according to the present invention exhibits a maximum energy product (BH) maX of 108 GOe or more,
In the most preferable composition range, (BH)maX≧158G
Indicates Oa.

合金粉末及び製造方法の限定理由 この発明において、水系ボンド磁石用合金粉末である集
合粉末は、粒度15加以下の微粉末より構成される必要
があり、15tEnを超えると、個々の微粉末の結晶粒
内に磁区が発生し易くなり、磁化反転が容易に起るため
高保磁力が得られない。また、0.5μm未満の粒度で
あると、表面積比率が増加しても酸化し易く取扱いが困
難となるため、0.5虜〜15虜が望ましい。
Reason for limitation of alloy powder and manufacturing method In this invention, the aggregate powder, which is the alloy powder for water-based bonded magnets, must be composed of fine powder with a particle size of 15 tEn or less, and if it exceeds 15 tEn, crystals of individual fine powders will form. Magnetic domains tend to occur within the grains, and magnetization reversal easily occurs, making it impossible to obtain a high coercive force. Furthermore, if the particle size is less than 0.5 μm, even if the surface area ratio increases, it will be easily oxidized and difficult to handle, so 0.5 μm to 15 μm is preferable.

焼結体の永久磁石として良好な磁気特性を得るには、R
2F@t4Bの組成式で示される組成よりも、Rの多い
ところが望ましく、上記の正方晶化合物からなる個々の
結晶粒の回りにNdに富んだ相が覆っていることが必要
であると考えられる。(Sagawa  et、 at
; J、 Appl、 Phys、55(6)、15 
 March 1984)それ故、水系磁石合金の磁気
的性質を支配するのは、上記の組成式で示される正方品
構造を有する化合物とNdに富んだ相であると考えられ
る。
In order to obtain good magnetic properties as a sintered permanent magnet, R
It is preferable that the composition has more R than the composition shown by the composition formula of 2F@t4B, and it is thought that it is necessary that the individual crystal grains made of the above-mentioned tetragonal compound be covered with a Nd-rich phase. . (Sagawa et, at
; J, Appl, Phys, 55(6), 15
March 1984) Therefore, it is considered that the compound having the tetragonal structure represented by the above composition formula and the Nd-rich phase control the magnetic properties of the water-based magnetic alloy.

種々の粉砕工程を経た後の微粉末では、上記の粒度範囲
内であっても、精々2.0kOa程度の保磁力しか示さ
ない理由は、微粉砕された粉末の個々の結晶粒がRに富
む相に覆われていないと考えられる。
The reason why fine powders after going through various pulverization processes exhibit a coercive force of at most about 2.0 kOa even within the above particle size range is that the individual crystal grains of the finely pulverized powders are rich in R. It is thought that it is not covered by phase.

この発明では、後述する如く、粒度15.is以下の微
粉末を加圧成形したのち解砕し、さらに800℃〜11
00℃で加熱したのち解砕することにより、個々の結晶
粒の回りにNdに富んだ相が覆った集合粉末が得られる
In this invention, as described later, the particle size is 15. After pressure molding the fine powder below IS, it is crushed and further heated to 800℃~11
By heating at 00°C and then crushing, an aggregated powder in which individual crystal grains are surrounded by a Nd-rich phase is obtained.

また、上記粒度の合金粉末を加圧したのち解砕するのは
、保磁力が高くボンド磁石用原料粉末に適した粉末を得
るためであり、加圧機解砕した粉は、15Itm以下の
微細粒から構成される100−から1000期の粗粉砕
粉(集金粉末)である。前記したRに富む相と基本組成
との共晶を喬るための後述する熱処理によって、微m粉
同志では凝縮して焼結してしまい、これを粉砕すると、
堅くて脆い正方品化合物が破断されて、粉末の保磁力が
低下するが、この集合粉末では焼結して結合することが
なく、たとえ結合しても容易にほぐす(解砕)すること
ができる。
In addition, the reason why the alloy powder with the above particle size is crushed after being pressed is to obtain a powder that has a high coercive force and is suitable for raw material powder for bonded magnets. It is coarsely pulverized powder (collection powder) of 100- to 1000-grade. Due to the heat treatment described below to form a eutectic between the R-rich phase and the basic composition, the fine m powder condenses and sinters, and when this is crushed,
The hard and brittle square compound is broken and the coercive force of the powder is reduced, but this aggregate powder is not sintered and bonded, and even if it is bonded, it can be easily loosened (crushed). .

なお、加圧時に、磁場中プレス成型することにより磁気
的異方性磁石が得られ、また、無磁界中でプレス成型す
ることにより、磁気的等方性磁石を得ることができる。
Note that a magnetically anisotropic magnet can be obtained by press molding in a magnetic field during pressurization, and a magnetically isotropic magnet can be obtained by press molding in a non-magnetic field.

熱処理として800℃〜1ioo℃で加熱したのち解砕
するのは、保磁力が高くボンド磁石用原料粉末に適した
粉末を得るためであり、Rを80原子%以上含有するR
に富む相と基本組成R2Fats 8との共晶を得るも
のである。上記の共晶反応は680℃付近で起るが、7
 kOs+以上の保磁力(iHc)を得るには、800
℃以上の加熱が必要となる。しかし、1100℃を超え
ると、100ρから、10001Mの粗粉砕粉(集合粉
末)であっても焼結が進行し、その後の解砕が困難とな
り、粒成長が起きて保磁力が低下する。従って熱処理温
度は800°C〜1ioo℃とする。
The purpose of heat treatment at 800°C to 1ioo°C and then crushing is to obtain a powder with high coercive force and suitable as raw material powder for bonded magnets.
A eutectic of a phase rich in R2Fats and a basic composition of R2Fats 8 is obtained. The above eutectic reaction occurs at around 680℃, but 7
To obtain a coercive force (iHc) of kOs+ or more, 800
Heating above ℃ is required. However, when the temperature exceeds 1100°C, sintering progresses even with coarsely pulverized powder (aggregated powder) of 100ρ to 10001M, making subsequent crushing difficult, grain growth occurs, and the coercive force decreases. Therefore, the heat treatment temperature is set at 800°C to 1io0°C.

また、熱処理時間は、組成や粒度等に応じて適宜選定さ
れる。
Further, the heat treatment time is appropriately selected depending on the composition, particle size, etc.

また、上記の熱処理後に、500℃〜700℃、0.5
〜20時間の時効処理を施すと、保磁力が更に向上する
In addition, after the above heat treatment, 500 ° C to 700 ° C, 0.5
When aging treatment is performed for ~20 hours, the coercive force is further improved.

解砕後の集合粉末の粒度は、温度上昇や熱処理により、
焼結が進行して大きな塊となることを避けるためであり
、化学的に活性な水系合金微粉末の酸化進行を避け、取
扱いを容易にするため、少なくとも100JI以上の粒
度が必要である。しかし、粒度が1000IJnを超え
ると、ボンド磁石用合金粉末として、成形性が悪くなり
、高い充填率が得られなくなる。従って、集合粉末の粒
度は100Iinからi oooρとする。
The particle size of the aggregated powder after crushing changes due to temperature rise and heat treatment.
The particle size is required to be at least 100 JI or more in order to prevent sintering from proceeding and forming large lumps, to prevent the progression of oxidation of the chemically active water-based alloy fine powder, and to facilitate handling. However, when the particle size exceeds 1000 IJn, the moldability of the alloy powder for bonded magnets deteriorates, making it impossible to obtain a high filling rate. Therefore, the particle size of the aggregate powder is set from 100 Iin to i oooρ.

合金粉末組成の限定理由 この発明のボンド磁石用合金粉末の希土類元素Rは、1
2原子%〜20原子%のNd、 Pr、 No、 Tb
のうち少なくとも1種、あるいはさらに、La 、Ce
 、Gd。
Reason for limiting alloy powder composition The rare earth element R of the alloy powder for bonded magnets of this invention is 1
2 atomic% to 20 atomic% Nd, Pr, No, Tb
At least one of the following, or in addition, La, Ce
, Gd.

Er、 Yのうち少なくとも1種を含むものが好ましい
Preferably, it contains at least one of Er and Y.

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができる。
Further, one type of R is usually sufficient, but in practice, a mixture of two or more types (Mitsuhmetal, dididium, etc.) can be used for reasons such as convenience of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系ボンド磁石用合金粉末における、必須元素で
あって、12原子%未満では、結晶構造がα−鉄と同一
構造の立方晶組織となるため、高磁気特性、待に高保磁
力が得られず、20原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Sr)が低下して、す
ぐれた特性のボンド磁石が得られない。よって、希土類
元素は、12原子%〜20原子%の範囲とする。
R (at least one rare earth element including Y) is an essential element in the above-mentioned new alloy powder for bonded magnets, and if it is less than 12 atomic %, the crystal structure is a cubic crystal having the same structure as α-iron. If it exceeds 20 atomic %, R-rich non-magnetic phase increases and the residual magnetic flux density (Sr) decreases, making it difficult to obtain excellent properties. Bonded magnets cannot be obtained. Therefore, the rare earth element is in the range of 12 atomic % to 20 atomic %.

