JPH02153041A - Manufacture of high polymer compounded type rare earth magnet material - Google Patents

Manufacture of high polymer compounded type rare earth magnet material

Info

Publication number
JPH02153041A
JPH02153041A JP63106993A JP10699388A JPH02153041A JP H02153041 A JPH02153041 A JP H02153041A JP 63106993 A JP63106993 A JP 63106993A JP 10699388 A JP10699388 A JP 10699388A JP H02153041 A JPH02153041 A JP H02153041A
Authority
JP
Japan
Prior art keywords
rare earth
sintered body
powder
heat
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63106993A
Other languages
Japanese (ja)
Other versions
JPH0730425B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Hiroshi Oyanagi
大柳 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63106993A priority Critical patent/JPH0730425B2/en
Publication of JPH02153041A publication Critical patent/JPH02153041A/en
Publication of JPH0730425B2 publication Critical patent/JPH0730425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title magnet material of high capacity by pulverizing an ingot of rare earth elements-transition metals-B series, subjecting it to primary magnetic compacting, thereafter to sintering, to pulverizing, furthermore to secondary magnetic compacting, thereafter to heat treatment under specific conditions and successively impregnating high polymer resin thereto. CONSTITUTION:An R2T14B series ingot constituted of Nd as rare earth elements R, Fe as transition metals T and B is cast, cooled and thereafter pulverized. The powder is formed into a primary magnetic compact and is thereafter sintered, e.g., at 1,030 deg.C in vacuum or in an inert gas. The sintered body is pulverized to regulate its average grain size to the one as large as 1.5 times the average grain size of the sintered body and to <=1mm. The powder of the sintered body is compacted in the magnetic field into a secondary magnetic powder compact, is thereafter subjected to heat treatment at 480 to 1,120 deg.C, is quenched from the above temp., is furthermore reheated to 540 to 800 deg.C and is thereafter impregnated with high polymer resin such as epoxy resin to execute high polymer compounding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Nd−Fe−B系永久磁石を代表とする希土
類金属(r?、)と遷移金属(T)とホウ素(B)を主
成分としてなるR、T1.B (RはY及び希土類元素
の少なくとも一種、Tは遷移元素を表わす。)系の希土
類磁石粉末を用いたゴム磁石及びプラスチック磁石を典
型とする高分子複合希土類磁石材料の製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention mainly uses rare earth metals (r?), transition metals (T), and boron (B), typified by Nd-Fe-B permanent magnets. R, T1. The present invention relates to a method for manufacturing polymer composite rare earth magnet materials, typically rubber magnets and plastic magnets, using rare earth magnet powder of B (R represents at least one of Y and a rare earth element, and T represents a transition element) system.

〔従来の技術] 一般に、高分子複合型磁石材料は、高分子樹脂中に磁石
粉末を分散させたもの、或は、磁石粉末を高分子樹脂で
結着させたものである。この種の磁石材料は、鋳造磁石
や焼結磁石等には見られない種々の特性、例えば弾力性
と加工容易性を備えており、様々の方面に用いられてい
る。これら分散結着される磁石粉末としては、これまで
種々のらのが使用されており、特にNd−Fe−B系希
土類磁石合金粉末は、最も優れた磁石特性を示すことが
知られている。
[Prior Art] Generally, a polymer composite magnet material is one in which magnet powder is dispersed in a polymer resin, or one in which magnet powder is bound with a polymer resin. This type of magnet material has various properties not found in cast magnets, sintered magnets, etc., such as elasticity and ease of processing, and is used in various fields. A variety of materials have been used as the magnet powder to be dispersed and bound, and in particular, Nd-Fe-B rare earth magnet alloy powder is known to exhibit the most excellent magnetic properties.

ところが、この高分子複合型希土類磁石材料は、既述し
たように、Nd−Fe−B系希土類磁石合金粉末と非磁
性の樹脂とで形成されているため、焼結磁石に比べ、磁
気特性が劣るという欠点を有している。
However, as mentioned above, this polymer composite rare earth magnet material is made of Nd-Fe-B rare earth magnet alloy powder and non-magnetic resin, so it has poor magnetic properties compared to sintered magnets. It has the disadvantage of being inferior.

このため、従来のNd−Fe−B系希土類磁石合金粉末
を使用した高分子複合型希土類磁石材料の製造方法では
、Nd−Fe−B茶原料を溶解して得た合金インゴット
を熱処理して、粉砕し、その粉末を高分子樹脂と混合し
た後、磁界中で成形することにより、磁性粉末を磁界中
で配向させる等の異方性化により、磁石特性を達成しよ
うとしていた。しかも、使用される原料の磁石合金粉末
は、磁界中での結晶粒配向性を向上させるため、微細な
単結晶粒子からなっていることが、望ましいとされてい
た。
For this reason, in the conventional manufacturing method of polymer composite rare earth magnet material using Nd-Fe-B rare earth magnet alloy powder, an alloy ingot obtained by melting the Nd-Fe-B tea raw material is heat-treated. An attempt was made to achieve magnetic properties by pulverizing the powder, mixing the powder with a polymer resin, and then molding it in a magnetic field to make it anisotropic, such as orienting the magnetic powder in the magnetic field. Moreover, it has been considered desirable that the raw material magnet alloy powder used be composed of fine single crystal grains in order to improve crystal grain orientation in a magnetic field.

[発明が解決しようとする課題] しかしなから、従来の高分子複合型希土類磁石材料の製
造方法においては、粉砕時における機械的応力により、
保磁力(fHc)の低下が生じ、特に、この合金粉末が
微細な単結晶粒子からなる領域では、保磁力が著しく低
下してしまい、高保持力を有する焼結磁石を粉砕して磁
石粉末として使用し得たとしても、著しく磁石特性の低
い高分子複合磁石となってしまうという欠点があった。
[Problems to be solved by the invention] However, in the conventional manufacturing method of polymer composite rare earth magnet materials, mechanical stress during crushing causes
The coercive force (fHc) decreases, especially in the region where this alloy powder consists of fine single crystal particles, and the coercive force decreases significantly. Even if it could be used, it had the disadvantage that it would result in a polymer composite magnet with extremely poor magnetic properties.

一方、液体急冷法により粉砕すれば、保持力の低下が殆
ど生じない合金粉末を生成することは知られてはいるが
、その反面、容易には異方性化の実現はできないという
問題を有している。なお、本発明者らは、この液体急冷
合金を熱間加工することによって、磁石粉末を異方性化
する発明を出願して開示したが、多大な加圧力を要する
ため、設備か大川りで、高価なものとなるのが通例であ
る為、工業的に有益なものとはいい難かった。
On the other hand, it is known that pulverization using the liquid quenching method produces an alloy powder with almost no decrease in holding power, but on the other hand, it has the problem that anisotropy cannot be easily achieved. are doing. The present inventors have filed and disclosed an invention for making magnet powder anisotropic by hot working this liquid quenched alloy, but since it requires a large pressing force, However, since it is usually expensive, it is difficult to say that it is industrially useful.

そこで、本発明の技術的課題は、上記欠点に鑑み、従来
のR−T−B系焼結磁石材料の製造工程における既存設
備の切り替えが容易な製法とすると共に、既存設備をそ
のまま活用することにより、磁石特性の改善された異方
性を有する高分子複合希土類磁石材料を製造する方法を
提供することである。
Therefore, in view of the above-mentioned drawbacks, the technical problem of the present invention is to provide a manufacturing method that allows easy switching of existing equipment in the manufacturing process of conventional R-T-B sintered magnet materials, and to utilize the existing equipment as is. Accordingly, it is an object of the present invention to provide a method for manufacturing a polymer composite rare earth magnet material having anisotropy with improved magnetic properties.

[課題を解決するための手段] 本発明によれば、Nd、Fe、Bを主成分として含有す
るR2T14B系(RはY及び希土類元素の少なくとも
一種、Tは遷移元素を表わす。)インゴットを粉砕して
初期粉末を生成した後、該初期粉末を第1次磁場中成形
し、第1次磁性粉末成形体を生成する1次磁場中成形工
程と、該1次磁性粉末成形体を焼結して焼結体を生成す
る焼結工程と、該焼結体を粉砕して焼結体粉砕粉末を生
成する焼結体粉砕工程と、該焼結体粉砕粉末を第2次磁
場中成形し、第2次磁性粉末成形体を生成する第2次磁
場中成形工程と、該第2次磁性粉末成形体を熱処理し、
熱処理成形体を生成する熱処理工程と、該熱処理成形体
を高分子樹脂で複合成形する樹脂複合成形工程とを有す
る高分子複合型希土類磁石材料の製造方法が得られる。
[Means for Solving the Problems] According to the present invention, an R2T14B ingot containing Nd, Fe, and B as main components (R represents at least one of Y and a rare earth element, and T represents a transition element) is crushed. After producing an initial powder, the initial powder is compacted in a first magnetic field to produce a first magnetic powder compact, and the first magnetic powder compact is sintered. a sintering step of producing a sintered body; a sintered body crushing step of pulverizing the sintered body to generate a sintered body crushed powder; a second magnetic field compacting step of producing a second magnetic powder compact, and heat treating the second magnetic powder compact;
A method for producing a polymer composite rare earth magnet material is obtained, which includes a heat treatment step of producing a heat-treated molded body, and a resin composite molding step of composite-molding the heat-treated molded body with a polymer resin.

