JPH0278204A - High-polymer composite-type rare-earth magnet and its manufacture - Google Patents

High-polymer composite-type rare-earth magnet and its manufacture

Info

Publication number
JPH0278204A
JPH0278204A JP63228573A JP22857388A JPH0278204A JP H0278204 A JPH0278204 A JP H0278204A JP 63228573 A JP63228573 A JP 63228573A JP 22857388 A JP22857388 A JP 22857388A JP H0278204 A JPH0278204 A JP H0278204A
Authority
JP
Japan
Prior art keywords
powder
magnet
polymer composite
ferrite
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63228573A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63228573A priority Critical patent/JPH0278204A/en
Publication of JPH0278204A publication Critical patent/JPH0278204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an anisotropic magnet of a high characteristic by making use of a manufacturing process of a rare-earth-based sintered magnet by a method wherein the magnet is constituted of the following: a specific rare-earth magnet powder; a ferrite powder; a high-polymer resin binder. CONSTITUTION:Ab R2T14B-based (where R is rare-earth elements containing Y and T is a transition metal) sintered substance which is composed mainly of Nd, Fe and B is pulverized; a magnet powder whose particle diameter is 25mum or lower is separated and removed. A powder, of a high magnet characteristic, whose particle diameter is 25mum or higher is mixed with a ferrite powder of the same amount as the powder of 25mum or lower. A mixed powder is formed, in addition, a high-polymer resin binder is added; they are molded; a magnet is formed; thereby, it is possible to manufacture a high-performance anisotropic high-polymer composite-type rare-earth magnet by making use of a manufacturing process of a rare-earth-based sintered magnet.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、いわゆるゴム磁石やプラスチック磁石を典型
とした高分子複合型磁石の中でも、特にNd−Fe−B
系永久磁石を代表とする希土類金属(R)と遷移金属(
T)とホウ素(B)を主成分としてなるR2T14B系
の希土類磁石粉末を用いた高分子複合型希土類磁石の改
善に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is particularly applicable to Nd-Fe-B polymer composite magnets, typically rubber magnets and plastic magnets.
Rare earth metals (R) and transition metals (represented by system permanent magnets)
The present invention relates to the improvement of a polymer composite rare earth magnet using R2T14B rare earth magnet powder containing T) and boron (B) as main components.

[従来の技術] 高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたもの、あるいは磁石粉末を高分子樹脂で結着させた
ものである。この磁石は、鋳造磁石や焼結磁石等には見
られない種々の特徴、例えば弾力性や加工容易性を備え
ており、種々の方面に用いられている。しかしながら、
磁石粉末と非磁性の樹脂で形成されているため、焼結磁
石等に比べ、磁気特性が低いという欠点をHしている。
[Prior Art] A polymer composite magnet is one in which magnet powder is dispersed in a polymer resin, or one in which magnet powder is bound with a polymer resin. This magnet has various characteristics not found in cast magnets, sintered magnets, etc., such as elasticity and ease of processing, and is used in a variety of fields. however,
Since it is made of magnet powder and non-magnetic resin, it has the drawback of having lower magnetic properties than sintered magnets and the like.

そのため、粉末を磁界中で配向させる等の異方性化によ
り、高い磁石特性を達成しようとしている。
Therefore, efforts are being made to achieve high magnetic properties by making the powder anisotropic, such as by orienting the powder in a magnetic field.

分散、結着される磁石粉末としては、これ迄、種々のも
のが用いられているが、本発明では、現在最も高い磁石
特性を示しているNd−Fe−B系を代表とするR2T
l4B系磁石粉末を使用している。
Various types of magnetic powder have been used to disperse and bind, but in the present invention, R2T, which is represented by the Nd-Fe-B system, which currently exhibits the highest magnetic properties, has been used.
Uses l4B magnet powder.

従来の希土類磁石粉末を使用した高分子複合磁石は、原
料を溶解して得た合金鋳塊を熱処理後、粉砕し、その粉
末を高分子樹脂と混合し、磁界中で成形して製造されて
いた。ここで使用されていた磁石合金粉末は、磁界中で
の結晶配向性を向上させるため、微細な単結晶粒子から
なっていることが望ましかった。
Conventional polymer composite magnets using rare earth magnet powder are manufactured by heat-treating and crushing an alloy ingot obtained by melting raw materials, mixing the powder with polymer resin, and molding it in a magnetic field. Ta. The magnet alloy powder used here was desirably composed of fine single-crystal particles in order to improve crystal orientation in a magnetic field.