Bは、新規な上記系ボンド磁石用合金粉末における、必
須元素で必って、4原子%未満では、菱面体組織となり
、高い保磁力(iHC)は得られず、20原子%を越え
ると、Bリッチな非磁性相が多くなり、残留磁束密度(
Br)が低下するため、すぐれた永久vi1石が得られ
ない。よって、Bは、4原子%〜20原子%の範囲とす
る。
B is an essential element in the new alloy powder for bonded magnets of the above-mentioned type, and if it is less than 4 at%, it will form a rhombohedral structure and high coercive force (iHC) cannot be obtained, and if it exceeds 20 at%, The B-rich nonmagnetic phase increases, and the residual magnetic flux density (
Br) decreases, making it impossible to obtain excellent permanent VI1 stones. Therefore, B is in the range of 4 at.% to 20 at.%.

Feは、新規な上記系ボンド磁石用合金粉末において、
必須元素であり、60原子%未満では残留磁束密度(B
r)が低下し、84原子%を越えると、高い保磁力が得
られないので、Feは60原子%〜84原子%の含有と
する。
In the above-mentioned novel alloy powder for bonded magnets, Fe is
It is an essential element, and if it is less than 60 at%, the residual magnetic flux density (B
If r) decreases and exceeds 84 at %, a high coercive force cannot be obtained, so Fe is contained in an amount of 60 at % to 84 at %.

また、この発明によるボンド磁石用合金粉末において、
FBの一部を6で置換することは、得られる磁石の磁気
特性を損うことなく、温度特性を改善することができる
、また粉末の酸化に対する安定性を向上させる効果があ
るが、co@検量がFBの50%を越えると、逆に磁気
特性が劣化するため、好ましくない。
Moreover, in the alloy powder for bonded magnets according to the present invention,
Replacing a part of FB with 6 can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, and has the effect of improving the stability of the powder against oxidation, but co@ If the calibration exceeds 50% of FB, the magnetic properties will deteriorate, which is not preferable.

この発明の合金粉末において、高い残留磁束密度と高保
磁力を得るためには、R12,5原子%〜15原子%、
B66原子〜14原子%、Fe71原子%〜82原子%
が好ましい。
In the alloy powder of this invention, in order to obtain high residual magnetic flux density and high coercive force, R12.5 to 15 at%,
B66 atom to 14 atom%, Fe71 atom% to 82 atom%
is preferred.

また、この発明によるボンド磁石用合金粉末は、R,B
、FBの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの一部を4.0原子%以下のC13,5原
子%以下のP、2.5原子%以下のS、3.5%以下の
Cuのうち少なくとも1種、合計量で4.0原子%以下
で置換することにより、ボンド磁石の製造性改善、低価
格化が可能である。
In addition, the alloy powder for bonded magnets according to the present invention has R, B
In addition to FB, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 4.0 at% or less of C13, 5 at% or less of P, 2.5 at% or less of S, 3 By replacing at least one type of Cu with a total amount of 4.0 atomic % or less, it is possible to improve the productivity and reduce the cost of bonded magnets.

また、下記添加元素のうち少なくとも1種は、R−BF
e系ボンド磁石に対してその保磁力等を改善あるいは製
造性の改善、低価格化に効果があるため添加する。しか
し、保磁力改善のための添加に伴ない残留磁束密度(B
r)の低下を招来するので、従来のハードフェライト磁
石の残留磁束密度と同等以上となる範囲での添加が望ま
しい。
In addition, at least one of the following additional elements is R-BF
It is added to e-based bonded magnets because it is effective in improving the coercive force, etc., improving manufacturability, and reducing costs. However, the residual magnetic flux density (B
r), so it is desirable to add it in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

5.0原子%以下のA1.3.0原子%以下の丁115
.5原子%以下のV、4.5原子%以下のCr、5、O
原子%以下のMn、  5.0原子%以下のB119.
0原子%以下のNb、  7.0原子%以下の細、5.
2原子%以下のNo、  5.0原子%以下のり、1.
0原子%以下のSb、  3.5原子%以下のGe。
A1 of not more than 5.0 atomic %. Ding 115 of not more than 3.0 atomic %
.. 5 at% or less V, 4.5 at% or less Cr, 5, O
Mn of atomic % or less, B119 of 5.0 atomic % or less.
Nb of 0 atomic % or less, fine of 7.0 atomic % or less, 5.
2 at % or less No, 5.0 at % or less glue, 1.
Sb of 0 atomic % or less, Ge of 3.5 atomic % or less.

1.5原子%以下のSn、  3.3原子%以下のZr
Sn of 1.5 atomic% or less, Zr of 3.3 atomic% or less
.

6.0原子%以下のNi、  5.0原子%以下の5i
13゜3原子%以下のIfのうち少なくとも1種を添加
含有、但し、2種以上含有する場合は、その最大含有量
は当該添加元素のうち最大値を有するものの原子%以下
の含有させることにより、ボンド磁石の高保磁力化が可
能になる。
6.0 atomic% or less Ni, 5.0 atomic% or less 5i
13゜Contains at least one type of If of 3 atomic % or less. However, if two or more types are contained, the maximum content is 3 atomic % or less of the one with the maximum value. , it becomes possible to increase the coercive force of bonded magnets.

また、この発明のボンド磁石用合金粉末は、結晶相が主
相が少なくとも50 vo1%以上の正方晶、少なくと
もIVOI%以上の非磁性金属間化合物であることが、
微細で均一な合金粉末より、すぐれた磁気特性を有する
ボンド磁石を作製するのに不可欠である。
In addition, the alloy powder for bonded magnets of the present invention has a crystalline structure in which the main phase is a tetragonal crystal with at least 50 VO1% or more, and a nonmagnetic intermetallic compound with at least IVOI% or more.
Fine and uniform alloy powder is essential for producing bonded magnets with excellent magnetic properties.

実施例 1m 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はFB及び/V、 SL、 C等の不純
物からなるフェロボロン合金、純度99.7%以上の陶
及び〜を使用し、これらをAr雰囲気で高周波溶解し、
その後水冷銅鋳型に鋳造し、13Nd−2〜−8B−7
7Feなる組成で正方晶を主相とするデンドライト組織
の鋳塊を得た。
Example 1m As a starting material, electrolytic iron with a purity of 99.9%, 819.4
A ferroboron alloy containing impurities such as FB, /V, SL, and C, and ceramic with a purity of 99.7% or more and ~ are used, and these are high-frequency melted in an Ar atmosphere.
After that, it was cast in a water-cooled copper mold, and 13Nd-2 to -8B-7
An ingot with a dendrite structure having a composition of 7Fe and a main phase of tetragonal crystals was obtained.

その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にボールミルにより微粉砕し、平均
粒度3Isの微粉末を得た。
Thereafter, the ingot was coarsely ground to 35 meshes or less using a crusher, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 3Is.

この微粉末を金型に装入し、磁界中で配向しながら、1
.5t、7の圧力で加圧し、その後スタンプミルで解砕
し、粒度200ρ〜500項にした。
This fine powder is charged into a mold and oriented in a magnetic field for 1
.. It was pressurized at a pressure of 5 tons and 7 tons, and then crushed in a stamp mill to have a particle size of 200 to 500 particles.

得られた粉末を、i ooo℃、2時間、 Ar中、の
条件で加熱し、その後Ar中で600℃、2時間の時効
処理を施し、解砕した。熱処理後の粉末は、平均粒度3
fの微粉末が凝集した粒度200Iから500IJmの
集合粉末であり、保磁力(iHC)が10.6 kOe
であった。
The obtained powder was heated at 100° C. for 2 hours in Ar, and then subjected to aging treatment at 600° C. for 2 hours in Ar and crushed. The powder after heat treatment has an average particle size of 3
It is an aggregate powder with a particle size of 200I to 500IJm, which is agglomeration of fine powder of f, and has a coercive force (iHC) of 10.6 kOe.
Met.

上記性状の集合粉末を金型に装入し、10 kOeの磁
界中で配向し、2.0t、Jの圧力で成形し、長ざ14
mmX幅10wunX厚み111IIm寸法の成型体を
作製した。
The aggregated powder with the above properties was charged into a mold, oriented in a magnetic field of 10 kOe, and molded at a pressure of 2.0 t, J.
A molded body with dimensions of mm x width 10 wun x thickness 111 II m was produced.

その後、該成型体を、ジメタアグリエートエステルを主
成分とする合成樹脂を含浸させ、100℃。
Thereafter, the molded body was impregnated with a synthetic resin mainly composed of dimethaaglyate ester at 100°C.

1時間の加熱硬化して、ボンド磁石を得た。このボンド
磁石の磁気特性と、前記の集合粉末の磁気特性を測定し
、第1表に示す。
A bonded magnet was obtained by heating and curing for 1 hour. The magnetic properties of this bonded magnet and the magnetic properties of the aggregated powder were measured and are shown in Table 1.

また、比較のため、上記の13Nd−2Dy−8B−γ
γFeなる組成の鋳塊を、粗粉砕後、微粉砕して平均粒
度311mの微粉末となし、金型に装入し、10kOB
の磁界中で配向し、2.Ot、7の圧力で成形し、長ざ
14mmX幅10mmX厚み11mm寸法の成型体を作
製し、該成型体を、ジメタアグリエートエステルを主成
分とする合成樹脂を含浸させ、100℃、1時間の加熱
硬化して、ボンド磁石を得た。この比較例ボンド磁石の
磁気特性と、比較例合金粉末の磁気特性を測定し、第1
表に示す。
Also, for comparison, the above 13Nd-2Dy-8B-γ
An ingot with a composition of γFe was coarsely ground, then finely ground into a fine powder with an average particle size of 311 m, and charged into a mold to form a powder of 10 kOB.
2. oriented in a magnetic field; A molded body with dimensions of 14 mm in length, 10 mm in width, and 11 mm in thickness was produced by molding at a pressure of 700°C, and the molded body was impregnated with a synthetic resin whose main component was dimethaaglyate ester, and heated at 100°C for 1 hour. A bonded magnet was obtained by heating and curing. The magnetic properties of this comparative example bonded magnet and the magnetic properties of the comparative example alloy powder were measured, and the first
Shown in the table.