また、本発明よれば、前記熱処理工程は、前記第2次磁
性粉末成形体を、実質的に1480〜1120℃の範囲
内の温度で熱処理し、熱処理成形体を生成することを特
徴とする高分子複合型希土類磁石材料の製造方法が得ら
れる。
Further, according to the present invention, the heat treatment step includes heat-treating the secondary magnetic powder compact at a temperature substantially within the range of 1480 to 1120°C to produce a heat-treated compact. A method for manufacturing a molecular composite rare earth magnet material is obtained.

また、本発明によれば、前記樹脂複合成形処理工程の前
に、前記熱処理成形体を、前記熱処理温度保持後、急冷
し、再度、実質的に、540〜800℃の範囲で再加熱
処理する急冷再加熱処理工程を含むことを特徴とする高
分子複合型希土類磁石材料の製造方法が得られる。
Further, according to the present invention, before the resin composite molding treatment step, the heat-treated molded product is rapidly cooled after maintaining the heat treatment temperature, and then reheated again substantially at a temperature in the range of 540 to 800°C. A method for producing a polymer composite rare earth magnet material is obtained, which is characterized by including a rapid cooling and reheating treatment step.

また、本発明によれば、前記樹脂複合成形処理工程の前
に、前記熱処理成形体を、前記熱処理温度保持後、除冷
し、再度、実質的に1450〜750℃の範囲で再加熱
処理する除冷再加熱処理工程を含むことを特徴とする高
分子複合型希土類磁石材料の製造方法が得られる。
Further, according to the present invention, before the resin composite molding treatment step, the heat-treated molded product is slowly cooled after maintaining the heat treatment temperature, and then reheated again at a temperature substantially in the range of 1450 to 750°C. A method for producing a polymer composite rare earth magnet material is obtained, which is characterized by including a gradual cooling and reheating treatment step.

また、本発明によれば、前記樹脂複合成形処理工程は、
前記熱処理成形体を高分子樹脂に含浸することにより複
合成形することを特徴とする高分子複合型希土類磁石材
料の製造方法が得られる。
Further, according to the present invention, the resin composite molding treatment step includes:
A method for producing a polymer composite rare earth magnet material is obtained, which comprises performing composite molding by impregnating the heat-treated molded body with a polymer resin.

本発明によれば、Nd、Fe、Bを主成分として含有す
るR2 T14B系(RはY及び希土類元素の少なくと
も一種、Tは遷移元素を表わす。)インゴットを粉砕し
て初期粉末を生成した後、該初期粉末を第1次磁場中成
形し、第1次磁性粉末成形体を生成する1次磁場中成形
工程と、該1次磁性粉末成形体を焼結して焼結体を生成
する焼結工程と、該焼結体を粉砕して焼結体粉砕粉末を
生成する焼結体粉砕工程と、該焼結体粉砕粉末を、高分
子樹脂と混合した後、第2次磁場中成形し、圧縮成形又
は射出成形することを特徴とする高分子複合型希土類磁
石材料のrM遣方法が得られ、好ましくは、本発明によ
れば、前記焼結体粉砕工程は、前記焼結体粉砕粉末の平
均粒径が、実質的に、前記焼結体の平均結晶粒径に比し
1,5倍以上とし、且つ、1mm以下の範囲内になるよ
うに、前記焼結体を粉砕することを特徴とする高分子複
合型希土類磁石材料の製造方法が得られる。
According to the present invention, after an R2 T14B system (R represents at least one of Y and a rare earth element, and T represents a transition element) ingot containing Nd, Fe, and B as main components is pulverized to generate an initial powder. , a first magnetic field compacting step in which the initial powder is compacted in a first magnetic field to produce a first magnetic powder compact, and a sintering step in which the first magnetic powder compact is sintered to produce a sintered body. a sintering process, a sintered body crushing process of pulverizing the sintered body to produce a sintered body crushed powder, and a second magnetic field molding after mixing the sintered body crushed powder with a polymer resin. According to the present invention, the sintered body pulverizing step preferably includes the sintered body pulverized powder. The sintered body is pulverized so that the average grain size of the sintered body is substantially 1.5 times or more as compared to the average crystal grain size of the sintered body, and within 1 mm or less. A method for producing a characteristic polymer composite rare earth magnet material is obtained.

[本発明の概要] 本発明の磁石特性の向上は、1HcとBrの向上に関係
しており、成形用粉末が複数の配向した結晶粒に深く起
因していることを、種々の実験を行った結果発見した事
実により、本発明は構成されるものである。
[Summary of the present invention] Various experiments were conducted to demonstrate that the improvement in magnetic properties of the present invention is related to the improvement in 1Hc and Br, and that this is deeply caused by the plurality of oriented crystal grains in the molding powder. The present invention is constituted by the facts discovered as a result of the research.

以下に、その本発明の概要を示す。An outline of the present invention is shown below.

■まず、R2T、B系合金インゴットを粉砕して第1次
粉末を生成した後、第1次磁場中成形を施して、第1次
磁性粉末成形体を生成する。
(1) First, an R2T, B-based alloy ingot is pulverized to produce a primary powder, and then subjected to primary compacting in a magnetic field to produce a primary magnetic powder compact.

■次に、得られた第1次磁性粉末成形体を焼結し、これ
により、高結晶配向度の焼結体を生成する。
(2) Next, the obtained primary magnetic powder compact is sintered, thereby producing a sintered body with a high degree of crystal orientation.

■次に、第2次粉末を第2次磁場中成形し、第2次磁性
粉末成形体を生成する。
(2) Next, the secondary powder is compacted in a secondary magnetic field to produce a secondary magnetic powder compact.

0次に、第2次磁性粉末成形体を熱処理して、熱処理成
形体を得る。このとき、熱処理温度は、実質的に148
0〜1120℃の範囲内とする。
Next, the second magnetic powder compact is heat-treated to obtain a heat-treated compact. At this time, the heat treatment temperature is substantially 148
The temperature should be within the range of 0 to 1120°C.

これは1480℃以上の熱処理で、BrとI Hcが著
しく向上し、また、1120℃以上の熱処理では、IH
cの低下が顕著になる為である。このことは、粉砕の際
の機械的ダメージ、及び変質は、熱処理では、回復しな
い。しかし、900℃以上の高温熱処理により、内部歪
みが解消されることを示している。
This shows that heat treatment at 1480°C or higher significantly improves Br and IHc, and heat treatment at 1120°C or higher improves IHc.
This is because the decrease in c becomes significant. This means that mechanical damage and deterioration during crushing cannot be recovered by heat treatment. However, it has been shown that internal distortion can be eliminated by high-temperature heat treatment at 900° C. or higher.

■ここで、更に、IHCを向上させるために、熱処理成
形体を、熱処理温度保持後、急冷し或は除冷し、再度、
実質的に、540〜800℃或は450〜750℃の範
囲で再加熱処理を施してもよい。
■Here, in order to further improve IHC, the heat-treated molded product is cooled rapidly or slowly after the heat treatment temperature is maintained, and then cooled again.
Substantially, reheating treatment may be performed at a temperature in the range of 540 to 800°C or 450 to 750°C.

0次に、熱処理成形体を、高分子樹脂に含浸して、高い
磁石特性を有するR−T−B系高分子複合型希土類磁石
材料を生成する。
Next, the heat-treated molded body is impregnated with a polymer resin to produce an R-T-B polymer composite rare earth magnet material having high magnetic properties.