[発明が解決しようとする課題] しかしながら、Nd−Fe−B系磁石で代表されるR、
T、、B系合金においては、粉砕時における機械的応力
により、保磁力(IHc)の低下が生じるため、粉末が
単結晶粒子からなる微細な領域では、著しく、Hcが低
下していた。そのため、溶解インゴットを出発原料とし
て使用した製法においては、高IHcをHする焼結磁石
を粉砕して磁石粉末として使用しても、著しく低い磁石
特性を示す高分子複合型磁石となっていた。まして、イ
ンゴットを熱処理後、粉砕して高分子複合磁石とする製
法では、存在価値のない極めて劣悪な磁石特性を示すの
みであった。
[Problem to be solved by the invention] However, R, which is represented by Nd-Fe-B magnets,
In T,, B-based alloys, the coercive force (IHc) decreases due to mechanical stress during pulverization, so Hc is significantly decreased in fine regions where the powder is composed of single crystal grains. Therefore, in a manufacturing method using a molten ingot as a starting material, even if a sintered magnet with high IHc is crushed and used as magnet powder, the result is a polymer composite magnet that exhibits extremely poor magnetic properties. Moreover, in the method of manufacturing a polymer composite magnet by heat-treating an ingot and then pulverizing it to produce a polymer composite magnet, the magnet exhibits extremely poor magnetic properties that are worthless.

一方、粉砕による IHcの低下が殆んど生じないR−
T−B系磁石合金の作製法としては、溶融している合金
を回転ロール等に噴射し、超急冷することによって磁石
合金を得る液体急冷法が知られていた。しかしながら、
この製法によって得られた粉末では、異方性化は実現で
きなかった。その後、この液体急冷合金を熱間塑性加工
することによって異方性化が可能な磁石粉末の得られる
ことがわかった。この方法は、高温で高圧を必要とする
ため、設備が高価で、大がかりなものとなるのに加え、
製造状態における特性の安定化には不安が残っており、
大量生産で特性バラツキの小さい粉末を得るのはまだ困
難であり、工業的には有益なものとはいいがたい。
On the other hand, R-
As a method for producing a T-B magnetic alloy, a liquid quenching method has been known in which a molten alloy is injected onto a rotating roll or the like, and then super-quenched to obtain a magnetic alloy. however,
Anisotropy could not be achieved with the powder obtained by this manufacturing method. Subsequently, it was found that a magnetic powder capable of being anisotropic was obtained by hot plastic working this liquid quenched alloy. This method requires high temperature and high pressure, making the equipment expensive and large-scale.
Concerns remain regarding the stabilization of properties in manufacturing conditions,
It is still difficult to obtain powder with small variations in properties through mass production, and it is difficult to say that it is industrially useful.

本発明の技術課題は、通常実施されているR・T−B系
焼結磁石の製造工程を活用して、高性能な異方性高分子
複合型磁石を提供することにある。
The technical problem of the present invention is to provide a high-performance anisotropic polymer composite magnet by utilizing the normally practiced manufacturing process of R/T-B based sintered magnets.

したがって、工業上、非常に有用な高分子複合磁石の製
造方法となる。
Therefore, this is an industrially very useful method for producing a polymer composite magnet.

[課題を解決するための手段] 本発明によれば、粒径が25μmより大なる。[Means to solve the problem] According to the invention, the particle size is greater than 25 μm.

Nd、Fe、Bを主成分とするR2T14B系(ここで
、RはYを含む希土類元素、Tは遷移金属を表わす。)
希土類磁石粉末と、フェライト粉末と高分子樹脂バイン
ダーとからなることを特徴とする高分子複合型希土類磁
石が得られる。
R2T14B system whose main components are Nd, Fe, and B (here, R represents a rare earth element containing Y, and T represents a transition metal).
A polymer composite rare earth magnet is obtained, which is characterized by being composed of rare earth magnet powder, ferrite powder, and a polymer resin binder.

