JPH0228901A - Manufacture of polymer composite rare earth magnet - Google Patents

Manufacture of polymer composite rare earth magnet

Info

Publication number
JPH0228901A
JPH0228901A JP63178180A JP17818088A JPH0228901A JP H0228901 A JPH0228901 A JP H0228901A JP 63178180 A JP63178180 A JP 63178180A JP 17818088 A JP17818088 A JP 17818088A JP H0228901 A JPH0228901 A JP H0228901A
Authority
JP
Japan
Prior art keywords
powder
alloy
sintered
magnet
r2t14b
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63178180A
Other languages
Japanese (ja)
Other versions
JPH0775204B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Hiroshi Oyanagi
大柳 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63178180A priority Critical patent/JPH0775204B2/en
Publication of JPH0228901A publication Critical patent/JPH0228901A/en
Publication of JPH0775204B2 publication Critical patent/JPH0775204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the performance of a polymer composite rate earth magnet by a method wherein powder particles of sintered powder formed by finely pulverizing a sintered material made of R2T14B alloy ingot powder and having predetermined particle sizes are replaced with quenched alloy powder manufactured by processing a R2T14B alloy ingot by a liquid quenching method. CONSTITUTION:In a manufacture of a polymer composite magnet from R2T14B alloy powder containing as main ingredients Nd, Fe, B by using polymer resin, powder particles of sintered powder made by finely pulverizing a sintered material made of R2T14B alloy ingot powder and having 30mum or less of particle size as R2T14B alloy powder is replaced with quenched alloy powder manufactured from R2T14B alloy ingot by a liquid quenching method. Powder molded piece obtained by molding the powder in a magnetic field is sintered as a sintered material having high crystalline orientation, powder so prepared as to contain the R2T14B alloy powder manufactured by the liquid quenching method in a range of particle sizes of 30mum or less in the sintered powder pulverized powder is used to provide high magnet characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、いわゆるゴム磁石を典型とした高分子複合型
磁石の製造方法に関し、特にNd−Fe・B系永久磁石
を代表とする希土類金属(R)と遷移金属(T)とホウ
素(B)を主成分としてなるR2T14B系の希土類磁
石粉末を用いた高分子複合型希土類磁石の改善に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a polymer composite magnet, typically a so-called rubber magnet, and in particular to a method for manufacturing a polymer composite magnet, typically a so-called rubber magnet. The present invention relates to the improvement of a polymer composite rare earth magnet using R2T14B rare earth magnet powder whose main components are (R), a transition metal (T), and boron (B).

〔従来の技術〕[Conventional technology]

高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたもの、あるいは磁石粉末を高分子樹脂で結着させた
ものである。この磁石は、鋳造磁石や焼結磁石等には見
られない種々の利点、例えば弾力性や加工容易性を備え
ており、種々の方面に用いられている。しかしながら、
磁石粉末と非磁性の樹脂で形成されているなめ、焼結磁
石等に比べ、磁気特性が低いという欠点を有している。
A polymer composite magnet is one in which magnet powder is dispersed in a polymer resin, or one in which magnet powder is bound with a polymer resin. This magnet has various advantages not found in cast magnets, sintered magnets, etc., such as elasticity and ease of processing, and is used in various fields. however,
Because they are made of magnet powder and non-magnetic resin, they have the disadvantage of having lower magnetic properties than sintered magnets and the like.

そのため、粉末を磁界中で配向させる等の異方性化によ
り、高い磁石特性を達成しようとしている0分散、結着
される磁石粉末としては、これ迄、種々のものが用いら
れているが、本発明では、現在最も高い磁石特性を示し
ているNd −Fe −B系を代表とするR2T14B
系磁石粉末を使用している。
Therefore, various types of magnet powder have been used to achieve zero dispersion and bonding in an attempt to achieve high magnetic properties by making the powder anisotropic, such as by orienting it in a magnetic field. In the present invention, R2T14B, which is represented by the Nd-Fe-B system, which currently exhibits the highest magnetic properties.
Uses magnet powder.