■一方、焼結体を粉砕して、焼結体粉砕粉末を生成し、
この焼結体粉砕粉末を、高分子樹脂と混合した後、第2
次磁場中成形し、圧縮成形又は射出成形して、高い磁石
特性を有するR−T−B系高分子複合型希土類磁石材料
を生成する。ここで、この焼結体を粉砕して第2次粉末
を生成し、その平均粒径を、焼結体の平均結晶粒径に比
し1.5倍以上とし、且つ、11g1以下の範囲内とす
る。これは、焼結体の平均結晶粒径に比し1.5倍以上
とすることにより、熱処理による保持力及び、同時にB
r、(BH)、、、の向上も顕著になり、方、上限をI
IIII+1としたのは、これ以上の粒径では、高分子
複合型希土類磁石材料としての均質性が低下すると共に
、粉末成形時における金型破損や、流動製の不均一性等
の不都合が生じるためである。
■Meanwhile, the sintered body is crushed to produce sintered body crushed powder,
After mixing this sintered powder with a polymer resin, a second
Next, the material is molded in a magnetic field and then compression molded or injection molded to produce an R-T-B polymer composite rare earth magnet material having high magnetic properties. Here, the sintered body is crushed to produce a secondary powder, the average particle size of which is 1.5 times or more compared to the average crystal grain size of the sintered body, and within the range of 11g1 or less. shall be. By setting this to 1.5 times or more compared to the average grain size of the sintered body, it is possible to improve the holding power due to heat treatment and at the same time
The improvement in r, (BH), , is also significant, and the upper limit is lowered to I
The reason why it is set as III+1 is because if the particle size is larger than this, the homogeneity of the polymer composite rare earth magnet material decreases, and problems such as mold breakage during powder compaction and non-uniformity in fluid production occur. It is.

なお、焼結体の平均結晶粒径は、0.5〜100μmの
範囲内であることが好ましいが、これらに限定されるも
のではない。
Note that the average crystal grain size of the sintered body is preferably within the range of 0.5 to 100 μm, but is not limited thereto.

以上の説明の通り、本発明に係わる熱処理成形体を生成
して、これを用いることにより、含浸型。
As explained above, by producing a heat-treated molded article according to the present invention and using this, an impregnated mold.

圧縮成形型、射出成形型等の広汎な高分子複合型希土類
磁石材料を提供できるものである。
It is possible to provide a wide range of polymer composite rare earth magnet materials such as compression molding molds and injection molding molds.

[実施例] 次に、本発明の実施例について図面を参照して説明する
[Example] Next, an example of the present invention will be described with reference to the drawings.

一実施例1− 本発明の実施例1に係る高分子複合型粘土′M、磁石は
、熱処理成形体を高分子樹脂に含浸するケースに関する
Example 1 - The polymer composite clay 'M and magnet according to Example 1 of the present invention relates to a case in which a heat-treated molded body is impregnated with a polymer resin.

まず、純度97 w t%のNd(残部はCe、Prを
主体とするNd以外の希土類元素)とフェロボロン(B
の含有盟約20 w t%)及び電解鉄を使用し、希土
類元素(R)が33.5% Bが1゜1%、残部Feと
なるように、アルゴン雰囲気中で、高周波加熱により溶
解して、合金インゴットを得た。このインゴットを粗粉
砕した後、ボールミルを用いて平均粒径約2μmに粗粉
砕した。この合金粉末を、約20KOeの磁界中にて、
1 ton /−の圧力で、直方体に磁場中成形した(
第1次磁場中成形工程)。
First, Nd with a purity of 97 wt% (the remainder is rare earth elements other than Nd mainly consisting of Ce and Pr) and ferroboron (B
(approximately 20 wt%) and electrolytic iron, and melted by high frequency heating in an argon atmosphere so that the rare earth element (R) is 33.5%, B is 1.1%, and the balance is Fe. , an alloy ingot was obtained. This ingot was coarsely ground, and then coarsely ground to an average particle size of about 2 μm using a ball mill. This alloy powder is placed in a magnetic field of about 20 KOe.
It was molded into a rectangular parallelepiped in a magnetic field at a pressure of 1 ton/- (
1st magnetic field forming process).

次に、この第1次磁性粉末成形体を、真空中で1030
℃で1時間保持した後、アルゴン(Ar)雰囲気中に3
時間保持し、焼結体を得な(焼結工程)。このとき、焼
結体の密度は約7.55(gr/ am” )であり、
平均粒径は、約6μmの結晶粒であった。
Next, this primary magnetic powder molded body was heated to 1030°C in vacuum.
After being kept at ℃ for 1 hour, the
Hold for a period of time to obtain a sintered body (sintering process). At this time, the density of the sintered body is approximately 7.55 (gr/am”),
The average grain size was about 6 μm.

この焼結体を150メツシユ以下に粗粉砕し、焼結体粉
砕粉末である合金粉末を生成しく焼結体粉砕工程)、こ
の合金粉末を、約200eの磁界中、5 tan/−成
形圧で円板状に磁場中成形した(第2次磁場中成形工程
)。
This sintered body is coarsely ground to 150 meshes or less to produce an alloy powder (sintered body pulverized powder). It was molded into a disc shape in a magnetic field (secondary molding step in a magnetic field).

得られた第2次磁性粉末成形体を1450℃5500’
C,700’C,800℃、900℃、1000℃、1
050℃、1100℃、1150℃の温度で、夫々真空
中に1時間、その後、Ar中に1時間保持する熱処理(
熱処理工程)後、急冷し、熱処理成形体を得た。これら
の急冷した熱処理成形体の密度(G、D、)は、5.4
0〜7.00(gr/an’ )であった。
The obtained secondary magnetic powder compact was heated at 1450℃5500'
C, 700'C, 800℃, 900℃, 1000℃, 1
Heat treatment at temperatures of 050°C, 1100°C, and 1150°C for 1 hour in vacuum and then 1 hour in Ar (
After the heat treatment step), it was rapidly cooled to obtain a heat-treated molded product. The density (G, D,) of these rapidly cooled heat-treated molded bodies is 5.4
It was 0 to 7.00 (gr/an').

次に、これらの熱処理成形体を真空引き後、エポキシ樹
脂に含浸した。続いて、80℃で、5時間保持し硬化さ
せ、実施例1に係る高分子複合磁石とした(樹脂複合成
形工程)。
Next, these heat-treated molded bodies were evacuated and then impregnated with epoxy resin. Subsequently, the magnet was held at 80° C. for 5 hours to be cured to obtain a polymer composite magnet according to Example 1 (resin composite molding step).

第1図に、得られた実施例に係る高分子複合型希土類磁
石材料の磁石特性を示す。
FIG. 1 shows the magnetic properties of the polymer composite rare earth magnet material according to the obtained example.

その結果、熱処理温度480〜1120℃の範囲内で、
高い磁石特性を示すことが分かる。この図において、横
軸は成形工程での熱処理温度、縦軸は最大エネルギー積
(BH)MAX  (MGOe>。
As a result, within the heat treatment temperature range of 480 to 1120°C,
It can be seen that it exhibits high magnetic properties. In this figure, the horizontal axis is the heat treatment temperature in the molding process, and the vertical axis is the maximum energy product (BH) MAX (MGOe>).

残留磁束密度Br (KG) 、 ci!、磁力IHc
  (KOe)、密度G、D、(gr−cm−’)を夫
々示している。
Residual magnetic flux density Br (KG), ci! , magnetic force IHc
(KOe), densities G, D, and (gr-cm-') are shown, respectively.

ここで、比較例に係る高分子複合希土類磁石として、上
記した焼結体を600″Cで2時間時効し、その後、こ
の時効処理した焼結体を、実施例1と同様に、焼結体粉
砕、第2次磁場中成形、熱処理及び、エポキシ樹脂に含
浸して、高分子複合化をおこなった。
Here, as a polymer composite rare earth magnet according to a comparative example, the above-mentioned sintered body was aged at 600''C for 2 hours, and then this aged sintered body was used as a sintered body in the same manner as in Example 1. The material was pulverized, molded in a secondary magnetic field, heat treated, and impregnated with epoxy resin to form a polymer composite.

比較例の測定された磁石特性と密度は、(BH)MAX
  4.  0  <MGOe)  、   Br5.
  5  (KO)  。
The measured magnetic properties and density of the comparative example are (BH)MAX
4. 0 <MGOe), Br5.
5 (KO).

、  ト1c  3.  0  (KOe  )  、
  G、   D、   5.  4  (gr・cm
−’)であり、本実施例に1系る高分子複合型希土類磁
石の方か、比較例よりも、高い磁石特性が得られること
が判明した。
, 1c 3. 0 (KOe),
G, D, 5. 4 (gr.cm
-'), and it was found that higher magnetic properties were obtained with the polymer composite rare earth magnet of this example than with the comparative example.

なお、比較例における時効処理した焼結体自体の磁石特
性は、最大エネルギー積(BH)mAx44、O(MG
Oe)、残留磁束密度Br13.7(KG)、!磁力r
 HCl2.O(’KOe)、で結晶粒の平均粒径が約
6μmで、焼結密度G、D。
In addition, the magnetic properties of the aged sintered body itself in the comparative example are maximum energy product (BH) mAx44, O(MG
Oe), residual magnetic flux density Br13.7 (KG),! magnetic force r
HCl2. O('KOe), the average grain size of the crystal grains is about 6 μm, and the sintered densities G and D.