本発明によれば、Nd、Fe、Bを主成分とするR2T
l4B系(ここで、RはYを含む希土類元素、Tは遷移
金属を表わす。)焼結体を粉砕し、25μm以下の粉末
を分離除去する分離工程と、前記分離工程で得られた粒
径25μmより大なる粉末を、該25μm以下の粉末と
同量のフェライト粉末と混合して混合粉末を得る混合工
程と、該混合粉末に高分子樹脂バインダーを混合して成
形する成形工程とを有することを特徴とする高分子複合
型希土類磁石の製造方法が得られる。
According to the present invention, R2T containing Nd, Fe, and B as main components
14B series (here, R represents a rare earth element containing Y, T represents a transition metal) sintered body, a separation step of separating and removing powder of 25 μm or less, and a particle size obtained in the separation step. A mixing step of mixing a powder larger than 25 μm with the same amount of ferrite powder as the powder of 25 μm or less to obtain a mixed powder, and a molding step of mixing a polymer resin binder with the mixed powder and molding the mixed powder. A method for manufacturing a polymer composite rare earth magnet is obtained.

−ここで、本発明においては、高分子樹脂バインダーは
、エポキシ樹脂、ポリエチレン樹脂を含むものが使用で
きるが、これ、らに限定されるものではない。
-Here, in the present invention, the polymer resin binder that can be used includes epoxy resin and polyethylene resin, but is not limited to these.

本発明は、溶解して得られた合金インゴットを微粉砕し
た後、磁場中で成形し得られた粉末成形体を焼結し、高
い結晶配向度の焼結体とし、次にこの焼結体を粉砕後、
焼結体粉砕粉末中の25μm以下の粒子範囲に、フェラ
イト磁石粉末を含有するように21整した粉末を使用す
ることにより、高い磁石特性を有するR−T−B系高分
子複合型磁石を実現するものである。
The present invention involves pulverizing an alloy ingot obtained by melting, sintering the resulting powder compact by compacting it in a magnetic field to obtain a sintered body with a high degree of crystal orientation, and then After crushing the
By using 21-ordered powder that contains ferrite magnet powder in the particle range of 25 μm or less in the sintered powder, an R-T-B polymer composite magnet with high magnetic properties is realized. It is something to do.

本発明の磁石特性の向上は、熱処理による焼結体粉砕粉
末の IHc、Br及び減磁曲線の角型性の向上に関係
しており、この効果は、成形用粉末が複数の配向した結
晶粒で構成されていることに深く起因している。しかし
ながら、この粉末の熱処理による磁気特性の向上は、粉
末粒子径が小さくなるにしたがい減少する傾向を示して
いる。
The improvement in the magnetic properties of the present invention is related to the improvement in IHc, Br, and squareness of the demagnetization curve of the sintered powder by heat treatment, and this effect is due to the fact that the forming powder has a plurality of oriented crystal grains. This is deeply due to the fact that it is composed of However, the improvement in magnetic properties due to heat treatment of this powder tends to decrease as the powder particle size becomes smaller.

本発明者らは種々実験を行なった結果、焼結体粉砕粉末
中でも30μm以下の粒子は、粉砕による損傷から熱処
理によっても明らかに回復が困難である。この25μm
以下の範囲においては、比較的粒子径の小さな、フェラ
イト磁石粉末を含有することにより、高い磁石特性と向
上した充填密度を有するR−T−B系高分子複合型磁石
の得られることを発見した。
As a result of various experiments conducted by the present inventors, it has been found that it is clearly difficult for particles of 30 μm or less in the sintered powder to be recovered from damage caused by crushing, even by heat treatment. This 25μm
It has been discovered that in the following range, by containing ferrite magnet powder with a relatively small particle size, an R-T-B polymer composite magnet with high magnetic properties and improved packing density can be obtained. .

焼結体粉砕粉末中の25μm以下の粒子範囲にフェライ
ト磁石粉末を含有することに規定したのは、25μ曙以
下の範囲とした場合に効果が顕著となるからである。
The reason why the ferrite magnet powder is specified to be contained in the particle size range of 25 μm or less in the sintered powder is that the effect becomes significant when the particle size is 25 μm or less.

以下、実施例について述べる。Examples will be described below.