第1表より明らかなように、この発明によるボンド磁石
用合金粉末及びボンド磁石の各磁気特性が著しく向上し
たことが分る。
As is clear from Table 1, it can be seen that the magnetic properties of the bonded magnet alloy powder and bonded magnet according to the present invention were significantly improved.

第1表 以下余白 実施例2 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はF8及びM、 SL、 C等の不純物
からなるフェロボロン合金、純度99.7%以上の陶及
び〜を使用し、これらをAr雰囲気で高周波溶解し、そ
の後水冷銅鋳型に鋳造し、141’!i−1,5Dy−
7,513−77Feなる組成で正方品を主相とするデ
ンドライト組織の鋳塊を得た。
Table 1 and below margins Example 2 As a starting material, electrolytic iron with a purity of 99.9%, 819.4
A ferroboron alloy containing F8 and impurities such as M, SL, and C, with the remainder being impurities such as F8, M, SL, and C, is used, and ceramics with a purity of 99.7% or more and ~ are used, and these are high-frequency melted in an Ar atmosphere, and then cast in a water-cooled copper mold. 141'! i-1,5Dy-
An ingot with a composition of 7,513-77Fe and a dendrite structure with a tetragonal main phase was obtained.

その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にボールミルにより微粉砕し、平均
粒度2.7虜の微粉末を得た。
Thereafter, the ingot was coarsely ground to 35 meshes or less using a crusher, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 2.7 mesh.

この微粉末を金型に装入し、10 kOeの磁界中で配
向しながら、1.5℃着の圧力で加圧し、その後スタン
プミルで解砕し、粒度10()Is〜500IJnにし
た。
This fine powder was charged into a mold, oriented in a magnetic field of 10 kOe and pressed at a pressure of 1.5° C., and then crushed in a stamp mill to give a particle size of 10()Is to 500IJn.

得られた粉末を、10Torr、 Ar気流中、800
′C〜1060℃、1時間の第2表の各種温度条件で加
熱し、その後Ar中で600″G、  1時間の時効処
理を施し、再度、粒度1 oo、m〜500ρの集合粉
末に解砕した。
The obtained powder was heated at 10 Torr in an Ar air flow at 800
It was heated under the various temperature conditions shown in Table 2 for 1 hour at ~1060°C, then subjected to aging treatment at 600''G for 1 hour in Ar, and then dissolved again into aggregated powder with a particle size of 1 oo, m ~ 500ρ. Shattered.

上記の集合粉末を金型に装入し、10 koaの磁界中
で配向し、パラフィンで固定し、粉末時の磁気特性を振
動試料型磁束計で測定した。測定結果は第2表に示すと
おりである。
The above aggregate powder was charged into a mold, oriented in a magnetic field of 10 koa, fixed with paraffin, and the magnetic properties of the powder were measured using a vibrating sample magnetometer. The measurement results are shown in Table 2.

また、比較として、上記の14Nd−1,5へ−1,5
B−γγらなる組成の鋳塊を、粗粉砕後、微粉砕して平
均粒度3屡の微粉末となし、金型に装入し、10 ko
sの磁界中で配向してパラフィンで固定し、iooor
r、 Ar気流中、800℃〜1060℃、1時間の第
2表の各種温度条件で加熱し、そのIAr中で600℃
、1時間の時効処理を施し、粉末時の磁気特性を振動試
料型磁束計で測定した。測定結果は第2表に示すとおり
である。
Also, for comparison, to the above 14Nd-1,5-1,5
An ingot with a composition of B-γγ was coarsely crushed, then finely crushed to form a fine powder with an average particle size of 3 ㎡, and charged into a mold, and 10 ko
Oriented in a magnetic field of s and fixed with paraffin, iooor
r, heated under various temperature conditions shown in Table 2 for 1 hour at 800°C to 1060°C in an Ar stream, and then heated to 600°C in IAr.
The powder was aged for 1 hour, and its magnetic properties as a powder were measured using a vibrating sample magnetometer. The measurement results are shown in Table 2.

第2表より明らかなように、熱処理のみでは不十分で、
前工程として微粉末を加圧後解砕する工程が不可欠であ
り、この工程の相乗効果により本発明によるボンド磁石
用合金粉末は、特に保磁力が著しく向上したことが分る
As is clear from Table 2, heat treatment alone is not sufficient;
It can be seen that the process of pressurizing and then crushing the fine powder as a pre-process is essential, and due to the synergistic effect of this process, the coercive force of the bonded magnet alloy powder according to the present invention was significantly improved.

以下余白 第2表 σS=σ15 kOe μ1旭 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はFθ及びMl、 SL、 C等の不純
物からなるフェロボロン合金、純度99.7%以上の陶
及び〜、Coを使用し、これらをAr雰囲気で高周波溶
解し、その後水冷銅鋳型に鋳造し、14Nd−2Dy−
8Co−7B −69Feなる組成で正方晶を主相とす
るデンドライト組織の鋳塊を得た。
Table 2 with blank space below σS = σ15 kOe μ1 Asahi As starting material, electrolytic iron with a purity of 99.9%, 819.4
% and the remainder is Fθ and impurities such as Ml, SL, and C. A ferroboron alloy with a purity of 99.7% or more and ~, Co is used, and these are high-frequency melted in an Ar atmosphere, and then placed in a water-cooled copper mold. 14Nd-2Dy-
An ingot with a composition of 8Co-7B-69Fe and a dendrite structure with tetragonal crystals as the main phase was obtained.

その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にアトライターを用いて粉砕時間を
種々変化させて微粉砕し、平均粒度が1011m 、 
 5ml 、  3AMの微粉末を得た。
After that, the ingot was coarsely crushed to 35 meshes or less using a crusher, and then finely crushed using an attritor while varying the crushing time to an average particle size of 1011 m,
A fine powder of 5 ml and 3 AM was obtained.

この微粉末を金型に装入し、10 koaの磁界中で配
向しながら、1を着の圧力で加圧成形し、その後メツシ
ュ上で解砕し、粒度1oo−〜500項の集合粉末にし
た。
This fine powder is charged into a mold, and while oriented in a magnetic field of 10 koa, it is pressed and molded under a pressure of about 100 ml, and then crushed on a mesh to form an aggregated powder with a particle size of 10 to 500 particles. did.

得られた集合粉末を、10−3 TOrr、真空中、a
OO℃〜1060℃、1時間の各種温度条件で加熱し、
その後Ar中で600℃、1時間の時効処理を施し、再
度、粒度1001En〜500Jinの集合粉末に解砕
した。
The obtained aggregate powder was heated at 10-3 Torr in vacuum, a
Heating under various temperature conditions from OO℃ to 1060℃ for 1 hour,
Thereafter, it was subjected to aging treatment at 600° C. for 1 hour in Ar, and crushed again into aggregate powder with a particle size of 1001 En to 500 Jin.

上記の集合粉末を金型に装入し、10 kOeの磁界中
で配向し、パラフィンで固定し、粉末時の保磁力を振動
試料型磁束計で測定した。測定結果は第1図に示すとお
りである。
The above aggregated powder was charged into a mold, oriented in a 10 kOe magnetic field, fixed with paraffin, and the coercive force of the powder was measured using a vibrating sample magnetometer. The measurement results are shown in Figure 1.

また、比較として、上記のなる14Nd−2Dy−8C
o −7B −69Fe組成の鋳塊を、粗粉砕後、微粉
砕して平均粒度10JI、  5虜、  3Isの微粉
末となし、この微粉末を金型に装入し、10 kOeの
磁界中で配向しながら、1 t、dの圧力で加圧成形し
、その後メツシュ上で解砕し、粒度100虜〜500μ
mの集合粉末にし、熱処理を施すことなく、金型に装入
し、10 kOeの磁界中で配向してパラフィンで固定
し、粉末時の保磁力を振動試料型磁束計で測定した。
Also, for comparison, the above 14Nd-2Dy-8C
An ingot with a composition of o-7B-69Fe was coarsely ground and then finely ground into a fine powder with an average particle size of 10JI, 5JI, 3Is, and this fine powder was charged into a mold and heated in a magnetic field of 10 kOe. While oriented, it is press-molded at a pressure of 1 t, d, and then crushed on a mesh to obtain a particle size of 100 μm to 500 μm.
m aggregated powder, charged into a mold without heat treatment, oriented in a 10 kOe magnetic field and fixed with paraffin, and the coercive force of the powder was measured using a vibrating sample magnetometer.

測定結果は第1図に示すとおりである。The measurement results are shown in Figure 1.