7.55 (gr −cm−’)であった。It was 7.55 (gr-cm-').

一実施例2− 本発明の実施例2に係る高分子複合型希土類磁石は、熱
処理成形体を急冷して、再加熱処理した後、高分子樹脂
に含浸するケースに関する。
Example 2 - A polymer composite rare earth magnet according to Example 2 of the present invention relates to a case in which a heat-treated molded body is rapidly cooled, reheated, and then impregnated with a polymer resin.

ます、実施例1で作製した焼結体の粗粉末より磁場中成
形した、第2次磁性粉末成形体を、1000℃で、真空
中とAr中とで夫々1時間保持の熱処理した後、急冷し
た。
First, a secondary magnetic powder molded body formed from the coarse powder of the sintered body produced in Example 1 in a magnetic field was heat treated at 1000°C for 1 hour in vacuum and in Ar, and then rapidly cooled. did.

次に、これら熱処理した熱処理成形体を500℃〜80
0℃まで、50℃毎に、夫々について、2時間Ar中で
保持後、急冷し再加熱処理した。
Next, these heat-treated molded bodies were heated at 500°C to 80°C.
Each sample was held in Ar for 2 hours at 50°C intervals up to 0°C, then rapidly cooled and reheated.

この再加熱処理した得られた成形体の密度G、D。The densities G and D of the obtained molded product after this reheating treatment.

は、6.10〜6.15 (gr/♂)であった。was 6.10 to 6.15 (gr/male).

その後、これらの成形体を、実施例1と同様にして、高
分子複合型希土類磁石とし、その磁石特性を測定し、第
2図に示した。
Thereafter, these compacts were made into polymer composite rare earth magnets in the same manner as in Example 1, and the magnetic properties thereof were measured and are shown in FIG.

その結果、再加熱処理の温度が540〜800℃の範囲
内で、高い磁石特性値が得られることが確認された。
As a result, it was confirmed that high magnetic characteristic values could be obtained when the temperature of the reheating treatment was within the range of 540 to 800°C.

なお、比較例として、上記の再加熱処理を除〜1ては、
本実施例と同様に製造された高分子複合型希土類磁石を
生成し、その磁石特性を測定した。
As a comparative example, except for the above reheating treatment,
A polymer composite rare earth magnet was produced in the same manner as in this example, and its magnetic properties were measured.

その結果は、(BH) MAX 21 、5 (MGO
e ) 。
The result is (BH) MAX 21, 5 (MGO
e).

Br9.9 (KG)、 IHc 8.5 (KOe)
Br9.9 (KG), IHc 8.5 (KOe)
.

G、D、6.10 (gr/am’ )であった。G, D, 6.10 (gr/am').

一実施例3− 本発明の実施例3に係る高分子複合型希土類磁石は、熱
処理成形体を除冷して、再加熱処理した後、高分子樹脂
に含浸するケースに関する。
Embodiment 3 - A polymer composite rare earth magnet according to Embodiment 3 of the present invention relates to a case in which a heat-treated molded body is gradually cooled, subjected to reheating treatment, and then impregnated with a polymer resin.

まず、実施例1で作製した焼結体粉砕粉末(−150メ
ツシユ以下)を再度磁場中成形した第2次磁性粉末成形
体を、1000’Cで1.真空中、Arガス中各々1時
間保持した後、300℃まで炉冷した。なお、この炉冷
速度は、1000℃近傍では、約−150℃/Hr、7
00℃近傍では、約−70℃/Hr1400℃近傍では
、−30℃/ Hrとした。
First, a second magnetic powder compact was formed by compacting the sintered powder (-150 mesh or less) produced in Example 1 again in a magnetic field at 1000'C. After being kept in vacuum and Ar gas for 1 hour each, it was cooled in a furnace to 300°C. Note that this furnace cooling rate is approximately -150°C/Hr, 7°C near 1000°C.
Around 00°C, it was about -70°C/Hr; around 1400°C, it was -30°C/Hr.

次に、これらの熱処理成形体を1450〜750℃まで
、50℃毎に、夫々2時間保持後、除冷し、再加熱処理
した。再加熱処理を施した熱処理成形体の密度G、D、
は、6.10〜6.15(gr/am’ )であっな。
Next, these heat-treated molded bodies were held at 1450 to 750°C in 50°C increments for 2 hours each, then slowly cooled and reheated. Densities G, D, of the heat-treated molded body subjected to reheating treatment,
is 6.10 to 6.15 (gr/am').

次に、これら成形体を、実施例1と同様にして、高分子
樹脂に含浸して高分子複合型希土類磁石を得て、磁石特
性の測定を行し、その測定値を第3図に示す。
Next, these molded bodies were impregnated with a polymer resin in the same manner as in Example 1 to obtain a polymer composite rare earth magnet, and the magnetic properties were measured. The measured values are shown in Figure 3. .

その結果、第3図により、実施例3に係る高分子複合型
希土類磁石は、再加熱処理温度が6150〜750℃の
範囲内で、高い磁石特性が得られことか分かる。
As a result, it can be seen from FIG. 3 that the polymer composite rare earth magnet according to Example 3 can obtain high magnetic properties when the reheating treatment temperature is within the range of 6150 to 750°C.

なお、比敦のために、上記の再加熱処理を除き、本実施
例と同様に作製された高分子複合型希土類磁石の磁石特
性と密度は、(BH) MAX 21−5(MGOe 
 )  、   Br9.  8  (KG)  、 
 I  Hc  9゜0 (KOe ) 、 G、 D
、 6.10 (gr/c+n’ )であった。
For the sake of Hitsu, the magnetic properties and density of a polymer composite rare earth magnet manufactured in the same manner as in this example except for the above-mentioned reheating treatment were (BH) MAX 21-5 (MGOe).
), Br9. 8 (KG),
I Hc 9゜0 (KOe), G, D
, 6.10 (gr/c+n').

一実施例4− 本発明の実施例4に係る高分子複合型希土類磁石は、熱
処理成形体を高分子樹脂に含浸するケスに関する。
Example 4 - A polymer composite rare earth magnet according to Example 4 of the present invention relates to a case in which a heat-treated molded body is impregnated with a polymer resin.

まず、5wt%のC6,15wt%のPr残部Nd(但
し、NdはNd以外の希土類元素を含む)よりなるセリ
ウムジジムと、ジスプロシウム、フェロポロン、電解鉄
、電解コバルト及びアルミニウムを使用して、実施例1
と同様にして、(Ce・Pr−Nd>が33.0wt%
、Dyが3,0wt%、Coが10wt%、AIが1w
t%、残部かFeのR−’T’−B系インゴットを得た
First, using cerium dididium consisting of 5 wt% C6, 15 wt% Pr balance Nd (Nd includes rare earth elements other than Nd), dysprosium, ferroporon, electrolytic iron, electrolytic cobalt, and aluminum, an example was prepared. 1
Similarly, (Ce・Pr-Nd> is 33.0wt%
, Dy is 3.0wt%, Co is 10wt%, AI is 1w
An R-'T'-B ingot containing t% and the balance Fe was obtained.

次に、実施例1と同様にして、千均粒径約2μmに微粉
砕した後、第1次磁場中成形し、1000℃での焼結を
行った。この焼結体の密度は、7゜50であり、平均粒
径が、約5,5μmの結晶粒と成っていた。
Next, in the same manner as in Example 1, the powder was pulverized to a uniform particle size of about 2 μm, then compacted in a primary magnetic field, and sintered at 1000°C. The density of this sintered body was 7°50, and the crystal grains had an average grain size of about 5.5 μm.

次に、上記焼結体を、粗粉砕し、第2次磁場中成形し、
その後、600℃、800℃、1000℃で、夫々熱処
理し、それら熱処理成形体をエポキシ1r!1脂に含浸
して、高分子複合磁石を得た。それらの磁石特性の測定
結果を、第1表に示す。
Next, the above-mentioned sintered body is coarsely pulverized and formed in a second magnetic field,
Thereafter, heat treatment was performed at 600°C, 800°C, and 1000°C, respectively, and the heat-treated molded product was made of epoxy 1r! A polymer composite magnet was obtained by impregnating it with No. 1 resin. Table 1 shows the measurement results of their magnetic properties.

に含浸する成形工程を経て形成された高分子複合型希土
類磁石材料の測定された磁石特性と密度は、(BH)h
aAx 4.O(MGOe)、Br5.2(KG)、 
IHc3.5 (KOe)、G、D、5゜50 (gr
/1xr3)であった。
The measured magnetic properties and density of the polymer composite rare earth magnet material formed through the forming process of impregnating with (BH)h
aAx 4. O (MGOe), Br5.2 (KG),
IHc3.5 (KOe), G, D, 5°50 (gr
/1xr3).