実施例1 純度97wt・%のNd(残部はCe、Prを主体とす
る他の希土類元素)、純度99νt・%以上のDY、フ
ェロボロン(B純分約20君・%)及び電解鉄を使用し
、(N d O,9・DyO,l)が34、OvL ・
%、Bが1.Ovt ・%、残部Feの組成を有するイ
ンゴットを、アルゴン雰囲気中で、高周波加熱により溶
解して得た。
Example 1 Using Nd with a purity of 97 wt.% (the remainder being other rare earth elements mainly consisting of Ce and Pr), DY with a purity of 99 νt.% or more, ferroboron (B purity about 20 wt.%), and electrolytic iron. , (N d O,9・DyO,l) is 34, OvL・
%, B is 1. An ingot having a composition of Ovt.% and balance Fe was melted by high frequency heating in an argon atmosphere.

次に、このインゴットを粗粉砕した後、ボールミルを用
いて、平均粒径的2μmに微粉砕した。
Next, this ingot was coarsely ground, and then finely ground to an average particle size of 2 μm using a ball mill.

この合金粉末を約20KOeの磁界中、1  ton/
el”の圧力で直方体状に成形した。次に、この成形体
を、真空中1000℃で1時間保持した後、Ar中で3
時間保持し、焼結体を得た。この焼結体は7.55gr
/ c+s’の密度ををし、平均結晶粒径は約5μmで
あった。この一部を600℃で2時間時効し、磁石特性
をn1定したところ、B r 12.8KG、  、H
c20KOe、(BH)max、39MφG・Oe程度
であった。
This alloy powder was mixed in a magnetic field of about 20 KOe at a rate of 1 ton/
The molded body was molded into a rectangular parallelepiped shape at a pressure of
A sintered body was obtained by holding for a period of time. This sintered body is 7.55gr
/c+s', and the average crystal grain size was about 5 μm. A part of this was aged at 600°C for 2 hours and the magnetic properties were determined by n1, and the result was B r 12.8KG, ,H
It was about c20KOe, (BH)max, and 39MφG·Oe.

時効処理を施さない焼結体について、300μm以下の
粒径となるように粗粉砕した後、この粉末を600℃で
真空中1時間、Ar中4時間保持し、熱処理した。
The sintered body that was not subjected to aging treatment was coarsely ground to a particle size of 300 μm or less, and then the powder was held at 600° C. in vacuum for 1 hour and in Ar for 4 hours and heat treated.

一方、a−Fe20B、5rCOi粉末をSr0・5.
9Fe20.となるように秤量した後、ボールミルにて
混合し、大気中1100℃にて4時間焼成し、M型Sr
フェライト粉末を得た。次に、この粉末を煮沸した塩酸
で酸洗し、未反応成分の除去及びS「フェライト結晶粒
の孤立化を施こした。この酸洗後のSrフェライトは、
結晶粒が約2μIで、配向した粉末の磁石特性は4π!
S約4.7KG、  1Hc約4.5KOeであった。
On the other hand, a-Fe20B, 5rCOi powder was mixed with Sr0.5.
9Fe20. After weighing so that
Ferrite powder was obtained. Next, this powder was pickled with boiled hydrochloric acid to remove unreacted components and isolate Sr ferrite crystal grains. After pickling, the Sr ferrite was
The crystal grain size is approximately 2μI, and the magnetic properties of oriented powder are 4π!
S was approximately 4.7KG and 1Hc was approximately 4.5KOe.

次に、前述した(Nd0.9 ・DyO,l)・F e
 ・B系熱処理粗粉末中の微細粒子を20μm以下、3
0μm以下、40μm以ドの範囲で分離除去し、それに
対応した量を前述のSrフェライト粉末で補填したとこ
ろ、20μm以下では約3νt・%、30μm以下では
約6wt・%、40μm以下では約10vt・%のフェ
ライト量に相当した。
Next, the above-mentioned (Nd0.9 ・DyO,l)・F e
・The fine particles in the B-based heat-treated coarse powder are 20 μm or less, 3
When the Sr ferrite powder was separated and removed in the range of 0 μm or less and 40 μm or less and the corresponding amount was supplemented with the above-mentioned Sr ferrite powder, it was about 3 νt・% for 20 μm or less, about 6 wt・% for 30 μm or less, and about 10 vt・% for 40 μm or less. % ferrite amount.