第1図より明らかなように、微粉末を加圧後解砕する工
程のみでは不十分であり、熱処理が不可欠であり、熱処
理を施したこの発明によるボンド磁石用合金粉末は、特
に保磁力が著しく向上したことが分る。
As is clear from Fig. 1, the process of crushing the fine powder after pressurizing it is not enough, and heat treatment is essential. It can be seen that there has been a significant improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例3における熱処理温度と保磁力との関係
を示すグラフである。 出願人  住友特殊金属株式会社 第1図 熱処理温度(”C) 自発手続ネ甫正書 昭和60年 3月 6日 詔和60年 特許願 第20747号 2、発明の名称 ボンド磁石用合金粉末及びその製造方法3、補正をする
者 事件との関係    出願人 住所  大阪市東区北浜5丁目22番地名称  住友特
殊金属株式会社 4、代理人 5、補正の対象 明細書の「発明の名称」、「特許請求の範囲」、「発明
の詳細な説明」、「図面の簡単な説明」の欄6、補正の
内容 ■別紙のとおり明細書の全文を補正する。 「発明の名称」、「特許請求の範囲」、明  細  書 1、発明の名称 ボンド磁石用合金粉末及びその製造方法2、特許請求の
範囲 IR(RはYを含む希土類元素のうち少なくとも1種)
12原子%〜20原子%、B44原子〜20原子%、l
”e60原子%〜84原子%を主成分とし主     
 。 相が正方晶相からなる粒度15IIm以下の微粉末より
構成され、保磁力(iHc) 5 kOe〜15 kO
eを有した集合粒度100虜〜1000項の集合粉末か
らなることを特徴するボンド磁石用合金粉末。 2R(RはYを含む希土類元素のうち少なくとも1種)
12原子%〜20原子%、B44原子〜20原子%、F
e60@子%〜84原子%を主成分とし主相が正方晶相
からなる粒度15Is以下の微粉末を、加圧成形したの
ち解砕し、さらに800℃〜1100℃で加熱したのち
解砕し、粒度15虜以下の微粉末より構成され、保磁力
(iHc) 5 kOe〜15 kOeを有した集合粒
度100燗〜1000Isの集合粉末を得ることを特徴
するボンド磁石用合金粉末の製造方法。 3、発明の詳細な説明 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)、B、Feを主成分とする永久磁石用合金粉
末と、樹脂または非磁性合金からなるボンド磁石用合金
粉末とその製造方法に関する。 背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。 近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ磁石の需要は減り、
鉄の酸化物を主成分とする安価なハードフェライトが磁
石材料の主流を占めるようになった。 一方、希土類コバルト磁石はコバルトを50〜60wt
%も含むうえ、希土類鉱石中にあまり含まれていないS
mを使用するため大変高価であるが、他の磁石に比べて
、磁気特性が格段に高いため、主として小型で付加価値
の高い磁気回路に多用されるようになった。 希土類コバルト磁石は、通常の焼結法により製造される
が、製品化には研削加工が必要であるため、製品歩留が
悪い問題があり、一層価格を高騰させていた。これを解
決するために、磁石用粉末を樹脂あるいは金属バインダ
ーと結合固化させるボンド法が提案されている。 また、希土類コバルト磁石が、RICO5系からR2C
0I7系に高性能、省資源化されたが、ボンド法を用い
ても、高価なSm、Coが主成分であり、根本的な解決
にはならない。 上記の問題を解決するため、本出願人は先に、高価なS
mや巳を含有しない新しい高性能永久磁石としてFe−
8R系(RはYを含む希土類元素のうち少なくとも1種
)永久磁石を提案(特願昭51−145072号)し、
さらに、ボンド磁石用に最適なFe−B−R系合金粉末
(特開昭59−219904号)を提案した。 上記のFe  B  R系ボンド磁石用合金粉末は、該
成分の鋳塊を機械的に粗粉砕、微粉砕して得られた3ρ
以下の微細粉であるが、合金粉末の保磁力(iHc)は
3 koθ程度であるため、さらにすぐれた磁気特性の
ボンド磁石を得るには、高保磁力合金粉末が望まれてい
た。 発明の目的 この発明は、希土類)ボロン・鉄を主成分とする新規な
ボンド永久磁石の磁気特性の改善を目的とし、保磁力な
どの磁気特性がすぐれたボンド磁石用の合金粉末並びに
その製造方法を目的としている。 発明の構成と効果 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)12原子%〜20原子%、B44原子〜20
原子%、Fe60原子%〜84原子%を主成分とし主相
が正方晶相からなる粒度15ρ以下の微粉末より構成さ
れ、保磁力(it−1c) 5 kOe〜15 koa
を有した集合粒度1 oo、n−1ooo加の集合粉末
からなることを特徴するボンド磁石用合金粉末であり、
さらに、R(RはYを含む希土類元素のうち少なくとも
1種)12原子%〜20原子%、B44原子〜20原子
%、l”e60原子%〜84原子%を主成分とし主相が
正方品の結晶構造を有する相からなる粒度15、以下の
微粉末を、加圧成形したのち解砕し、さらに800℃〜
1100℃で加熱したのち解砕し、粒度15−以下の微
粉末より構成され、保磁力(it−+c)5 koa〜
15 koaを有した集合粒度100um〜1000燭
の集合粉末を得ることを特徴する耐食性のすぐれたボン
ド磁石用合金粉末の製造方法である。 この発明による合金粉末を用いてボンド磁石を製造する
方法としては、合金粉末と混合、成形。 同化などに用いるバインダーの種類あるいは製品の種類
などにより適宜選択してボンド磁石を製作することがで
き、バインダー量は永久磁石材料の磁石特性の発現のた
め、体積構成比において50%以下である。 合金粉末を焼結せずに成形し、樹脂バインダーを含浸同
化させてボンド磁石としたり、あるいは合金粉末に合金
粉末バインダーを混合して成形し、これを焼結後に熱処
理などでボンド磁石を得ることができる。また、成形方
法としては、通常のプレス成形のほかに射出成形や押出
し成形、静水圧成形を採用することもできる。 バインダーとして用いる合成樹脂は、熱硬化性、熱可塑
性のいずれの性質を有するものも利用できるが、熱的に
安定な樹脂が好ましく、例えば、ポリアミド、ポリイミ
ド、フェノール樹脂、弗素樹脂、けい素樹脂、エポキシ
樹脂などを適宜選定できる。また、該合金粉末を均一に
分散混合させて磁石特性を発現させるために、バインダ
ーとして合金粉末を併用することもできる。 また、バインダーとして、合成樹脂以外のものを用いる
場合は、Cu、 AIを始め、TLH2,5nSpbな
どのはんだ合金があり、合金の場合は粉末で用いられる
。 この発明による合金粉末を用いたボンド磁石は、最大エ
ネルギー積(BH)llIaXが108GOe以上を示
し、最も好ましい組成範囲では、(BH)maX≧15
8GOaを示す。 合金粉末及び製造方法の限定理由 この発明において、水系ボンド磁石用合金粉末である集
合粉末は、粒度15虜以下の微粉末より構成される必要
があり、151XrIを超えると、個々の微粉末の結晶
粒内に磁区が発生し易くなり、磁化反転が容易に起るた
め高保磁力が得られない。また、0.5μm未満の粒度
であると、表面積比率が増加して酸化し易く取扱いが困
難となるため、0.5m〜15mが望ましい。 焼結体の永久磁石として良好な磁気特性を得るには、R
2Fe12 Bの組成式で示される組成よりも、Rの多
いところが望ましく、上記の正方品化合物からなる個々
の結晶粒の回りにNdに富んだ相が覆っていることが必
要であると考えられる。(sagaWa   et、 
 al;  J、  八1)l)1.  Phys、5
5(6)、15   March1984)それ故、水
系磁石合金の磁気的性質を支配するのは、上記の組成式
で示される正方品構造を有する化合物とNdに富んだ相
であると考えられる。 種々の粉砕工程を経た後の微粉末では、上記の粒度範囲
内であっても、晴々2.0kOe程度の保磁力しか示さ
ない理由は、微粉砕された粉末の個々の結晶粒がRに富
む相に覆われていないためと考えられる。 この発明では、後述する如く、粒度15−以下の微粉末
を加圧成形したのち解砕し、さらに800℃〜1100
℃で加熱したのち解砕することにより、個々の結晶粒の
回りにNdに富んだ相が覆った集合粉末が得られる。 また、上記粒度の合金粉末を加圧したのち解砕するのは
、保磁力が高くボンド磁石用原料粉末に適した粉末を得
るためであり、加圧後解砕した粉は、15加以下の微細
粒から構成される100μmから1000項の粗粉(集
合粉末)である。前記したRに富む相と基本相R2Fa
t4Bとの共晶を1qるための後述する熱処理によって
、微細粉同志では凝縮して焼結してしまい、これを粉砕
すると、堅くて脆い正方晶化合物が破断されて、粉末の
保磁力が低下するが、この集合粉末では焼結して結合す
ることがなく、たとえ結合しても容易にほぐす(解砕)
することができる。 なお、加圧時に、一定方向に磁界を加えておくことによ
り、磁気的異方性磁石用合金粉末が得られ、また、無磁
界中でプレス成型することにより、磁気的等方性磁石用
合金粉末を得ることができる。 熱処理としてaoo’c〜1100”Cで加熱したのち
解砕するのは、保磁力が高くボンド磁石用原料粉末に適
した粉末を得るためであり、Rを80原子%以上含有す
るRに富む相と、正方晶構造を有する金属間化合物、R
2For4Bとの共晶を得るものである。上記の共晶反
応は680℃付近で起るが、7kOs以上の保磁力(i
HC)を得るには、800℃以上の加熱が必要となる。 しかし、1100℃を超えると、1001tInから1
ooo虜の粗粉(集合粉末)であっても焼結が進行し、
その後の解砕が困難となり、粒成長が起きて保磁力が低
下する。従って熱処理温度は800℃〜1100℃とす
る。また、熱処理時間は、組成や粒度等に応じて適宜選
定される。 また、上記の熱処理後に、500℃〜700℃、0.5
〜20時間の時効処理を施すと、保磁力が更に向上する
。 解砕後の集合粉末の粒度を限定したのは、温度上昇や熱
処理により、焼結が進行して大きな塊となることを避け
るためでおり、化学的に活性な本系合金微粉末の酸化進
行を避け、取扱いを容易にするため、少なくとも100
.gm以上の粒度が必要である。しかし、粒度が100
0.amを超えると、ボンド磁石用合金粉末として、成
形性が悪くなり、高い充填率が得られなくなる。従って
、集合粉末の粒度は100虜から100011mとする
。 合金粉末組成の限定理由 この発明のボンド磁石用合金粉末の希土類元素Rは、1
2原子%〜20原子%の Nd、 Pr、 HO,Tb
のうち少なくとも1種、あるいはさらに、La 、Ce
 。 Gd、 Er、 Yのうち少なくとも1種を含むものが
好ましい。 又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができる。 なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。 R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系ボンド磁石用合金粉末における、必須元素で
あって、12原子%未満では、結晶構造がα−鉄と同一
構造の立方晶組織となるため、高磁気特性、特に高保磁
力が得られず、20原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Br)が低下して、す
ぐれた特性のボンド磁石が得られない。よって、希土類
元素は、12原子%〜20原子%の範囲とする。 Bは、新規な上記系ボンド磁石用合金粉末における、必
須元素であって、4原子%未満では、菱面体組織となり
、高い保磁力(it−IC)は得られず、20原子%を
越えると、Bリッチな非磁性相が多くなり、残留磁束密
度(Br)が低下するため、すぐれた永久磁石が得られ
ない。よって、Bは、4原子%〜20原子%の範囲とす
る。 1”eは、新規な上記系ボンド磁石用合金粉末において
、必須元素であり、60原子%未満では残留磁束密度(
Br)が低下し、84原子%を越えると、高い保磁力が
得られないので、Feは60原子%〜84原子%の含有
とする。 また、この発明によるボンド磁石用合金粉末において、
F8の一部を巳で置換することは、得られる磁石の磁気
特性を損うことなく、温度特性を改善することができる
、また粉末の酸化に対する安定性を向上させる効果があ
るが、ら置換量がFBの50%を越えると、逆に磁気特
性が劣化するため、好ましくない。 この発明の合金粉末において、高い残留磁束密度と高保
磁力を得るためには、R12,5原子%〜15原子%、
B66原子〜14原子%、l”e71原子%〜82原子
%が好ましい。 また、この発明によるボンド磁石用合金粉末は、R,B
、Feの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの一部を4.0原子%以下のC13,5原
子%以下のP、2.5原子%以下のS、3.5%以下の
CUのうち少なくとも1種、合計量で4.0原子%以下
で置換することにより、ボンド磁石の製造性改善、低価
格化が可能である。 また、下記添加元素のうち少なくとも1種は、R−B−
Fs系ボンド磁石に対してその保磁力等を改善あるいは
製造性の改善、低価格化に効果がみるため添加する。し
かし、保磁力改善のための添加に伴ない残留磁束密度(
Sr)の低下を招来するので、従来のハードフェライト
磁石の残留磁束密度と同等以上となる範囲での添加が望
ましい。 5.0原子%以下のA1.3.0原子%以下の丁115
.5原子%以下のV、4.5原子%以下のCr15.0
原子%以下のHn、5.0原子%以下のBi、9.0原
子%以下のNb、7.0原子%以下の丁a、5.2原子
%以下のHO15,0原子%以下のり、1.0原子%以
下のSb、  3.5原子%以下のGe。 1.5原子%以下のSn、  3.3原子%以下のzr
。 6.0原子%以下のNi、5.0原子%以下の5i13
.3原子%以下のHfのうち少なくとも1種を添加含有
、但し、2種以上含有する場合は、その最大含有量は当
該添加元素のうち最大値を有するものの原子%以下の含
有させることにより、ボンド磁石の高保磁力化が可能に
なる。 また、この発明のボンド磁石用合金粉末は、結品相が主
相が少なくとも50 vo1%以上の正方品、少なくと
もIVOI%以上の非磁性金属間化合物であることが、
すぐれた磁気特性を有するボンド磁石を作製するのに不
可欠である。 実施例 実施例1 出発原料として、純度99.9%の電解鉄、Ef19.
4%を含有し残部はFB及び/V、 SL、 C等の不
純物からなるフェロボロン合金、純度99.7%以上の
陶及びNを使用し、これらをに雰囲気で高周波溶解し、
その後水冷銅鋳型に鋳造し、13Nd−2Dy−88−
77F8なる組成で正方品を主相とするデンドライト組
織の鋳塊を得た。 その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にボールミルにより微粉砕し、平均
粒度3βmの微粉末を得た。 この微粉末を金型に装入し、磁界中で配向しながら、1
.5tJの圧力で加圧し、その後スタンプミルで解砕し
、粒度200μm〜500.c+mにした。 得られた粉末を、1000℃、2時間、 Ar中、の条
件で加熱し、その後Ar中で600℃、2時間の時効処
理を施し、解砕した。熱処理後の粉末は、平均粒度31
Anの微粉末が凝集した粒度200Iから50911m
の集合粉末であり、保磁力(iHC)が10.6kOa
であった。 上記性状の集合粉末を金型に装入し、10 koaの磁
界中で配向し、2.Ot、4の圧力で成形し、その後静
水圧プレスにて、長ざ14mmX幅10mmX厚み11
mm寸法の成型体を作製した。 その後、該成型体を、
ジメタアグリエートエステルを主成分とする合成樹脂を
含浸させ、100 ℃,1時間の加熱硬化して、ボンド
磁石を得た。このボンド磁石の磁気特性と、前記の集合
粉末の磁気特性を測定し、第1表に示す。 また、比較のため、上記の13M−2Dy−8B−77
F8なる組成の鋳塊を、粗粉砕後、微粉砕して平均粒度
3通の微粉末となし、金型に装入し、10kOeの磁界
中で配向し、2゜01着の圧力で成形し、その後静水圧
プレスにて、長さ14mmX幅10mmX厚み11mm
寸法の成型体を作製し、該成型体を、ジメタアグリエー
トエステルを主成分とする合成樹脂を含浸させ、100
℃、1時間の加熱硬化して、ボンド磁石を得た。この比
較例ボンド磁石の磁気特性と、比較例合金粉末の磁気特
性を測定し、第1表に示す。 第1表より明らかなように、この発明によるボンド磁石
用合金粉末及びボンド磁石の各磁気特性が著しく向上し
たことが分る。 第1表 以下余白 叉施胴ユ 出発原料として、純度99.9%の電解鉄、B19.4
%を含有し残部はFe及びMl、 Si、、 C等の不
純物からなるフェロボロン合金、純度99.7%以上の
陶及び〜を使用し、これらをAr雰囲気で高周波溶解し
、その後水冷銅鋳型に鋳造し、14Nd−1,5Dシー
7.5[3−77Faなる組成で正方晶を主相とするデ
ンドライト組織の鋳塊を得た。 その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にボールミルにより微粉砕し、平均
粒度2.7々mの微粉末を得た。 この微粉末を金型に装入し、10 koaの磁界中で配
向しながら、1.5 t、Jの圧力で加圧し、その後ス
タンプミルで解砕し、粒度1001s〜500虜にした
。 得うレタ粉末を、10Torr、 Ar気流中、aOO
℃〜1060℃、1時間の第2表の各種温度条件で如熱
し、その後Ar中で600℃、1時間の時効処理を施し
、再度、粒度100虜〜50011mの集合粉末に解砕
した。 上記の集合粉末を金型に装入し、10 kOaの磁界中
で配向し、パラフィンで固定し、粉末時の磁気特性を振
動試料型磁束計で測定した。測定結果は第2表に示すと
おりである。 また、比較として、上記の14Nd −1,5Dy −
7,5B−77Faなる組成の鋳塊を、粗粉砕後、微粉
砕して平均粒度3虜の微粉末となし、金型に装入し、1
0 koaの磁界中で配向および加圧成形して1001
s〜500Iinに分級し、10丁Orr、 Ar気流
中、800℃〜1060℃、1時間の第2表の各種温度
条件で加熱し、その後Ar中で600°C,1時間の時
効処理を施し、解砕後再び10 koaの磁界中で配向
し、パラフィンで固定し、さらに40 kosのパルス
磁場中で着磁し、粉末時の磁気特性を振動試料型磁束計
で測定した。 測定結果は第2表に示すとおりである。 第2表より明らかなように、熱処理のみでは不十分で、
前工程として微粉末を加圧後解砕する工程が不可欠であ
り、この工程の相乗効果により本発明によるボンド磁石
用合金粉末は、特に保磁力が著しく向上したことが分る
。 本行余白 第2表 (σS=σ15kOa) 実施例3 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はFe及びM、 SL、 C等の不純物
からなるフェロボロン合金、純度99,7%以上のM及
び〜、Coを使用し、これらをAr雰囲気で高周波溶解
し、その後水冷銅鋳型に鋳造し、14Nd −2Dy−
8Ca −7B −69Fsなる組成で正方晶を主相と
するデンドライト組織の鋳塊を得た。 その後インゴットを、クラッシャーにより35メツシユ
以下に粗粉砕し、次にアトライターを用いて粉砕時間を
種々変化させて微粉砕し、平均粒度が110Al、51
sI、3μmの微粉末を得た。 この微粉末を金型に装入し、10 koaの磁界中で配
向しながら、1t62の圧力で加圧成形し、その後メツ
シュ上で解砕し、粒度100−〜5001inの集合粉
末にした。 得られた集合粉末を、1O−3TOrr、真空中、80
0℃〜1060℃、1時間の各種温度条件で加熱し、そ
の後Ar中で600℃、 1時間の時効処理を施し、再
度、粒度100Js〜500項の集合粉末に解砕した。 上記の集合粉末を金型に装入し、10 kosの磁界中
で配向し、パラフィンで固定し、粉末時の保磁力を振動
試料型磁束計で測定した。測定結果は第1図に示すとお
りである。 また、比較として、上記の14t!i−2〜−8Co 
−7B  69Fs組成の鋳塊を、粗粉砕後、微粉砕し
て平均粒度101M、  5J1. 3AImの微粉末
となし、この微粉末を金型に装入し、10 koaの磁
界中で配向しながら、1 tJの圧力で加圧成形し、そ
の後メツシ1上で解砕し、粒度1001a〜5001s
Iの集合粉末にし、熱処理を施すことなく、金型に装入
し、10koθの磁界中で配向してパラフィンで固定し
、粉末時の保磁力を振動試料型磁束計で測定した。測定
結果は第1図に示すとおりである。 第1図より明らかなように、微粉末を加圧後解砕する工
程のみでは不十分であり、熱処理が不可欠であり、熱処
理を施したこの発明によるボンド磁石用合金粉末は、特
に保磁力が著しく向上したことが分る。 4、図面の簡単な説明 第1図は実施例3における熱処理温度と保磁力との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between heat treatment temperature and coercive force in Example 3. Applicant: Sumitomo Special Metals Co., Ltd. Figure 1 Heat treatment temperature ("C) Voluntary Procedures Negosho March 6, 1985 Imperial Rescript 1985 Patent Application No. 20747 2, Title of Invention Alloy powder for bonded magnets and its Manufacturing method 3, relationship with the person making the amendment Applicant address: 5-22 Kitahama, Higashi-ku, Osaka Name: Sumitomo Special Metals Co., Ltd. 4, Agent 5, “Name of the invention” and “Patent claim” in the specification to be amended Column 6 of "Scope of the invention", "Detailed description of the invention", "Brief description of the drawings", Contents of amendment ■The entire text of the specification will be amended as shown in the attached sheet. “Title of the invention”, “Claims”, Description 1, Title of the invention: Alloy powder for bonded magnets and its manufacturing method 2, Claims IR (R is at least one rare earth element including Y) )
12 atom% to 20 atom%, B44 atom to 20 atom%, l
``The main component is e60 atomic% to 84 atomic%.
. It is composed of fine powder with a particle size of 15IIm or less, whose phase is a tetragonal phase, and has a coercive force (iHc) of 5 kOe to 15 kO.
An alloy powder for bonded magnets, characterized in that it consists of an aggregate powder having an aggregate particle size of 100 to 1000 particles. 2R (R is at least one rare earth element including Y)
12 atom% to 20 atom%, B44 atom to 20 atom%, F