第1表より、実施例4に係る高分子複合型希土類磁石は
、比較例4より、磁石特性が著しく向上したことが、わ
かる。
From Table 1, it can be seen that the polymer composite rare earth magnet according to Example 4 had significantly improved magnetic properties compared to Comparative Example 4.

なお、比較例として、上記焼結体に、600℃で、2時
間の時効処理を施し、その後、本実施例と同様に、粗粉
砕し、第2次磁場中成形し、エポキシ樹脂に含浸し、そ
の時の磁石特性を測定した。
As a comparative example, the above sintered body was subjected to aging treatment at 600°C for 2 hours, then coarsely crushed, molded in a second magnetic field, and impregnated with epoxy resin in the same manner as in this example. , and measured the magnetic properties at that time.

その結果は、(BH) MAX 33 、5(MGOe
 ) 。
The result is (BH) MAX 33, 5(MGOe
).

Br  1 2.  1   (KG)  、   I
 Hc   14.  5  (KOe)であった。
Br 1 2. 1 (KG), I
Hc14. 5 (KOe).

その結果、本実施例の方が引用例に比べて、優れた磁石
特性を有することが分かる。
As a result, it can be seen that this example has better magnetic properties than the cited example.

第   1 表 以下余日 以下余日 一実施例5− 本発明の実施例5に係る高分子複合型希土類磁石は、熱
処理成形体粉末を、高分子樹脂と混合した後、第3次磁
場中成形し、圧縮成形又は射出成形するケースに関する
Table 1 Below, below, and below: 1 Example 5 - The polymer composite rare earth magnet according to Example 5 of the present invention was produced by mixing the heat-treated compact powder with a polymer resin, and then performing tertiary magnetic field molding. and relates to cases that are compression molded or injection molded.

まず、実施例1で作製した焼結体粉砕粉末を、第2次磁
場中成形後、600℃で熱処理した熱処理成形体を、1
50メツシユ以下で、解砕した。
First, the pulverized sintered powder produced in Example 1 was molded in a second magnetic field, and then heat-treated at 600°C.
It was crushed at 50 mesh or less.

この熱処理成形体粉末を、次に示す2種方法で、高分子
複合型希土類磁石を作製した。一つは、熱処理成形体粉
末に、エポキシ樹脂を25vo I%混合した後、約2
0KOeの磁界中で、7ton/−の圧力で、第3次磁
場成形しつつ、圧縮成形した。得られた成形体を110
℃で1時間保持し、高分子複合型希土類磁石を得な。
Polymer composite rare earth magnets were produced from this heat-treated compact powder using the following two methods. One is about 25vo I% of epoxy resin mixed into heat-treated molded body powder.
Compression molding was performed in a magnetic field of 0 KOe at a pressure of 7 tons/- while performing tertiary magnetic field molding. The obtained molded body was heated to 110
Hold at ℃ for 1 hour to obtain a polymer composite rare earth magnet.

もう一つの方法は、熱処理成形体粉末に、ポリエチレン
40vo1%混合した後、約100℃にて、20KOe
の磁界を印加する第3次磁場中成形しつつ、所定の金型
中に射出成形し、高分子複合型希土類磁石を得た。
Another method is to mix 40 vol.
A polymer composite rare earth magnet was obtained by injection molding into a predetermined mold while molding in a tertiary magnetic field applying a magnetic field of .

第2表に、上記高分子複合型希土類磁石の各磁石特性を
示す。
Table 2 shows the magnetic properties of the polymer composite rare earth magnet.

なお、比歓のために、上記焼結体に時効処理を施した後
、粉砕して、焼結体粉砕粉末とし、その後は、本実施例
と同様に夫々処理した高分子複合型希土類磁石の磁石特
性を併記した。
For comparison purposes, the above sintered body was subjected to aging treatment and then crushed to obtain sintered body pulverized powder. After that, polymer composite rare earth magnets each treated in the same manner as in this example were prepared. Magnet characteristics are also listed.

その結果、第2表より、実施例に係る高分子複合型希土
類磁石は、比較例に比べて、磁石特性が著しく向上した
ことが判る。
As a result, from Table 2, it can be seen that the polymer composite rare earth magnet according to the example had significantly improved magnetic properties compared to the comparative example.

以下憩日 実施例6− 本発明の実施例6に係る高分子複合型希土類磁石は、焼
結体粉砕粉末の平均粒径を50μmとなるように粉砕し
たケースに関する。
Example 6 below - A polymer composite rare earth magnet according to Example 6 of the present invention relates to a case in which the sintered powder was pulverized to have an average particle diameter of 50 μm.

まず、純度97 w t%のNd<残部はCe、Prを
主体とする池の希土類元素)とフェロボロン(Bの含有
量的20 w t%)及び電解鉄を使用し、希土類元素
(R)が34,0%、Bが1.0%。
First, using Nd with a purity of 97 wt% (the balance being rare earth elements mainly consisting of Ce and Pr), ferroboron (B content of 20 wt%), and electrolytic iron, rare earth elements (R) were 34.0%, B 1.0%.

残部Feとなるように、アルゴン雰囲気中で、高周波加
熱により溶解して、合金インゴットを得た。
An alloy ingot was obtained by melting by high frequency heating in an argon atmosphere so that the remainder was Fe.

このインゴットを■粉砕した後、ボールミルを用いて平
均粒径約2μmにj徂粉砕しな。この合金粉末を、約2
0KOeの磁界中にて、1tOn/cIAの圧力で、直
方体に磁場中成形したく第1次磁場中成形工程)。
After crushing this ingot, use a ball mill to further crush the ingot to an average particle size of about 2 μm. Approximately 20% of this alloy powder
In a magnetic field of 0 KOe, at a pressure of 1 tOn/cIA, it is desired to form a rectangular parallelepiped in a magnetic field (first magnetic field forming step).

次に、この第1次磁性粉末成形体を、真空中で1000
℃或は1050’Cで1時間保持した後、アルゴン雰囲
気中に3時間保持し、焼結体を得たく焼結工程)。この
とき、焼結密度は約7.55(gr/ am’ )であ
り、1000℃での焼結体の平均結晶粒径は、5μm、
1050℃では、10μmとなっていた。
Next, this primary magnetic powder molded body was heated at 1000° C. in vacuum.
℃ or 1050'C for 1 hour, and then kept in an argon atmosphere for 3 hours to obtain a sintered body (sintering process). At this time, the sintered density is about 7.55 (gr/am'), and the average crystal grain size of the sintered body at 1000°C is 5 μm,
At 1050°C, it was 10 μm.

この焼結体を、平均粒径が50μmになるように111
粉砕しく焼結体粉砕工程)、この合金粉末を、約200
eの磁界中、5tO11/−成形圧で円板状に磁場中成
形したく第2次磁場中成形工程)。
This sintered body was heated to 111 μm so that the average grain size was 50 μm.
This alloy powder is crushed into about 200
(Second magnetic field forming step) to form a disk shape in a magnetic field of e and a forming pressure of 5tO11/-.

次に、この第2次磁性粉末成形体を1400℃〜110
0℃の範囲内で、各々100℃毎に、真空中に1時間、
Ar中に1時間保持した後、急冷した(熱処理工程)。
Next, this secondary magnetic powder compact was heated to 1400°C to 110°C.
Within the range of 0℃, each 100℃ for 1 hour in vacuum.
After being held in Ar for 1 hour, it was rapidly cooled (heat treatment step).

これら、熱処理成形体の密度(G、D、)は、5.4〜
6.8 (gr/ cm3)であった。
The density (G, D,) of these heat-treated molded bodies is 5.4 to
It was 6.8 (gr/cm3).

次に、これら熱処理成形体を真空引き後、エポキシ樹脂
を含浸んした後、80℃で5時間保持し硬化させ、高分
子複合磁石とした。その磁石特性の測定結果を、第4図
に示す。その結果、約450℃〜1100℃の熱処理で
高い磁石特性を示すことが3,2められた。
Next, these heat-treated molded bodies were evacuated, impregnated with epoxy resin, and then held at 80° C. for 5 hours to be cured to form a polymer composite magnet. The measurement results of the magnetic properties are shown in FIG. As a result, it was found that high magnetic properties were exhibited by heat treatment at about 450°C to 1100°C.

なお、比較例のために、上記焼結体に時効処理を施した
後、本実施例と同様に処理した高分子複合磁石を生成し
、その磁石特性を比較した。その結果は、(BH)MA
X 2.5 (MGOe>、Br5、O(KG)、 I
Hc 2.O(KOe)、G。
As a comparative example, the above sintered body was subjected to aging treatment, and then a polymer composite magnet treated in the same manner as in this example was produced, and the magnetic properties thereof were compared. The result is (BH)MA
X 2.5 (MGOe>, Br5, O(KG), I
Hc2. O (KOe), G.