次に、これら混合粉末にポリエチレンを35vt・%混
合した後、約100℃にて20KOeの磁界を印加しな
がら、金型中に射出成形し、高分子複合磁石とした。そ
の磁石特性を約30KOeの磁界を印加して71−1定
した結果を第1図に示す。
Next, 35 vt.% of polyethylene was mixed into these mixed powders, and then injection molded into a mold at about 100° C. while applying a magnetic field of 20 KOe to obtain a polymer composite magnet. The magnetic properties were determined by applying a magnetic field of about 30 KOe to 71-1, and the results are shown in FIG.

25μm以下の(NdO,9・D yO,l )  ・
F e ・B系焼結体粉末を、S「フェライト磁石粉末
で置換することにより高分子複合磁石の磁気特性は明ら
かに向上している。
25μm or less (NdO,9・D yO,l )・
The magnetic properties of the polymer composite magnet are clearly improved by replacing the Fe/B-based sintered body powder with S ferrite magnet powder.

尚、参考までに、前述の時効処理した(NdO,9・D
yO,l) ・Fe−B系焼結体にライても300μ量
以下に粗粉砕して、同様にポリエチレン混合、射出成形
して高分子複合磁石を作製したところ、磁石特性はB 
r5.4 KG、  +Hc3.5KOe、  (BH
) 5ax4.5M−G φOe程度であった。
For reference, the above-mentioned aging treated (NdO, 9.D
yO, l) - Even if it was laid on a Fe-B based sintered body, it was coarsely pulverized to an amount of 300μ or less, mixed with polyethylene and injection molded to produce a polymer composite magnet, and the magnetic properties were B.
r5.4 KG, +Hc3.5KOe, (BH
) 5ax4.5M-G φOe.

実施例2 5vt・%のCe、15wt・%のPr、残部Nd(た
だし、他の希土類元素はNdとして含めた。)からなる
セリウムジジムとフェロボロン、電解コバルト、電解鉄
、アルミニウムを使用し、実施例1と同様にして、希土
類元素Rが32wt・%。
Example 2 Conducted using cerium dididium, ferroboron, electrolytic cobalt, electrolytic iron, and aluminum consisting of 5 vt・% Ce, 15 wt・% Pr, and the balance Nd (however, other rare earth elements were included as Nd). In the same manner as in Example 1, the rare earth element R was 32 wt.%.

Coが7wt・%、Agが1vt・%、残部がFeのR
−T−B系インゴットを得た。
R with 7wt% Co, 1vt% Ag, and the balance Fe.
-A T-B series ingot was obtained.

次に、このインゴットを使用し、実施例1と同様にして
、粉砕、磁場中成形、1040℃での焼結を行なった。
Next, using this ingot, pulverization, compaction in a magnetic field, and sintering at 1040°C were performed in the same manner as in Example 1.

ここで得られた焼結体は密度が約7.55gr/ cv
3であり、平均粒径が約6.5μmの結晶からなってい
た。この焼結体の一部を600℃で2時間時効したとこ
ろ、Br12.2KG、  1Hc11.5KOe、 
 (B H) wax、33.5M eG 争Oeであ
った。
The sintered body obtained here has a density of approximately 7.55gr/cv
3, and consisted of crystals with an average particle size of about 6.5 μm. When a part of this sintered body was aged at 600℃ for 2 hours, Br12.2KG, 1Hc11.5KOe,
(BH) wax, 33.5 M eG Oe.

時効処理を施さない焼結体について、500μm以下の
粒径となるように粗粉砕した後、微細粒子を20μm以
下、30μl以下、40μ■以下の範囲で分離除去した
。その分Alff1は粉末全量に対し、それぞれ約3シ
t#1%、約7vt・%、約13wtφ%であった。
The sintered body that was not subjected to aging treatment was coarsely ground to a particle size of 500 μm or less, and then fine particles were separated and removed in the ranges of 20 μm or less, 30 μl or less, and 40 μl or less. Accordingly, Alff1 was about 3wt#1%, about 7vt·%, and about 13wtφ%, respectively, based on the total amount of powder.