従来の希土類磁石粉末を使用した高分子複合磁石は、原
料を溶解して得な合金鋳塊を熱処理後、粉砕し、その粉
末を高分子樹脂と混合し、磁界中で成形して製造されて
いた。ここで使用されていた磁石合金粉末は、磁界中で
の結晶配向性を向上させるため、微細な単結晶粒子から
なっていることが望ましかかった。
Conventional polymer composite magnets using rare earth magnet powder are manufactured by melting the raw materials, heat-treating the resulting alloy ingot, pulverizing it, mixing the powder with polymer resin, and molding it in a magnetic field. Ta. The magnet alloy powder used here was desirably composed of fine single-crystal particles in order to improve crystal orientation in a magnetic field.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、Nd−Fe−B系磁石で代表されるR2
T14B系合金においては、粉砕時における機械的応力
により、保磁力(1Ho)の低下が生じるため、粉末が
単結晶粒子からなる微細な領域では、著しく  1H,
が低下していた。そのため、溶解インゴットを出発原料
として使用した製法においては、高IHCを有する焼結
磁石を粉砕して磁石粉末として使用しても、著しく低い
磁石特性を示す高分子複合型磁石となっていた。
However, R2 represented by Nd-Fe-B magnets
In T14B alloys, the coercive force (1Ho) decreases due to mechanical stress during crushing, so in fine regions where the powder is composed of single crystal particles, the coercive force (1Ho) decreases significantly.
was decreasing. Therefore, in a manufacturing method using a molten ingot as a starting material, even if a sintered magnet with a high IHC is crushed and used as magnet powder, the result is a polymer composite magnet that exhibits extremely poor magnetic properties.

まして、インゴットを熱処理後、粉砕して高分子複合磁
石とする製法では、存在価値のない極めて劣悪な磁石特
性を示すのみであった。
Moreover, in the method of manufacturing a polymer composite magnet by heat-treating an ingot and then pulverizing it to produce a polymer composite magnet, the magnet exhibits extremely poor magnetic properties that are worthless.

一方、粉砕による IHCの低下が殆んど生じないR−
T−B系磁石合金の作製法としては、溶融してる合金を
回転ロール等に噴射し、超急冷することによって磁石合
金を得る液体急冷法が知られていた。
On the other hand, R-
As a method for producing a T-B magnetic alloy, a liquid quenching method has been known in which a molten alloy is injected onto a rotating roll or the like and then super-quenched to obtain a magnetic alloy.

しかしながら、この製法によって得られた粉末では、異
方性化は実現できなかった。その後、この液体急冷合金
を熱間塑性加工することによって異方性化が可能な磁石
粉末の得られることがわかった。この方法は、高温で高
圧を必要とするため、設備が高価で、大がかりなものと
なるのに加え、製造状態における特性の安定化には不安
が残っており、大量生産で特性バラツキの小さい粉末を
得るのはまだ困難であり、工業的には有益なものとはい
いがたい。
However, the powder obtained by this manufacturing method could not achieve anisotropy. Subsequently, it was found that a magnetic powder capable of being anisotropic was obtained by hot plastic working this liquid quenched alloy. Since this method requires high temperature and high pressure, the equipment is expensive and large-scale, and there are concerns about stabilizing the properties in the manufacturing state. is still difficult to obtain, and it is difficult to say that it is industrially useful.

本発明の技術課題は、通常実施されているR・T−B系
焼結磁石の製造工程を活用して、高性能な異方性高分子
複合型磁石の製造方法を提供するものである。したがっ
て、工業上、非常に有用な製法となる。
The technical problem of the present invention is to provide a method for manufacturing a high-performance anisotropic polymer composite magnet by utilizing a commonly practiced manufacturing process for R/T-B sintered magnets. Therefore, it is an industrially very useful manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、Nd、Fe、Bを主成分として含有す
るR 2 T 14 B (但し、RはY及び希土類元
素、Tは遷移金属)系合金粉末を高分子樹脂を用いて高
分子複合型磁石を製造する方法において、前記R2T1
4B系合金粉末として、R2T14B系合金インゴット
粉末から生成した焼結体を微粉砕してなる焼結体粉末の
粒径30μm以下の粉末粒子を、R2T 14B系合金
インゴットから液体急冷法で作製した急冷合金粉末で置
換したものよりなることを特徴とする高分子複合希土類
磁石の製造方法が得られる。
According to the present invention, R 2 T 14 B (where R is Y and a rare earth element, and T is a transition metal) alloy powder containing Nd, Fe, and B as main components is made into a polymer composite using a polymer resin. In the method of manufacturing a type magnet, the R2T1
As the 4B alloy powder, powder particles with a particle size of 30 μm or less of the sintered body powder obtained by finely pulverizing the sintered body produced from the R2T 14B alloy ingot are quenched using the liquid quenching method from the R2T 14B alloy ingot. A method for manufacturing a polymer composite rare earth magnet characterized in that the magnet is made of a magnet substituted with alloy powder is obtained.