D、5.40 (gr/ cm’ ) テあッf、−0
一実施例7− 本発明の実施例7に係る高分子複合型希土類磁石は、焼
結体粉砕粉末の平均粒径を、焼結体の平均結晶粒径の1
.5倍以上になるようにしたケースに関する。
D, 5.40 (gr/cm') Teaf, -0
Example 7 - In the polymer composite rare earth magnet according to Example 7 of the present invention, the average particle size of the sintered body crushed powder is 1/1 of the average crystal grain size of the sintered body.
.. Concerning cases where the increase is 5 times or more.

まず、実施例6で作製した焼結体を使用して、その平均
粒径を、1000℃における焼結体の場合は、5,10
,15,25,250μmに粉砕し、また、1050℃
における場合は、01,20.30,50,100.5
00tcmに粉砕した(焼結体粉砕工程)。
First, using the sintered body produced in Example 6, the average particle size of the sintered body at 1000°C is 5.10
, 15, 25, 250μm, and 1050℃
In the case of 01, 20.30, 50, 100.5
00tcm (sintered compact crushing step).

次に、これら焼結体粉砕粉末を、600℃で、真空中1
時間、更に、Ar中1時間保持し、急冷後、これら熱処
理成形体を、軽く粉砕し、熱処理成形粉末を生成した後
、エポキシ樹脂を20v。
Next, the pulverized powder of the sintered body was heated at 600°C for 1 hour in a vacuum.
After being held in Ar for 1 hour and quenched, these heat-treated molded bodies were lightly ground to produce a heat-treated molded powder, and then 20V of epoxy resin was applied.

I%混合し、約20KOeの磁界中、5ton、/−の
成形圧で、第2次磁場中成形を施し、円盤状に成形した
。この成形体を80℃で5時間保持し、高分子複合磁石
とした。この磁石特性の測定結果を第5図に示す。なお
、図中のG、D、は、高分子複合磁石の密度から、混合
したエポキシ樹脂の量を補正して求めた磁石粉末のみと
した場合の値である。その結果、平均粉砕粒径/焼結体
の平均結晶粒径の値が1.5以上になると、著しく磁石
特性か向上していることが分かる。
The mixture was mixed with I% and subjected to secondary magnetic field molding in a magnetic field of about 20 KOe at a molding pressure of 5 tons/- to form a disk shape. This molded body was held at 80° C. for 5 hours to form a polymer composite magnet. The measurement results of this magnetic property are shown in FIG. Note that G and D in the figure are values when only the magnet powder is used, which was determined from the density of the polymer composite magnet by correcting the amount of mixed epoxy resin. The results show that when the value of average pulverized grain size/average crystal grain size of sintered body becomes 1.5 or more, the magnetic properties are significantly improved.

一実施例8− 本発明の実施例8に係る高分子複合型希土類磁石は、焼
結体粉砕45)末の平均粒径を、焼結体の平均結晶粒径
の1.5倍以上になるようにしたケースに関する。
Example 8 - In the polymer composite rare earth magnet according to Example 8 of the present invention, the average grain size of the sintered body crushed 45) powder is 1.5 times or more the average crystal grain size of the sintered body. Concerning a case like this.

実施例7で作製した焼結体粉砕粉末を、約20K Oe
の磁界中、5 t o n/−の成形圧で、第2次磁場
中成形を施し、円盤状に成形した。この第2次磁性粉末
成形体を、1000℃で、真空中に1時間、その後、A
r中に1時間保持した後、急冷し、熱処理成形体を生成
した。これら熱処理成形体の密度(G、D)は、5.8
〜6.5 (gr/cm’ )であった。
The sintered body crushed powder produced in Example 7 was heated to about 20K Oe.
A second magnetic field molding was performed in a magnetic field of 5 ton/- at a molding pressure of 5 ton/- to form a disk shape. This secondary magnetic powder molded body was heated at 1000°C in a vacuum for 1 hour, and then A
After being held for 1 hour in R, it was rapidly cooled to produce a heat-treated molded body. The density (G, D) of these heat-treated molded bodies is 5.8
~6.5 (gr/cm').

次に、実施例6と同様にして、エポキシ樹脂に含浸し、
高分子複合磁石化を行い、その磁石特性を測定した。そ
の結果を第6図に示す。その結果、平均粉砕粒径/焼結
体の平均結晶粒径の値が1゜5以上になると、著しく磁
石特性が向上していることが分かる。
Next, in the same manner as in Example 6, impregnated with epoxy resin,
We made a polymer composite magnet and measured its magnetic properties. The results are shown in FIG. The results show that when the value of the average pulverized grain size/the average crystal grain size of the sintered body becomes 1°5 or more, the magnetic properties are significantly improved.

実施例9− 本発明の実施例9に係る高分子複合型希土類磁石は、焼
結体粉砕粉末の平均粒径を50μmとなるように粉砕し
たケースに関する。
Example 9 - A polymer composite rare earth magnet according to Example 9 of the present invention relates to a case in which the sintered powder was ground to have an average particle size of 50 μm.

まず、純度97wt%のNd(残部はCe、Prを主体
とする他の希土類元素)と、純度99w七%以上のDy
、フェロボロン及び電解鉄を使用し、実施例6と同様に
して、(NdO19・Dy0.1)が33.0%、Bが
1.0%、残部Feの組成を有するインゴットを得た。
First, Nd with a purity of 97wt% (the remainder is other rare earth elements mainly consisting of Ce and Pr) and Dy with a purity of 99w7% or more.
In the same manner as in Example 6, using ferroboron and electrolytic iron, an ingot having a composition of 33.0% (NdO19.Dy0.1), 1.0% B, and the balance Fe was obtained.

次に、このインゴットを、実施例6と同様にして、粗粉
砕し、磁場中成形しく第1次磁場中成形工程)、102
0℃或は1080℃で、焼結を行った。このとき、焼結
体の平均結晶粒径は、1020℃で7μm、1080℃
では17μmとなっていた。
Next, this ingot was coarsely crushed and molded in a magnetic field in the same manner as in Example 6 (first magnetic field molding step), 102
Sintering was performed at 0°C or 1080°C. At this time, the average crystal grain size of the sintered body was 7 μm at 1020°C, and 7 μm at 1080°C.
In this case, it was 17 μm.

次に、これら焼結体を平均粒径20μmに粗粉砕した後
、600℃で真空中1時間、Ar94時間保持し、熱処
理を施した。
Next, these sintered bodies were coarsely pulverized to an average particle size of 20 μm, and then heat-treated by holding them at 600° C. in vacuum for 1 hour and in Ar for 94 hours.

次に、これら熱処理成形体を解砕して、ポリエチレンを
35vo I 、%を混合した後、約100℃にて、2
0KOeの磁界を印加しながら、金型中に射出成形し、
高分子複合磁石を得な。その磁石特性の測定結果を第3
表に示す。
Next, these heat-treated molded bodies were crushed, 35 vol.% of polyethylene was mixed, and then 2
Injection molding is performed in a mold while applying a magnetic field of 0 KOe,
Get a polymer composite magnet. The measurement results of the magnetic properties are shown in the third
Shown in the table.

その結果、平均粉砕粒径/焼結体の平均結晶粒径の値が
1.5以上になっている平均結晶粒径7μInの試料の
方が、著しく磁石特性が向上していることが分かる。
As a result, it can be seen that the sample with an average crystal grain size of 7 μIn, in which the value of average crushed grain size/average crystal grain size of sintered body is 1.5 or more, has significantly improved magnetic properties.

第 表 一実施例10− 本発明の実施例10に係る高分子複合型希土類磁石は、
焼結体粉砕粉末の平均粒径を50μmとなるように粉砕
したケースに関する。
Table 1 Example 10 - The polymer composite rare earth magnet according to Example 10 of the present invention is as follows:
This example relates to a case in which the sintered compact powder was ground to have an average particle size of 50 μm.

まず、5wt%のCe、15wt%のPr、残部Nd(
但し、他の希土類元素はNdとして含めた。)よりなる
セリウムジジム、フェロボロン。
First, 5 wt% Ce, 15 wt% Pr, and the balance Nd (
However, other rare earth elements were included as Nd. ) consisting of cerium dididium and ferroboron.

電解鉄、電解コ、バルト及びアルミニウムを使用して、
実施例6と同様にして、<Ce−Pr−Nd)が35.
0wt%、Bが1.1wt%、Coが10wt%、AI
が1wt%、残部がFeの組成を有するインゴットを得
た。
Using electrolytic iron, electrolytic cobalt, balt and aluminum,
In the same manner as in Example 6, <Ce-Pr-Nd) was set to 35.
0wt%, B 1.1wt%, Co 10wt%, AI
An ingot having a composition of 1 wt% Fe and the balance Fe was obtained.