一方、a−Fe20.とB a CO3粉末をBaO・
5,7 F e203となるように秤量した後、実施例
1と同様にして、混合、焼成、酸洗を行ないM型Baフ
ェライトは粉末を得た。このBaフェライトは結晶粒が
約2.5μ腸で、配向した粉末の磁石特性は4πIs約
4.6 K G 、  +Hc約3.7KOeであった
On the other hand, a-Fe20. and B a CO3 powder to BaO・
After weighing to give 5,7 Fe203, mixing, firing, and pickling were performed in the same manner as in Example 1 to obtain M-type Ba ferrite powder. This Ba ferrite had a crystal grain size of about 2.5 μm, and the magnetic properties of the oriented powder were 4πIs about 4.6 K G and +Hc about 3.7 KOe.

次に、前述した微細粒子を除去したR−T−B系焼結体
粉末に、その除去量に対応した体積に相当する上記のB
aフェライト粉末を補填し、混合した。この混合粉末に
、エポキシ樹脂を25vol・%混合した後、約20K
Oeの磁界中、5 ton/c12の成形圧で円盤状に
成形した。この成形体を、100℃で2時間保持し硬化
させ、高分子複合磁石とした。その磁石特性の測定結果
を第2図に示す。25μm以上のR−T−B系焼結体粉
末を、Baフェライト磁石粉末で置換することにより、
高分子複合磁石の磁気特性は明らかに向上している。
Next, the R-T-B based sintered body powder from which the fine particles have been removed is added with the above-mentioned B
a Ferrite powder was supplemented and mixed. After mixing 25 vol/% of epoxy resin with this mixed powder, approximately 20K
It was molded into a disk shape at a molding pressure of 5 ton/c12 in a magnetic field of Oe. This molded body was held at 100° C. for 2 hours to be cured, thereby forming a polymer composite magnet. Figure 2 shows the measurement results of the magnetic properties. By replacing the R-T-B based sintered body powder with a diameter of 25 μm or more with Ba ferrite magnet powder,
The magnetic properties of polymer composite magnets are clearly improved.

尚、参考までに、前述の時効処理したR−T・B系填結
体についても、500μ副以下に粗粉砕し、同様にして
、樹脂混合、磁界中成形、硬化して高分子複合磁石とし
た後、磁石特性をJP1定したところ、Br約5.4K
G、  IHc約2.5KOe。
For reference, the above-mentioned aging-treated R-T・B-based packed body was also coarsely ground into particles of 500 μm or less, mixed with resin, molded in a magnetic field, and hardened in the same manner to form a polymer composite magnet. After that, the magnetic characteristics were determined by JP1, and it was found that Br was about 5.4K.
G, IHc approximately 2.5KOe.

(BH)wax約3.5 M−に−Oeであった。(BH) wax was approximately 3.5 M-Oe.

以上の実施例で示されたように、異方性を有するR2T
、、B系焼結合金を粉砕して作製した成形用粉末中の2
5μm以下の粒子範囲にフェライト磁石粉末を含有する
ことにより、磁石特性の著しく向上した高分子複合型磁
石が実現できる。
As shown in the above examples, R2T with anisotropy
,, 2 in the molding powder made by crushing the B-based sintered alloy
By containing ferrite magnet powder in the particle size range of 5 μm or less, a polymer composite magnet with significantly improved magnetic properties can be realized.

以上の実施例では、Nd−Dy−Fe−B系。In the above embodiments, the Nd-Dy-Fe-B system is used.

Ce−P r−Nd−F e−Co−AN −B系。Ce-Pr-Nd-Fe-Co-AN-B system.

Nd−Fe−B系についてのみ述べたが、Ndの一部を
Y及び他の希土類元素例えばGd、Tb。
Although only the Nd-Fe-B system has been described, a portion of Nd may be replaced by Y and other rare earth elements such as Gd and Tb.

HO等で置換したり、Feの一部を他の遷移金属例えば
Mn、Cr、Ni等で置換したり、Bの一部を他の半金
属例えばSt、C等で置換しても、磁石合金の組成がN
d−Fe−Bを主成分の一部としており、また磁石の化
合物系でNdzFezB系で代表されるようなR2T、
4Bが磁性に寄与しているものであれば、本発明の効果
が十分に期待できるものであることは容易に推測できる
Even if a part of Fe is replaced with HO, etc., a part of Fe is replaced with another transition metal such as Mn, Cr, Ni, etc., or a part of B is replaced with another semimetal such as St, C, etc., the magnetic alloy can be improved. The composition of N
R2T, which has d-Fe-B as a main component, and is a magnet compound system represented by the NdzFezB system,
If 4B contributes to magnetism, it can be easily inferred that the effects of the present invention can be fully expected.