A fine powder with a particle size of 15Is or less whose main component is e60 @ 84 atomic % and whose main phase is a tetragonal phase is crushed after being pressure-molded, and further heated at 800°C to 1100°C and then crushed. A method for producing an alloy powder for bonded magnets, which comprises obtaining an aggregate powder composed of fine powder with a particle size of 15 mm or less and having an aggregate particle size of 100 to 1000 Is and having a coercive force (iHc) of 5 kOe to 15 kOe. 3. Detailed Description of the Invention Industrial Field of Application This invention relates to an alloy powder for permanent magnets whose main components are R (R is at least one rare earth element including Y), B, and Fe, and a resin or a nonmagnetic alloy. The present invention relates to an alloy powder for bonded magnets consisting of the following: and a method for producing the same. BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the raw material situation for cobalt has become unstable in recent years, demand for alnico magnets containing 20 to 30 wt% cobalt has decreased.
Inexpensive hard ferrite, whose main component is iron oxide, has come to dominate magnet materials. On the other hand, rare earth cobalt magnets contain 50 to 60wt of cobalt.
% and S, which is not contained in rare earth ores very much.
Although it is very expensive because it uses m, it has much higher magnetic properties than other magnets, so it has come to be used mainly in small, high-value-added magnetic circuits. Rare earth cobalt magnets are manufactured by a normal sintering method, but since grinding is required for commercialization, there is a problem of poor product yield, which further increases the price. To solve this problem, a bonding method has been proposed in which magnet powder is bonded and solidified with a resin or metal binder. In addition, rare earth cobalt magnets are available from RICO5 to R2C
Although high performance and resource saving have been achieved in the 0I7 series, even if the bonding method is used, expensive Sm and Co are the main components, and it is not a fundamental solution. In order to solve the above problem, the applicant first developed an expensive S
Fe- as a new high-performance permanent magnet that does not contain m or m
proposed an 8R-based permanent magnet (R is at least one rare earth element including Y) (Japanese Patent Application No. 145072/1982);
Furthermore, we proposed an Fe-B-R alloy powder (Japanese Patent Application Laid-Open No. 59-219904) that is optimal for bonded magnets. The above FeBR alloy powder for bonded magnets is a 3ρ alloy powder obtained by mechanically crushing and finely crushing an ingot of the component.
Although the following fine powder is used, since the coercive force (iHc) of the alloy powder is about 3 koθ, a high coercive force alloy powder has been desired in order to obtain a bonded magnet with even better magnetic properties. Purpose of the Invention The present invention aims to improve the magnetic properties of a new bonded permanent magnet mainly composed of rare earth elements (boron and iron), and provides an alloy powder for bonded magnets with excellent magnetic properties such as coercive force, and a method for producing the same. It is an object. Structure and effect of the invention This invention provides R (R is at least one kind of rare earth elements including Y) 12 at % to 20 at %, B44 atoms to 20
It is composed of fine powder with a particle size of 15ρ or less, whose main component is Fe 60 atomic % to 84 atomic %, and whose main phase is a tetragonal phase, and has a coercive force (it-1c) of 5 kOe to 15 koa.
An alloy powder for bonded magnets, characterized in that it consists of an aggregate powder with an aggregate particle size of 1 oo and n-1 ooo,
Furthermore, the main phase is a tetragonal product whose main components are R (R is at least one of rare earth elements including Y) 12 at% to 20 at%, B44 to 20 at%, l"e60 at% to 84 at%. A fine powder with a particle size of 15 or less consisting of a phase with a crystal structure of
It is heated at 1100°C and then crushed, and is composed of fine powder with a particle size of 15- or less, and has a coercive force (it-+c) of 5 koa ~
This is a method for producing an alloy powder for a bonded magnet with excellent corrosion resistance, which is characterized by obtaining an aggregate powder having an aggregate particle size of 100 um to 1,000 koa and having a particle size of 15 koa. A method for manufacturing a bonded magnet using the alloy powder according to the present invention includes mixing with the alloy powder and molding. A bonded magnet can be manufactured by appropriately selecting the type of binder used for assimilation or the like or the type of product, and the amount of binder is 50% or less in terms of volume composition in order to express the magnetic properties of the permanent magnet material. Forming alloy powder without sintering and impregnating and assimilating a resin binder to form a bonded magnet, or mixing alloy powder with an alloy powder binder and forming it, and then heat-treating it after sintering to obtain a bonded magnet. I can do it. Further, as a molding method, in addition to normal press molding, injection molding, extrusion molding, and isostatic pressing can also be employed. The synthetic resin used as the binder can be either thermosetting or thermoplastic, but thermally stable resins are preferred, such as polyamides, polyimides, phenolic resins, fluororesins, silicone resins, Epoxy resin etc. can be selected as appropriate. Further, in order to uniformly disperse and mix the alloy powder to exhibit magnetic properties, an alloy powder can also be used as a binder. In addition, when using something other than synthetic resin as a binder, there are Cu, AI, and solder alloys such as TLH2,5nSpb, and in the case of alloys, they are used in powder form. The bonded magnet using the alloy powder according to the present invention exhibits a maximum energy product (BH)llIaX of 108 GOe or more, and in the most preferable composition range, (BH)maX≧15
8GOa is shown. Reason for limitation of alloy powder and manufacturing method In this invention, the aggregate powder, which is the alloy powder for water-based bonded magnets, must be composed of fine powder with a particle size of 15XrI or less, and if it exceeds 151XrI, individual fine powder crystals will form. Magnetic domains tend to occur within the grains, and magnetization reversal easily occurs, making it impossible to obtain a high coercive force. Further, if the particle size is less than 0.5 μm, the surface area ratio increases and it becomes easy to oxidize and becomes difficult to handle, so it is preferably 0.5 m to 15 m. In order to obtain good magnetic properties as a sintered permanent magnet, R
It is preferable that the composition has more R than the composition shown by the composition formula of 2Fe12B, and it is thought that it is necessary that each crystal grain made of the above-mentioned tetragonal compound be covered with a Nd-rich phase. (sagaWa et,
al; J, 81)l)1. Phys, 5
5(6), 15 March 1984) Therefore, it is considered that the compound having the tetragonal structure represented by the above composition formula and the Nd-rich phase control the magnetic properties of the water-based magnetic alloy. The reason why the fine powder after going through various crushing processes shows only a coercive force of about 2.0 kOe even if it is within the above particle size range is because the individual crystal grains of the finely crushed powder are rich in R. This is thought to be because it is not covered by the phase. In this invention, as will be described later, fine powder with a particle size of 15 or less is pressure-molded, then crushed, and then heated at 800°C to 1100°C.
By heating at °C and then crushing, an aggregated powder in which individual crystal grains are surrounded by a Nd-rich phase is obtained. In addition, the reason why the alloy powder with the above particle size is crushed after being pressurized is to obtain a powder that has a high coercive force and is suitable for raw material powder for bonded magnets. It is a coarse powder (aggregated powder) consisting of fine particles with a diameter of 100 μm to 1000 μm. The above-mentioned R-rich phase and basic phase R2Fa
Due to the heat treatment described below to form 1q of eutectic with t4B, the fine powder condenses and sinters, and when this is crushed, the hard and brittle tetragonal compound is broken and the coercive force of the powder decreases. However, this aggregated powder does not sinter and bond, and even if it does, it is easily loosened (crushed).
can do. Note that by applying a magnetic field in a certain direction during pressurization, alloy powder for magnetically anisotropic magnets can be obtained, and by press molding in the absence of a magnetic field, alloy powder for magnetically isotropic magnets can be obtained. A powder can be obtained. The purpose of heat treatment is to crush the powder after heating at aoo'c to 1100"C in order to obtain powder with high coercive force and suitable as a raw material powder for bonded magnets. and an intermetallic compound having a tetragonal structure, R
This is to obtain a eutectic with 2For4B. The above eutectic reaction occurs at around 680°C, but the coercive force (i
HC) requires heating to 800°C or higher. However, when the temperature exceeds 1100°C, from 1001tIn to 1
Sintering progresses even with coarse powder (aggregated powder),
Subsequent crushing becomes difficult, grain growth occurs, and the coercive force decreases. Therefore, the heat treatment temperature is set at 800°C to 1100°C. Further, the heat treatment time is appropriately selected depending on the composition, particle size, etc. In addition, after the above heat treatment, 500 ° C to 700 ° C, 0.5
When aging treatment is performed for ~20 hours, the coercive force is further improved. The particle size of the aggregated powder after crushing was limited in order to prevent sintering from progressing into large lumps due to temperature rise and heat treatment, and to prevent the progress of oxidation of the chemically active fine powder of this alloy. at least 100% to avoid
.. A particle size of gm or more is required. However, the particle size is 100
0. If it exceeds am, the moldability of the alloy powder for bonded magnets will deteriorate, making it impossible to obtain a high filling rate. Therefore, the particle size of the aggregate powder is from 100 mm to 100011 mm. Reason for limiting alloy powder composition The rare earth element R of the alloy powder for bonded magnets of this invention is 1
2 at% to 20 at% of Nd, Pr, HO, Tb
At least one of the following, or in addition, La, Ce