次に、実施例6と同様にして、インゴットを粉砕、磁場
中成形し、1000℃と1050℃での焼結を行った。
Next, in the same manner as in Example 6, the ingot was crushed, molded in a magnetic field, and sintered at 1000°C and 1050°C.

これら焼結体の平均結晶粒径は、1000℃で約8.c
zm、1050℃で17μmと成っていた。
The average grain size of these sintered bodies is approximately 8. c.
zm was 17 μm at 1050°C.

次に、これら焼結体を平均粒径20μmに粉砕した後、
実施例6と同様に、第2次磁場中成形し、600℃と9
00℃とでの熱処理を施した後、エポキシ樹脂に含浸し
高分子複合磁石化を行った。
Next, after pulverizing these sintered bodies to an average particle size of 20 μm,
In the same manner as in Example 6, molding was performed in a second magnetic field, and the temperature was 600 °C and 9
After heat treatment at 00°C, it was impregnated with epoxy resin to form a polymer composite magnet.

その結果を第4表に示す。The results are shown in Table 4.

その結果、平均粉砕粒径/焼結体の平均結晶粒径の値が
1.5以上になっている平均結晶粒径8μmの試料の方
が、著しく磁石特性が向上していることが分かる。
As a result, it can be seen that the sample with an average crystal grain size of 8 μm, in which the value of average crushed grain size/average crystal grain size of sintered body is 1.5 or more, has significantly improved magnetic properties.

以下余日 以上の実施例で説明したように、異方性を有するR2 
T14B系焼結合金を粉砕して生成した焼結体粉砕粉末
を使用することにより、含浸型、圧縮成形型、射出成形
型等の広汎な高分子複合磁石の製法に適用できることが
分かる。また、その焼結体粉砕粉末の平均粒径を、焼結
体の平均結晶粒径に対し、1.5倍以上とすることによ
り、磁石と育成の著しい向上が実現できた。
As explained in the examples below, R2 having anisotropy
It can be seen that by using the sintered compact powder produced by pulverizing the T14B sintered alloy, it can be applied to a wide range of manufacturing methods for polymer composite magnets, such as impregnation type, compression molding type, and injection molding type. In addition, by making the average particle size of the sintered body crushed powder 1.5 times or more the average crystal grain size of the sintered body, a remarkable improvement in magnetization and growth could be realized.

なお、以上の実施例ではh−Nd−Fe−B系、Nd−
Dy−Fe−B系、Ce−Pr−Nd−Co−AI−F
e−B系についてのみ述べたが、Ndの一部をY及び他
の希土類元素、例えば、Gd。
In addition, in the above examples, h-Nd-Fe-B system, Nd-
Dy-Fe-B system, Ce-Pr-Nd-Co-AI-F
Although only the e-B system has been described, a portion of Nd may be replaced by Y and other rare earth elements, such as Gd.

Tb、Ho等で置換したり、Feの一部を他の遷移金属
、例えば、Mn、、Cr、Ni等で置換したり、Bの一
部を他の半金属、例えば、St、C等で置換しても、磁
石合金の組成がNd−FeBを主成分の一部としており
、また、磁石の化合物系でNd2Fe+<B系で代表さ
れるようなR2T14Bが磁性に寄与しているものであ
れば、本発明の効果が十分に期待できるものであること
は、容易に推測できる。また、本実施例では、高分子複
合用樹脂として、エポキシ樹脂とポリエチレンついて、
検討したが、成形体内部に介在し、成形体の強度向上に
寄与する高分子樹脂、ゴム、金属等のようなものである
ならば、どのような物質であっても本発明に含まれるこ
とは、当業者であれば、容易に理解できるものである。
By substituting Tb, Ho, etc., by substituting a part of Fe with other transition metals such as Mn, Cr, Ni, etc., or by substituting part of B with other semimetals such as St, C, etc. Even if the substitution is made, the composition of the magnet alloy is one in which Nd-FeB is a part of the main component, and the compound system of the magnet is one in which R2T14B, represented by the Nd2Fe+<B system, contributes to magnetism. For example, it can be easily inferred that the effects of the present invention can be fully expected. In addition, in this example, epoxy resin and polyethylene were used as polymer composite resins.
Although we have considered this, any substance is included in the present invention as long as it is a polymeric resin, rubber, metal, etc. that is present inside the molded product and contributes to improving the strength of the molded product. can be easily understood by those skilled in the art.

さらに、粉末成形を3回以上繰返しても、同種の効果が
期待できる。
Furthermore, the same type of effect can be expected even if powder compaction is repeated three or more times.

[発明の効果] 以上説明したように、本発明によれば、含浸型、圧縮成
形型及び射出成形型等の異方性を有する高性能のR−T
−B梁高分子複合希土類磁石及びその製造方法が、今ま
での工程及び設備に対して大規模な変更をすることなく
簡便に実現できるものであり、工業上極めて有益である
[Effects of the Invention] As explained above, according to the present invention, high-performance RTs having anisotropy such as impregnation molds, compression molding molds, injection molding molds, etc.
- The B-beam polymer composite rare earth magnet and its manufacturing method can be easily realized without making large-scale changes to existing processes and equipment, and are extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係る高分子複合型希土類磁
石材料の焼結体粗粉末の磁場中成形体の熱処理温度とそ
の成形体密度(G、D、)及び磁石特性(Br、 r 
Hc 、  (BH) MAX )の関係を示す図、第
2図は本発明の実施例2に係る高分子複合型希土類磁石
材料の粗粉末磁場中成形体の再加熱処理温度と磁石特性
(Br、+ Hc +  (BH)MAXの関係を示す
図、第3図は本発明の実施例3に係る高分子複合型希土
類磁石材料の粗粉末磁場中成形体の再加熱処理温度と磁
石特性(Br、+Hc、(BH)、Ax)の関係を示す
図、第4図は本発明の実施例6における焼結ないのそ粉
末磁場中性形態の熱処理温度と高分子複合磁石の磁石と
区政及び°G、D、を示すものであり、図中の実線(0
印)は焼結体の平均結晶粒径が5μm、破線(Δ印)は
10μmを使用した試料の特性を示す。 第5図は実施例7における焼結体粉砕粉末の平均粉砕粒
径/焼結体の平均結晶粒径と、それを使用した高分子複
合磁石の特性を示すものであり1図中の実線(0印)は
焼結体の平均結晶粒径が5μm、破線(Δ印)は10μ
mを使用した試料の特性を示す。第6図は実施例8にお
ける焼結体粉砕粉末の平均粉砕粒径/焼結体の平均結晶
粒径と、それを使用した高分子複合磁石の特性を示すも
のであり2図中の実線(0印)は焼結体の平均結晶粒径
が5μIn、破線(△印)は10μmを使用した試料の
特性を示す。 第2図 再加熱処理温度(℃) 第1図 然処理温度じC) 第3図 再加熱処理温度じC) 熱処理温度(°Q)
FIG. 1 shows the heat treatment temperature of a compact in a magnetic field of a sintered coarse powder of a polymer composite rare earth magnet material according to Example 1 of the present invention, the compact density (G, D,), and magnetic properties (Br, r
Figure 2 shows the relationship between reheating treatment temperature and magnetic properties (Br, + Hc + (BH) MAX Figure 3 shows the relationship between reheating treatment temperature and magnetic properties (Br, +Hc, (BH), Ax), Figure 4 shows the relationship between the heat treatment temperature of the sintered ingot powder magnetic field neutral form and the magnet of the polymer composite magnet in Example 6 of the present invention, G, D, and the solid line (0
Mark) indicates the characteristics of a sample in which the average crystal grain size of the sintered body was 5 μm, and the broken line (Δ mark) was 10 μm. Figure 5 shows the average pulverized particle size of the sintered body crushed powder/average crystal grain size of the sintered body in Example 7, and the characteristics of the polymer composite magnet using the same, and the solid line in Figure 1 ( 0 mark) indicates that the average grain size of the sintered body is 5 μm, and the broken line (Δ mark) indicates 10 μm.
The characteristics of the sample using m are shown below. Figure 6 shows the average pulverized particle size of the sintered body crushed powder/average crystal grain size of the sintered body in Example 8, and the characteristics of the polymer composite magnet using the same, and the solid line in Figure 2 ( 0 mark) indicates the characteristics of a sample in which the average crystal grain size of the sintered body was 5 μIn, and the broken line (△ mark) was 10 μm. Figure 2: Reheating temperature (°C) Figure 3: Reheating temperature (°C) Figure 3: Reheating temperature (°C) Heat treatment temperature (°Q)

Claims (7)