また、本発明では、高分子樹脂としてエポキシ樹脂とポ
リエチレンのみについて述べたが、成形体内部に介在し
、成形体の強度向上に寄与するものであれば、いかなる
物’El(例えば、他の高分子樹脂やゴム等であるばか
りでなく、金属でも可)であっても、本発明の範囲にあ
ることは、当業者であれば容易に理解できるものである
In addition, in the present invention, only epoxy resin and polyethylene have been described as polymer resins, but any material (e.g., other high Those skilled in the art will easily understand that not only molecular resins, rubbers, etc., but also metals are within the scope of the present invention.

また、本実施例に示した高分子複合磁石化の製法につい
ては、成形体に樹脂を含浸する含浸型、粉末と樹脂とを
混合した後圧縮成形する圧縮成形型、粉末と樹脂を混練
した後射出成形する射出成形型についてのみ述べたが、
他の成形法例えば、押出による成形、ロールによる成形
等地の製法についても適用できることは、当業者であれ
ば容易に想像できるものである。
In addition, regarding the manufacturing method of polymer composite magnetization shown in this example, there is an impregnation type in which a molded body is impregnated with resin, a compression molding type in which powder and resin are mixed and then compression molded, and a molding type in which powder and resin are mixed and then compression molded. Although I have only mentioned injection molds for injection molding,
Those skilled in the art can easily imagine that other molding methods such as extrusion molding, roll molding, etc. can also be applied.

また、R−T−B系焼結体粉末を置換するフェライト磁
石粉末として、本実施例においては、M型の結晶構造を
有するSrフェライト及びBaフェライトについてのみ
述べたが、例えばS「とBaを複合含有したフェライト
やW型フェライトの様な物質であっても、フェライト粉
末が磁石特性をHするものであれば、それがフェライト
焼結体の粉砕粉末であっても、本発明の範囲に含まれる
ものである。
In addition, in this example, only Sr ferrite and Ba ferrite having an M-type crystal structure were described as ferrite magnet powder to replace the RTB-based sintered body powder, but for example, S' and Ba ferrite were described. Even if it is a compound-containing ferrite or a W-type ferrite, as long as the ferrite powder has magnetic properties of H, even if it is a crushed powder of a ferrite sintered body, it falls within the scope of the present invention. It is something that can be done.

[発明の効果] 本発明によれば、高特性で大量処理が可能で、しかもバ
ラツキの少ない磁石特性を示す焼結磁石の製造工程を使
用して、高分子磁石用粉末の大半が製造できるので、工
業上、非常に有益となる。
[Effects of the Invention] According to the present invention, most of the powder for polymer magnets can be manufactured using a manufacturing process for sintered magnets that have high characteristics, can be processed in large quantities, and exhibit magnetic characteristics with little variation. , which is very useful industrially.

本発明によれば、含浸型、圧縮成形型、射出成形型等の
広汎な高分子複合型磁石の製法に適用できる粉末を提供
することができる、しかも、簡便にして、高性能な高分
子複合型磁石が実現できるので、工業上、非常に有益で
ある。
According to the present invention, it is possible to provide a powder that can be applied to a wide range of manufacturing methods for polymer composite magnets, such as impregnation molding, compression molding, and injection molding. It is industrially very useful because a molded magnet can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1において、(Nd  O,9・Dy
O,l)  ・Fe−B系焼結磁石粉末におけるM型S
rフェライト磁石粉末と置換した粉末粒径と高分子73
2 合磁石の磁気特性との関係を示す図である。 第2図は、実施例2において、(Ce−P「・Nd)・
Fe−co−AI・B系焼結磁石粉末におけるM型Ba
フェライト磁石粉末と置換した粉末粒径と、高分子複合
磁石の磁気特性との磁気特性の関係を示す図である。 第1図 置換した粉末粒径 (、um) 第2図 置換した粉末粒径(、um)
FIG. 1 shows that (NdO,9・Dy
O, l) ・M type S in Fe-B based sintered magnet powder
Powder particle size and polymer 73 replaced with r ferrite magnet powder
2 is a diagram showing the relationship with the magnetic properties of the composite magnet. FIG. 2 shows (Ce-P"・Nd)・
M-type Ba in Fe-co-AI/B-based sintered magnet powder
FIG. 3 is a diagram showing the relationship between the particle size of a powder substituted for ferrite magnet powder and the magnetic properties of a polymer composite magnet. Figure 1: Replaced powder particle size (, um) Figure 2: Replaced powder particle size (, um)