ここで、本発明においては、高分子樹脂を用いて高分子
複合型磁石を製造する方法とは、原料合金粉末を高分子
樹脂と混合して、射出成形、押出成形又は圧縮成形する
方法、もしくは圧縮成形の後、高分子樹脂を含浸する方
法をいう。
Here, in the present invention, the method of manufacturing a polymer composite magnet using a polymer resin is a method of mixing raw material alloy powder with a polymer resin and performing injection molding, extrusion molding, or compression molding, or A method of impregnating polymer resin after compression molding.

即ち本発明は、溶解して得られた合金インゴットを微粉
砕した後、磁場中で成形して得られた粉末成形体を焼結
し、高い結晶配向度の焼結体とし、次にこの焼結体を粉
砕後、焼結体粉砕粉末中の30μm以下の粒子径範囲に
液体急冷法により作製したR 2 T 14 B系合金
粉末を含有するように調整した粉末を使用することによ
り、高い磁石特性を有するR−T−B系高分子複合型磁
石を実現するものである。
That is, the present invention involves pulverizing an alloy ingot obtained by melting, sintering the resulting powder compact by compacting it in a magnetic field to form a sintered body with a high degree of crystal orientation, and then After pulverizing the sintered body, by using powder adjusted to contain R 2 T 14 B alloy powder produced by the liquid quenching method in the particle size range of 30 μm or less in the sintered body pulverized powder, a high magnet can be obtained. This is to realize an R-T-B polymer composite magnet having the following characteristics.

本発明の磁石特性の配向は、熱処理による焼結体粉砕粉
末の、Ho、Br及び減磁曲線の角型性の向上に関係し
ており、この効果は、成形用粉末が複数の配向した結晶
粒で構成されていることに深く起因している。しかしな
がら、この粉末の熱処理による磁気特性の向上は、粉末
粒子径が小さくなるにしたがい減少する傾向を示してい
る。
The orientation of the magnetic properties of the present invention is related to the improvement of the squareness of Ho, Br and demagnetization curves of the sintered powder by heat treatment, and this effect is due to the fact that the molding powder has a plurality of oriented crystals. This is deeply due to the fact that it is composed of grains. However, the improvement in magnetic properties due to heat treatment of this powder tends to decrease as the powder particle size becomes smaller.

本発明者らは種々実験を行なった結果、焼結体粉砕粉末
中でも30μm以下の粒子は、粉砕による損傷から熱処
理によっても明らかに回復が困難であり、この30μm
以下の範囲においては、液体急冷法により作製した液体
急冷合金粉末や、液体急冷合金を熱間塑性加工して得ら
れる合金粉末を含有することにより、高い磁石特性を有
するR・T−B系高分子複合型磁石の得られることを発
見した。
As a result of various experiments carried out by the present inventors, it has been found that it is clearly difficult to recover particles of 30 μm or less from the damage caused by crushing even by heat treatment, even in sintered powder.
In the following range, the R/T-B type high-grade alloy powder, which has high magnetic properties, contains liquid quenched alloy powder produced by liquid quenching method or alloy powder obtained by hot plastic working of liquid quenched alloy. We discovered that a molecular composite magnet can be obtained.