. Preferably, it contains at least one of Gd, Er, and Y. Further, one type of R is usually sufficient, but in practice, a mixture of two or more types (Mitsuhmetal, dididium, etc.) can be used for reasons such as convenience of availability. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range. R (at least one rare earth element including Y) is an essential element in the above-mentioned new alloy powder for bonded magnets, and if it is less than 12 atomic %, the crystal structure is a cubic crystal having the same structure as α-iron. If it exceeds 20 atomic %, the R-rich nonmagnetic phase will increase and the residual magnetic flux density (Br) will decrease, resulting in a bond with excellent properties. I can't get a magnet. Therefore, the rare earth element is in the range of 12 atomic % to 20 atomic %. B is an essential element in the above-mentioned new alloy powder for bonded magnets, and if it is less than 4 at%, it will form a rhombohedral structure and high coercive force (it-IC) cannot be obtained, and if it exceeds 20 at%, , B-rich nonmagnetic phase increases, and the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 4 at.% to 20 at.%. 1"e is an essential element in the above-mentioned novel alloy powder for bonded magnets, and if it is less than 60 at%, the residual magnetic flux density (
If Br) decreases and exceeds 84 atomic %, high coercive force cannot be obtained, so Fe is contained in a range of 60 atomic % to 84 atomic %. Moreover, in the alloy powder for bonded magnets according to the present invention,
Replacing a part of F8 with Sn can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, and has the effect of improving the stability of the powder against oxidation. If the amount exceeds 50% of FB, the magnetic properties will deteriorate, which is not preferable. In the alloy powder of this invention, in order to obtain high residual magnetic flux density and high coercive force, R12.5 to 15 at%,
Preferably B66 to 14 atom% and l”e71 atom% to 82 atom%. In addition, the alloy powder for bonded magnets according to the present invention contains R, B
, In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 4.0 atomic % or less of C13, 5 atomic % or less of P, 2.5 atomic % or less of S, 3 By replacing at least one type of CU with a total amount of 4.0 atomic % or less, it is possible to improve the manufacturability and lower the price of bonded magnets. Furthermore, at least one of the following additional elements is R-B-
It is added to Fs-based bonded magnets to improve their coercive force, improve manufacturability, and reduce costs. However, the residual magnetic flux density (
Since this causes a decrease in Sr), it is desirable to add it in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets. A1 of not more than 5.0 atomic %. Ding 115 of not more than 3.0 atomic %
.. 5 at% or less V, 4.5 at% or less Cr15.0
Hn below 5.0 atomic %, Bi below 9.0 atomic %, Nb below 7.0 atomic %, HO 15 below 5.2 atomic %, Glue below 0 atomic %, 1 Sb of .0 atomic % or less, Ge of 3.5 atomic % or less. Sn of 1.5 atomic% or less, Zr of 3.3 atomic% or less
. 6.0 at% or less Ni, 5.0 at% or less 5i13
.. Addition of at least one type of Hf of 3 atomic % or less; however, if two or more types are contained, the maximum content is 3 atomic % or less of the one with the maximum value among the added elements, so that the bond It becomes possible to increase the coercive force of the magnet. In addition, the alloy powder for bonded magnets of the present invention is characterized in that the main phase is a square product with a main phase of at least 50 VO1% or more, and a nonmagnetic intermetallic compound with at least IVOI% or more.
This is essential for producing bonded magnets with excellent magnetic properties. Examples Example 1 As a starting material, electrolytic iron with a purity of 99.9%, Ef19.
A ferroboron alloy containing 4% and the remainder consists of impurities such as FB, /V, SL, and C, ceramics and N with a purity of 99.7% or more are used, and these are high-frequency melted in an atmosphere.
After that, it was cast in a water-cooled copper mold and 13Nd-2Dy-88-
An ingot with a dendrite structure having a composition of 77F8 and a main phase of tetragons was obtained. Thereafter, the ingot was coarsely ground to 35 meshes or less using a crusher, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 3βm. This fine powder is charged into a mold and oriented in a magnetic field for 1
.. It is pressurized with a pressure of 5 tJ, and then crushed with a stamp mill to obtain a particle size of 200 μm to 500 μm. I changed it to c+m. The obtained powder was heated at 1000° C. for 2 hours in Ar, and then subjected to aging treatment at 600° C. for 2 hours in Ar, and then crushed. The powder after heat treatment has an average particle size of 31
Particle size of fine particles of An aggregated from 200I to 50911m
It is an aggregated powder with a coercive force (iHC) of 10.6 kOa.
Met. The aggregated powder having the above properties was charged into a mold, oriented in a magnetic field of 10 koa, and 2. Formed at a pressure of 400 ft, then hydrostatically pressed into a shape with a length of 14 mm x width of 10 mm x thickness of 11 mm.
A molded body with dimensions of mm was produced. After that, the molded body is
A bonded magnet was obtained by impregnating the composite resin with a synthetic resin containing dimethaaglyate ester as a main component and curing it by heating at 100° C. for 1 hour. The magnetic properties of this bonded magnet and the magnetic properties of the aggregated powder were measured and are shown in Table 1. Also, for comparison, the above 13M-2Dy-8B-77
An ingot with a composition of F8 was coarsely crushed, then finely crushed to form a fine powder with an average particle size of 3 times, charged into a mold, oriented in a magnetic field of 10 kOe, and molded at a pressure of 2°01. Then, using a hydrostatic press, it was made into 14mm long x 10mm wide x 11mm thick.
A molded body with a size of
C. for 1 hour to obtain a bonded magnet. The magnetic properties of this comparative example bonded magnet and the magnetic properties of the comparative example alloy powder were measured and are shown in Table 1. As is clear from Table 1, it can be seen that the magnetic properties of the bonded magnet alloy powder and bonded magnet according to the present invention were significantly improved. Table 1 and below have margins. As starting materials for the fork barrel, electrolytic iron with a purity of 99.9%, B19.4
% and the remainder is Fe and impurities such as Ml, Si, C, etc. A ferroboron alloy with a purity of 99.7% or higher and ~ are used, and these are high-frequency melted in an Ar atmosphere, and then placed in a water-cooled copper mold. The ingot was cast to obtain an ingot with a composition of 14Nd-1,5DSi7.5[3-77Fa and a dendrite structure with tetragonal crystals as the main phase. Thereafter, the ingot was coarsely ground to 35 meshes or less using a crusher, and then finely ground using a ball mill to obtain a fine powder with an average particle size of 2.7 m. This fine powder was charged into a mold, and while oriented in a magnetic field of 10 koa, it was pressurized with a pressure of 1.5 t, J, and then crushed in a stamp mill to give a particle size of 1001s to 500 koa. The obtained lettuce powder was heated at 10 Torr in an Ar air flow, aOO
It was heated under the various temperature conditions shown in Table 2 at 1060°C to 1060°C for 1 hour, then aged in Ar at 600°C for 1 hour, and then crushed again into aggregated powder with a particle size of 100mm to 50011mm. The above aggregate powder was charged into a mold, oriented in a magnetic field of 10 kOa, fixed with paraffin, and the magnetic properties of the powder were measured using a vibrating sample magnetometer. The measurement results are shown in Table 2. In addition, as a comparison, the above 14Nd −1,5Dy −
An ingot with a composition of 7,5B-77Fa was coarsely crushed, then finely crushed to form a fine powder with an average particle size of 3 mm, charged into a mold, and
1001 by orientation and pressure molding in a magnetic field of 0 koa.
The material was classified into 500 Iin and heated under the various temperature conditions shown in Table 2 for 1 hour at 800°C to 1060°C in an Ar flow of 10 orr, and then aged at 600°C for 1 hour in Ar. After crushing, the powder was oriented again in a magnetic field of 10 koa, fixed with paraffin, and further magnetized in a pulsed magnetic field of 40 kos, and the magnetic properties of the powder were measured using a vibrating sample magnetometer. The measurement results are shown in Table 2. As is clear from Table 2, heat treatment alone is not sufficient;
It can be seen that the process of pressurizing and then crushing the fine powder as a pre-process is essential, and due to the synergistic effect of this process, the coercive force of the bonded magnet alloy powder according to the present invention was significantly improved. Main line margin Table 2 (σS = σ15kOa) Example 3 As a starting material, electrolytic iron with a purity of 99.9%, 819.4
% and the remainder is Fe and impurities such as M, SL, and C. A ferroboron alloy with a purity of 99.7% or more M, ~, and Co is used, and these are high-frequency melted in an Ar atmosphere, and then placed in a water-cooled copper mold. 14Nd-2Dy-
An ingot with a dendrite structure having a tetragonal crystal as a main phase was obtained with a composition of 8Ca-7B-69Fs. After that, the ingot was coarsely crushed to 35 meshes or less using a crusher, and then finely crushed using an attritor while varying the crushing time to obtain an average particle size of 110Al, 51
A fine powder of sI, 3 μm was obtained. This fine powder was charged into a mold and pressed under a pressure of 1t62 while being oriented in a magnetic field of 10 koa, and then crushed on a mesh to form an aggregated powder with a particle size of 100 to 5001 inches. The obtained aggregate powder was heated at 10-3 TOrr in vacuum at 80
It was heated under various temperature conditions of 0° C. to 1060° C. for 1 hour, then subjected to aging treatment at 600° C. for 1 hour in Ar, and crushed again into aggregate powder with a particle size of 100 Js to 500 Js. The above aggregate powder was charged into a mold, oriented in a 10 kos magnetic field, fixed with paraffin, and the coercive force of the powder was measured using a vibrating sample magnetometer. The measurement results are shown in Figure 1. Also, for comparison, the above 14t! i-2~-8Co
-7B An ingot with a 69Fs composition was coarsely crushed and then finely crushed to have an average particle size of 101M, 5J1. This fine powder was charged into a mold and pressed under a pressure of 1 tJ while oriented in a magnetic field of 10 koa, and then crushed on a mesh 1 to obtain a particle size of 1001a~ 5001s
I was made into an aggregated powder, charged into a mold without heat treatment, oriented in a magnetic field of 10 koθ, fixed with paraffin, and the coercive force of the powder was measured using a vibrating sample magnetometer. The measurement results are shown in Figure 1. As is clear from Fig. 1, the process of crushing the fine powder after pressurizing it is not enough, and heat treatment is essential. It can be seen that there has been a significant improvement. 4. Brief Description of the Drawings FIG. 1 is a graph showing the relationship between heat treatment temperature and coercive force in Example 3.