Claims (2)

【特許請求の範囲】[Claims] 1.粒径が25μmより大なる,Nd,Fe,Bを主成
分とするR_2T_1_4B系(ここで、RはYを含む
希土類元素、Tは遷移金属を表わす。)希土類磁石粉末
と、フェライト粉末と、高分子樹脂バインダーとからな
ることを特徴とする高分子複合型希土類磁石。
1. Rare earth magnet powder, ferrite powder, A polymer composite rare earth magnet characterized by comprising a molecular resin binder.
2.Nd,Fe,Bを主成分とするR_2T_1_4B
系(ここで、RはYを含む希土類元素、Tは遷移金属を
表わす。)焼結体を粉砕し、25μm以下の粉末を分離
除去する分離工程と、 前記分離工程で得られた粒径25μmより大なる粉末を
該25μm以下の粉末と同量のフェライト粉末と混合し
て混合粉末を得る混合工程と、該混合粉末に高分子樹脂
バインダーを混合して成形する成形工程とを有すること
を特徴とする高分子複合型希土類磁石の製造方法。
2. R_2T_1_4B whose main components are Nd, Fe, and B
(Here, R represents a rare earth element containing Y, and T represents a transition metal.) A separation step of pulverizing the sintered body and separating and removing powder of 25 μm or less, and a particle size of 25 μm obtained in the separation step. It is characterized by having a mixing step of mixing a larger powder with the same amount of ferrite powder as the powder of 25 μm or less to obtain a mixed powder, and a molding step of mixing a polymer resin binder with the mixed powder and molding it. A method for manufacturing a polymer composite rare earth magnet.
JP63228573A 1988-09-14 1988-09-14 High-polymer composite-type rare-earth magnet and its manufacture Pending JPH0278204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63228573A JPH0278204A (en) 1988-09-14 1988-09-14 High-polymer composite-type rare-earth magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228573A JPH0278204A (en) 1988-09-14 1988-09-14 High-polymer composite-type rare-earth magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0278204A true JPH0278204A (en) 1990-03-19

Family

ID=16878481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228573A Pending JPH0278204A (en) 1988-09-14 1988-09-14 High-polymer composite-type rare-earth magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0278204A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135705A (en) * 1983-01-24 1984-08-04 Dainippon Ink & Chem Inc Resin magnet material
JPS61284906A (en) * 1985-06-10 1986-12-15 Seiko Epson Corp Resin bond magnet raw material
JPS6369205A (en) * 1986-09-10 1988-03-29 Seiko Instr & Electronics Ltd Manufacture of alloy powder of rare earth element, iron and boron for resin magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135705A (en) * 1983-01-24 1984-08-04 Dainippon Ink & Chem Inc Resin magnet material
JPS61284906A (en) * 1985-06-10 1986-12-15 Seiko Epson Corp Resin bond magnet raw material
JPS6369205A (en) * 1986-09-10 1988-03-29 Seiko Instr & Electronics Ltd Manufacture of alloy powder of rare earth element, iron and boron for resin magnet

Similar Documents

Publication Publication Date Title
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH07176418A (en) High-performance hot-pressed magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH0559572B2 (en)
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS6271201A (en) Bond magnet
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JPH02106906A (en) Manufacture of polymer composite type rare earth magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JP2992808B2 (en) permanent magnet
JP2000223305A (en) Rare-earth r-fe-co-b magnetic powder, its manufacturing method, and bonded magnet made of the powder
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet
JPH0278205A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPH02153041A (en) Manufacture of high polymer compounded type rare earth magnet material
JPH02306601A (en) Manufacture of polymer composite type rare earth magnetic powder