本発明は、高特性で大量処理が可能で、しかもバラツキ
の少ない磁石特性を示す焼結磁石の製造工程を使用して
、高分子磁石用粉末の大半が製造できるので、工業上、
非常に有益となる。
In the present invention, most of the powder for polymer magnets can be manufactured using a manufacturing process for sintered magnets that have high characteristics, can be processed in large quantities, and exhibit magnetic characteristics with little variation.
It will be very beneficial.

焼結体粉砕粉末中の30μmの粒子範囲に、液体急冷法
により作製しなR2T14B系合金粉末を含有すること
に規定したのは、30μm以上の範囲では含有の効果が
飽和し明瞭でなく30μm以下の範囲とした場合に効果
が顕著となるからである。
The reason why the R2T14B alloy powder, which is not produced by the liquid quenching method, is specified to be included in the particle range of 30 μm in the sintered compact powder is that the effect of inclusion is saturated in the range of 30 μm or more and is not clear, and the particle size is 30 μm or less. This is because the effect becomes remarkable when the range is set to .

本発明は、含浸型、圧縮成形型、射出成形型等の広汎な
高分子複合型磁石の製法に適用できる粉末を提供するも
のである。しかも、簡便にして、高性能な高分子複合型
磁石が実現できるので、工業上、非常に有益である。
The present invention provides a powder that can be applied to a wide range of manufacturing methods for polymer composite magnets, such as impregnation molding, compression molding, and injection molding. Moreover, since a high-performance polymer composite magnet can be easily realized, it is very useful industrially.

以下、実施例について述べる。Examples will be described below.

以下弦日 〔実施例〕 実施例1゜ 純度97wt%のNd(残部はCe、Prを主体とする
他の希土類元素)、純度99wt%以上のDy、フェロ
ボロン(B純分約20wt%)及び電解鉄を使用し、(
Nd   −Dy   )が34.00.9   0.
1 wt%、Bが1.0wt%、残部Feの組成を有するイ
ンゴットを、アルゴン雰囲気中で高周波加熱ににより溶
解し、合金インゴットを得た。
Example 1: Nd with a purity of 97 wt% (the remainder is other rare earth elements mainly consisting of Ce and Pr), Dy with a purity of 99 wt% or more, ferroboron (B purity about 20 wt%), and electrolysis Using iron (
Nd-Dy) is 34.00.90.
An ingot having a composition of 1 wt% B, 1.0 wt% B, and the balance Fe was melted by high frequency heating in an argon atmosphere to obtain an alloy ingot.

次に、このインゴットを粗粉砕した後、ボールミルを用
いて、平均粒径約2μmに微粉砕した。
Next, this ingot was coarsely ground, and then finely ground to an average particle size of about 2 μm using a ball mill.

この合金粉末を約20 kOeの磁界中、1 ton/
−の圧力で直方体状に成形した0次にこの成形体を真空
中1000℃で1時間保持した後、Ar中で3時間保持
し、焼結体を得た。この焼結体は7.55gr/cm3
の密度を有し、平均結晶粒径は約5μmであった。この
一部を600℃で2時間時効し、磁石特性を測定したと
ころ、Br12.8kG。
This alloy powder was heated at a rate of 1 ton/in a magnetic field of about 20 kOe.
This molded body, which was molded into a rectangular parallelepiped shape under a pressure of -, was held in vacuum at 1000° C. for 1 hour and then held in Ar for 3 hours to obtain a sintered body. This sintered body is 7.55gr/cm3
The average crystal grain size was about 5 μm. A part of this was aged at 600°C for 2 hours and its magnetic properties were measured, and the result was Br12.8kG.

IHc20kOe 、  (BH) lax、39H,
G、Oe程度であった。
IHc20kOe, (BH) lax, 39H,
It was about G, Oe.

時効処理を施さない焼結体について、300μm以下の
粒径となるように粗粉砕した後、この粉末を600℃で
真空中1時間、Ar94時間保持し、熱処理した。
The sintered body that was not subjected to aging treatment was coarsely pulverized to a particle size of 300 μm or less, and then the powder was held at 600° C. in vacuum for 1 hour and in Ar for 94 hours, and heat treated.