Claims (1)

【特許請求の範囲】 1 R(RはYを含む希土類元素のうち少なくとも1種
)12原子%〜20原子%、B4原子%〜20原子%、
Fe60原子%〜84原子%を主成分とし主相が正方晶
相からなる粒度15μm以下の微粉末より構成され、保
磁力(iHc)5kOe〜15kOeを有した集合粒度
100μm〜1000μmの集合粉末からなることを特
徴するボンド磁石用合金粉末。 2 R(RはYを含む希土類元素のうち少なくとも1種
)12原子%〜20原子%、B4原子%〜20原子%、
Fe60原子%〜84原子%を主成分とし主相が正方晶
相からなる粒度15μm以下の微粉末を、加圧成形した
のち解砕し、さらに800℃〜1100℃で加熱したの
ち解砕し、粒度15μm以下の微粉末より構成され、保
磁力(iHc)5kOe〜15kOeを有した集合粒度
100μm〜1000μmの集合粉末を得ることを特徴
するボンド磁石用合金粉末の製造方法。
[Claims] 1 R (R is at least one rare earth element including Y) 12 at % to 20 at %, B4 at % to 20 at %,
It is composed of fine powder with a particle size of 15 μm or less whose main component is Fe 60 atomic % to 84 atomic % and the main phase is a tetragonal phase, and the aggregate particle size is 100 μm to 1000 μm and has a coercive force (iHc) of 5 kOe to 15 kOe. An alloy powder for bonded magnets that is characterized by: 2 R (R is at least one kind of rare earth elements including Y) 12 atom% to 20 atom%, B4 atom% to 20 atom%,
A fine powder with a particle size of 15 μm or less consisting mainly of Fe 60 atomic % to 84 atomic % and the main phase being a tetragonal phase is pressure-molded and then crushed, further heated at 800 ° C to 1100 ° C and then crushed, A method for producing an alloy powder for bonded magnets, which comprises obtaining an aggregated powder composed of fine powder with a particle size of 15 μm or less and having a coercive force (iHc) of 5 kOe to 15 kOe and an aggregate particle size of 100 μm to 1000 μm.
JP60020747A 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof Expired - Lifetime JPH0653882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020747A JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020747A JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61179801A true JPS61179801A (en) 1986-08-12
JPH0653882B2 JPH0653882B2 (en) 1994-07-20