【特許請求の範囲】[Claims] 1.Nd,Fe,Bを主成分として含有するR_2T_
1_4B系(RはY及び希土類元素の少なくとも一種、
Tは遷移元素を表わす。)インゴットを粉砕して初期粉
末を生成した後、該初期粉末を第1次磁場中成形し、第
1次磁性粉末成形体を生成する第1次磁場中成形工程と
、 該1次磁性粉末成形体を焼結して焼結体を生成する焼結
工程と、 該焼結体を粉砕して焼結体粉砕粉末を生成する焼結体粉
砕工程と、 該焼結体粉砕粉末を第2次磁場中成形し、第2次磁性粉
末成形体を生成する第2次磁場中成形工程と、 該第2次磁性粉末成形体を熱処理し、熱処理成形体を生
成する熱処理工程と、 該熱処理成形体を高分子樹脂で複合成形する樹脂複合成
形工程とを有する高分子複合型希土類磁石材料の製造方
法。
1. R_2T_ containing Nd, Fe, and B as main components
1_4B system (R is at least one of Y and a rare earth element,
T represents a transition element. ) A first magnetic field compaction step of pulverizing the ingot to produce an initial powder, and then compacting the initial powder in a first magnetic field to produce a first magnetic powder compact; and the first magnetic powder compaction. a sintering process of sintering the sintered body to produce a sintered body; a sintered body crushing process of crushing the sintered body to generate a sintered body crushed powder; and a second process of the sintered body crushed powder. a second magnetic field compacting step of forming in a magnetic field to produce a second magnetic powder compact; a heat treatment step of heat-treating the second magnetic powder compact to produce a heat-treated compact; and the heat-treated compact. A method for manufacturing a polymer composite rare earth magnet material, comprising a resin composite molding step of composite molding a polymer resin with a polymer resin.
2.第1請求項記載の高分子複合型希土類磁石材料の製
造方法において、前記熱処理工程は、前記第2次磁性粉
末成形体を、実質的に、480〜1120℃の範囲内の
温度で熱処理して、熱処理成形体を生成することを特徴
とする高分子複合型希土類磁石材料の製造方法。
2. In the method for producing a polymer composite rare earth magnet material according to claim 1, in the heat treatment step, the secondary magnetic powder compact is substantially heat treated at a temperature within a range of 480 to 1120°C. , a method for producing a polymer composite rare earth magnet material, the method comprising producing a heat-treated molded body.
3.第1又は第2請求項記載の高分子複合型希土類磁石
材料の製造方法において、前記樹脂複合成形処理工程の
前に、前記熱処理成形体を、前記熱処理温度保持後、急
冷し、再度、実質的に、540〜800℃の範囲で再加
熱処理する急冷再加熱処理工程を含むことを特徴とする
高分子複合型希土類磁石材料の製造方法。
3. In the method for producing a polymer composite rare earth magnet material according to claim 1 or 2, before the resin composite molding step, the heat-treated molded product is rapidly cooled after maintaining the heat treatment temperature, and then substantially A method for producing a polymer composite rare earth magnet material, comprising a rapid cooling and reheating step of reheating in the range of 540 to 800°C.
4.第1又は第2請求項記載の高分子複合型希土類磁石
材料の製造方法において、前記樹脂複合成形処理工程の
前に、前記熱処理成形体を、前記熱処理温度保持後、除
冷し、再度、実質的に、450〜750℃の範囲で再加
熱処理する除冷再加熱処理工程を含むことを特徴とする
高分子複合型希土類磁石材料の製造方法。
4. In the method for manufacturing a polymer composite rare earth magnet material according to claim 1 or 2, before the resin composite molding step, the heat-treated molded product is slowly cooled after maintaining the heat treatment temperature, and then substantially A method for producing a polymer composite rare earth magnet material, comprising a gradual cooling and reheating step of reheating in a range of 450 to 750°C.
5.第1〜第4請求項記載のいずれかの高分子複合型希
土類磁石材料の製造方法において、前記樹脂複合成形処
理工程は、前記熱処理成形体を高分子樹脂に含浸するこ
とにより複合成形することを特徴とする高分子複合型希
土類磁石材料の製造方法。
5. In the method for producing a polymer composite rare earth magnet material according to any one of claims 1 to 4, the resin composite molding treatment step includes composite molding by impregnating the heat-treated molded body with a polymer resin. A method for producing a characteristic polymer composite rare earth magnet material.
6.Nd,Fe,Bを主成分として含有するR_2T_
1_4B系(RはY及び希土類元素の少なくとも一種、
Tは遷移元素を表わす。)インゴットを粉砕して初期粉
末を生成した後、該初期粉末を第1次磁場中成形し、第
1次磁性粉末成形体を生成する第1次磁場中成形工程と
、 該1次磁性粉末成形体を焼結して焼結体を生成する焼結
工程と、 該焼結体を粉砕して焼結体粉砕粉末を生成する焼結体粉
砕工程と、 該焼結体粉砕粉末を熱処理し、熱処理成形体を生成する
熱処理工程と、 該熱処理成形体を粉砕して、熱処理成形体粉末を生成し
、該熱処理成形体粉末を、高分子樹脂と混合した後、第
2次磁場中成形し、圧縮成形又は射出成形することを特
徴とする高分子複合型希土類磁石材料の製造方法。
6. R_2T_ containing Nd, Fe, and B as main components
1_4B system (R is at least one of Y and a rare earth element,
T represents a transition element. ) A first magnetic field compaction step of pulverizing the ingot to produce an initial powder, and then compacting the initial powder in a first magnetic field to produce a first magnetic powder compact; and the first magnetic powder compaction. a sintering process of sintering the body to produce a sintered body; a sintered body crushing process of crushing the sintered body to generate a sintered body crushed powder; heat-treating the sintered body crushed powder; a heat treatment step of producing a heat-treated molded body, pulverizing the heat-treated molded body to generate a heat-treated molded body powder, mixing the heat-treated molded body powder with a polymer resin, and then molding in a second magnetic field; A method for producing a polymer composite rare earth magnet material, characterized by compression molding or injection molding.
7.第6請求項記載の高分子複合型希土類磁石材料の製
造方法において、前記焼結体粉砕工程は、前記焼結体粉
砕粉末の平均粒径が、実質的に、前記焼結体の平均結晶
粒径に比し1.5倍以上とし、且つ、1mm以下の範囲
内になるように、前記焼結体を粉砕することを特徴とす
る高分子複合型希土類磁石材料の製造方法。
7. In the method for producing a polymer composite rare earth magnet material according to claim 6, in the sintered body pulverizing step, the average particle size of the sintered body pulverized powder is substantially equal to the average crystal grain of the sintered body. A method for producing a polymer composite rare earth magnet material, comprising pulverizing the sintered body so that the diameter is 1.5 times or more and 1 mm or less.
JP63106993A 1988-04-20 1988-04-28 Method for producing polymer composite rare earth magnet material Expired - Lifetime JPH0730425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106993A JPH0730425B2 (en) 1988-04-20 1988-04-28 Method for producing polymer composite rare earth magnet material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9755988 1988-04-20
JP63-97559 1988-04-20
JP63106993A JPH0730425B2 (en) 1988-04-20 1988-04-28 Method for producing polymer composite rare earth magnet material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6226327A Division JPH07230907A (en) 1988-04-20 1994-09-21 Manufacture of polymer compound type rare earth magnet material

Publications (2)

Publication Number Publication Date
JPH02153041A true JPH02153041A (en) 1990-06-12
JPH0730425B2 JPH0730425B2 (en) 1995-04-05

Family

ID=26438718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106993A Expired - Lifetime JPH0730425B2 (en) 1988-04-20 1988-04-28 Method for producing polymer composite rare earth magnet material

Country Status (1)

Country Link
JP (1) JPH0730425B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179801A (en) * 1985-02-05 1986-08-12 Sumitomo Special Metals Co Ltd Alloy powder for bond magnet and its production
JPS62131502A (en) * 1985-12-04 1987-06-13 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-iron-boron alloy powder for resin magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179801A (en) * 1985-02-05 1986-08-12 Sumitomo Special Metals Co Ltd Alloy powder for bond magnet and its production
JPS62131502A (en) * 1985-12-04 1987-06-13 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-iron-boron alloy powder for resin magnet

Also Published As

Publication number Publication date
JPH0730425B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH02153041A (en) Manufacture of high polymer compounded type rare earth magnet material
JPH07118408B2 (en) Method for manufacturing polymer composite rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
KR970009409B1 (en) Permanent magnet material processing method
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JPH0733521B2 (en) Method for producing alloy powder for anisotropic bonded magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet
JPH02106906A (en) Manufacture of polymer composite type rare earth magnet
JPH0583627B2 (en)
JPH055362B2 (en)
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPS6142771B2 (en)