一方、合金インゴットをAr雰囲気中で高周波加熱によ
り再溶解した後、周速度が約4 On/secのCu製
ロールに噴射し、厚さ約20μm、幅約3 +mの液体
急冷合金薄帯及び薄片を得た0次に、この液体急冷薄帯
を粗粉砕した後、Ar雰囲気中、700℃、1ton/
−の圧力でホットプレスし、成形体を得た。この密度は
約7 、50gr/ am3であった6次に、この成形
体をAr雰囲気中、700”C,2,5tOn/−の圧
力で一軸方向に加圧し、加圧方向の寸法が約175にな
るように熱間塑性加工を施こした。この加工成形体は、
加圧方向に磁気異方性成を有し、結晶粒径が約0.3μ
mで厚さゐイ約0.1μmの板状結晶が積層してなって
いた。
On the other hand, the alloy ingot was remelted by high-frequency heating in an Ar atmosphere, and then sprayed onto a Cu roll with a circumferential speed of about 4 On/sec to form liquid-quenched alloy ribbons and flakes with a thickness of about 20 μm and a width of about 3 + m. Next, this liquid quenched ribbon was coarsely pulverized, and then pulverized at 700°C and 1 ton/ton in an Ar atmosphere.
A molded article was obtained by hot pressing at a pressure of -. This density was about 7.50g/am3.6Next, this molded body was pressurized in an uniaxial direction at 700"C and 2.5tOn/- in an Ar atmosphere, and the dimension in the pressing direction was about 175gr/am3. Hot plastic working was carried out so that
It has magnetic anisotropy in the direction of pressure, and the crystal grain size is approximately 0.3μ.
It was made up of laminated plate-shaped crystals with a thickness of about 0.1 μm.

この成形体の磁石特性は、Br12.2kG。The magnetic properties of this molded body are Br12.2kG.

IHc22kOe 、  (Bl(>1aX、33H,
G、Oe程度であった8次に、この成形体を平均粒径約
10μmに微粉砕した。
IHc22kOe, (Bl(>1aX, 33H,
Next, this compact was pulverized to an average particle size of about 10 μm.

次に、熱処理した焼結体粗粉末中の微細粒子を20μm
以下、30μm以下、40μm以下。
Next, the fine particles in the heat-treated sintered body coarse powder were
Below, 30 μm or less, 40 μm or less.

50μm以下の範囲で分離除去し、それに対応した量を
熱間塑性加工成形体微粉末でそれぞれ補填したところ、
20μm以下では約5wt%、30μm以下では約10
wt%、40μm以下では約20wt%、50czm以
下では約3owt%であった。
When the particles were separated and removed in the range of 50 μm or less and the corresponding amount was supplemented with hot plastic-processed compact powder,
Approximately 5 wt% for 20 μm or less, approximately 10 wt% for 30 μm or less
wt%, about 20 wt% for 40 μm or less, and about 3 owt% for 50 czm or less.

次に、この粉末にポリエチレンを35VO1,%混合し
た後、約1oO℃にて20 koeの磁界を印加しなが
ら、金型中に射出成形し、高分子複合磁石とした。その
磁石特性を約30 koeの磁界を印加して測定した結
果を第1図に示す、30μm以下の焼結体粉末を熱間塑
性加工粉末で置換することにより、高分子複合磁石の磁
気特性は著しく向上している。
Next, this powder was mixed with 35 VO 1% polyethylene, and then injection molded into a mold while applying a 20 koe magnetic field at about 100° C. to obtain a polymer composite magnet. The magnetic properties of the polymer composite magnet were measured by applying a magnetic field of about 30 koe, and the results are shown in Figure 1. By replacing the sintered powder of 30 μm or less with hot plasticized powder, the magnetic properties of the polymer composite magnet were improved. It has improved significantly.

尚−参考までに前述の時効処理した焼結体についても3
00μm以下に粗粉砕して、同様にポリエチレン混合、
射出成形して高分子−複合磁石を作製したところ磁石特
性はBr5.4kG、  IHc3、5kOe 、  
(BH)nax、4.5H,G、Oeであった。
For reference, the above-mentioned aging-treated sintered body also
Coarsely pulverized to 00 μm or less, mixed with polyethylene,
When a polymer-composite magnet was produced by injection molding, the magnetic properties were Br5.4kG, IHc3, 5kOe,
(BH)nax, 4.5H, G, Oe.