Family

ID=12035781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020747A Expired - Lifetime JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0653882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214505A (en) * 1985-03-20 1986-09-24 Namiki Precision Jewel Co Ltd Manufacture of resin bonded permanent magnet
JPH02153041A (en) * 1988-04-20 1990-06-12 Tokin Corp Manufacture of high polymer compounded type rare earth magnet material
US4981532A (en) * 1987-08-19 1991-01-01 Mitsubishi Kinzoku Kabushiki Kaisha Rare earth-iron-boron magnet powder and process of producing same
JPH07230907A (en) * 1988-04-20 1995-08-29 Tokin Corp Manufacture of polymer compound type rare earth magnet material
US7622010B2 (en) * 2001-11-28 2009-11-24 Hitachi Metals, Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214505A (en) * 1985-03-20 1986-09-24 Namiki Precision Jewel Co Ltd Manufacture of resin bonded permanent magnet
US4981532A (en) * 1987-08-19 1991-01-01 Mitsubishi Kinzoku Kabushiki Kaisha Rare earth-iron-boron magnet powder and process of producing same
US5110374A (en) * 1987-08-19 1992-05-05 Mitsubishi Materials Corporation Rare earth-iron-boron magnet powder and process of producing same
JPH02153041A (en) * 1988-04-20 1990-06-12 Tokin Corp Manufacture of high polymer compounded type rare earth magnet material
JPH07230907A (en) * 1988-04-20 1995-08-29 Tokin Corp Manufacture of polymer compound type rare earth magnet material
US7622010B2 (en) * 2001-11-28 2009-11-24 Hitachi Metals, Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
US7931756B2 (en) 2001-11-28 2011-04-26 Hitachi Metals, Ltd. Method and machine of making rare-earth alloy granulated powder and method of making rare-earth alloy sintered body

Also Published As

Publication number Publication date
JPH0653882B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
EP0274034B1 (en) Anisotropic magnetic powder, magnet thereof and method of producing same
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
US5009706A (en) Rare-earth antisotropic powders and magnets and their manufacturing processes
US5230751A (en) Permanent magnet with good thermal stability
KR100414463B1 (en) Magnetic powder, manufacturing method of magnetic powder and bonded magnets
JPS59219904A (en) Permanent magnet material
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH0551656B2 (en)
JPS61179801A (en) Alloy powder for bond magnet and its production
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPH04120238A (en) Manufacture of rare earth sintered alloy and manufacture of permanent magnet
JPH044383B2 (en)
JPS62270746A (en) Manufacture of rare earth-type permanent magnet
JPH044385B2 (en)
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH06330102A (en) Method for compacting magnet powder in magnetic field and manufacture of magnet
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JPH044384B2 (en)
JPH1072603A (en) Production of magnetic material
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH039174B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term