実施例2゜ 5wt%のCe、15wt%のPr、残部Nd(ただし
、他の希土類元素はNdとして含めた。)からなるセリ
ウムジシムと、フェロボロン、′r4解コバルト、アル
ミニウムを使用し、実施例1と同様にして、希土類元素
Rが32wt%、Coが7wt%。
Example 2 Using cerium disime consisting of 5 wt% Ce, 15 wt% Pr, and the balance Nd (however, other rare earth elements were included as Nd), ferroboron, 'r4 decomposed cobalt, and aluminum, Example 1 Similarly, the rare earth element R was 32 wt% and Co was 7 wt%.

Ajが1wt%、残部がFeのR−T−B系インゴット
を得た。
An R-T-B ingot containing 1 wt% of Aj and the balance of Fe was obtained.

次に、このインゴットを使用し、実施例1と同様にして
、粉砕、磁場中成形、1040℃での焼結を行なった。
Next, using this ingot, pulverization, compaction in a magnetic field, and sintering at 1040°C were performed in the same manner as in Example 1.

ここで得られた焼結体は密度約7 、55Or/am3
であり、平均粒径約6.5μmの結晶からなっていた。
The sintered body obtained here has a density of about 7, 55 Or/am3
It consisted of crystals with an average grain size of about 6.5 μm.

この焼結体の一部を600℃で2時間時効したところ、
Br12.2kG。
When a part of this sintered body was aged at 600°C for 2 hours,
Br12.2kG.

IHcl 1 、5kOe 、  (BH)laX33
 、5M、G、Oeであった。
IHcl 1, 5kOe, (BH)laX33
, 5M, G, Oe.

時効処理を施さない焼結体について、500μm以下の
粒径となるように粗粉砕した後、微細粒子を20μm以
下、30μm以下、40μm以下の範囲で分離除去した
。その分離量は粉末全量に対し、それぞれ約31t%、
約7wt%、約15wt%であった。
The sintered body that was not subjected to aging treatment was coarsely ground to a particle size of 500 μm or less, and then fine particles were separated and removed in the range of 20 μm or less, 30 μm or less, and 40 μm or less. The amount of separation is approximately 31t%, respectively, based on the total amount of powder.
They were about 7 wt% and about 15 wt%.

一方、合金インゴットを使用して、実施例1と同様にし
て、周速度が約151/513CのCu製ロールに噴射
し、厚さ約50μm1幅約7IIIIIの液体急冷薄片
を得た。この薄片を無磁場中で成形して粉末の液体急冷
薄片を得た。この薄片を無磁場中で成形して粉末のみの
磁気特性を測定したところ4πIs約10kG、Br約
7、skG、  、Hc約18koe 、  (BH)
Ilax、約108.G、Oeであった0次に、この液
体急冷薄片をボールミルにて平均粒径約5μmに微粉砕
した。
On the other hand, an alloy ingot was used and injected onto a Cu roll having a circumferential speed of about 151/513C in the same manner as in Example 1, to obtain a liquid-quenched flake with a thickness of about 50 μm and a width of about 7III. This flake was molded in the absence of a magnetic field to obtain a liquid-quenched powder flake. This thin piece was molded in no magnetic field and the magnetic properties of the powder alone were measured: 4πIs about 10kG, Br about 7, skG, , Hc about 18koe, (BH)
Ilax, about 108. Next, this liquid-quenched flake was pulverized to an average particle size of about 5 μm using a ball mill.

次に、前記の微細粒子を除去した焼結体粉砕粉末に、そ
の除去量に対応した量の液体急冷薄い片粉砕粉末を補填
し、混合した。この混合粉末を約20 kOeの磁界中
、3 ton/−の圧力で円盤状に成形した後、100
0℃で真空中1時間、Ar中1時間保時間保持上急冷こ
の熱処理、試料の密度は約6.3Qr/am3であった
Next, the sintered body crushed powder from which the fine particles had been removed was supplemented with liquid quenched thin flake crushed powder in an amount corresponding to the amount removed, and mixed. This mixed powder was molded into a disk shape under a pressure of 3 tons/- in a magnetic field of about 20 kOe, and then
After this heat treatment, the sample was heated at 0° C. for 1 hour in vacuum, kept in Ar for 1 hour, and then quenched, and the density of the sample was about 6.3 Qr/am 3 .

次に、この熱処理試料を真空引き後、エポキシ樹脂を含
浸した後、100℃で2時間保持し硬化させ、高分子複
合磁石とした。その磁石特性の測定結果を第2図に示す
、30μm以下の焼結体粉末を、液体急冷粉末で置換す
ることにより、高分子複合磁石の磁気特性は著しく向上
している。
Next, this heat-treated sample was evacuated, impregnated with epoxy resin, and then held at 100° C. for 2 hours to be cured to form a polymer composite magnet. The measurement results of the magnetic properties are shown in FIG. 2. By replacing the sintered powder of 30 μm or less with the liquid quenched powder, the magnetic properties of the polymer composite magnet were significantly improved.

尚、参考までに、前述の時効処理した粉末についても、
300μm以下に粗粉砕して同様に磁場中成形、 エポキシ樹脂含浸・硬化後、高分子複合磁石としての磁
石特性を測定したところ、d 5.4gr/■3Br5
.2kG、  IHc3.0kOe 、  (BH)n
ax。
For reference, regarding the above-mentioned aged powder,
After coarsely pulverizing to 300μm or less, molding in the same magnetic field, and impregnating and curing with epoxy resin, the magnetic properties as a polymer composite magnet were measured. d5.4gr/■3Br5
.. 2kG, IHc3.0kOe, (BH)n
ax.

3、5t4.G、Oeであった。3,5t4. It was G, Oe.

実施例゛3、 純度97wt%のNd(残部はCe、Prを主体とする
他の希土類元素)、フェロボロン及び電解鉄を使用し、
実施例1と同様にして、希土類元素(R)が33.5w
t%、Bが1.1wt%、残部Feのインゴットを得た
Example 3: Using Nd with a purity of 97 wt% (the remainder being other rare earth elements mainly consisting of Ce and Pr), ferroboron, and electrolytic iron,
In the same manner as in Example 1, the rare earth element (R) was 33.5w.
t%, B was 1.1 wt%, and the balance was Fe.

次に、このインゴットを使用し、実施例1と同様にして
、粉砕、磁場中成形、1020℃での焼結を行なった。
Next, using this ingot, pulverization, compaction in a magnetic field, and sintering at 1020°C were performed in the same manner as in Example 1.

ここで得られた焼結体は密度約7.55 fllr/ 
cm 3であり、平均粒径約6μmの結晶からなってい
た。この焼結体の一部を600℃で2時間時効したとこ
ろ、Br13.7kG。
The sintered body obtained here has a density of approximately 7.55 flr/
cm 3 and consisted of crystals with an average grain size of about 6 μm. When a part of this sintered body was aged at 600°C for 2 hours, the Br was 13.7kG.

IHcl 1 、 5kOe 、  (BH) IIa
x、44H,G、Oeであった。
IHcl 1, 5kOe, (BH) IIa
x, 44H, G, Oe.

時効処理を施さない焼結体について、300μm以下の
粒径となるように粗粉砕した後、この粉末を600℃で
真空中1時間、Ar中4時間保持し、熱処理した。
The sintered body that was not subjected to aging treatment was coarsely ground to a particle size of 300 μm or less, and then the powder was held at 600° C. in vacuum for 1 hour and in Ar for 4 hours and heat treated.

次に、熱処理した焼結体粗粉末中のm細粒子を20μm
以下、30μm以下、40μm以下の範囲で分離除去し
、それに対応した量を、実施例2で作製した液体急冷微
粉末(粉砕粒径約5μm)で補填し混合した。その補填
量はそれぞれ約5wt%、約10wt%、約20wt%
であった。
Next, the m-fine particles in the heat-treated sintered coarse powder were
Thereafter, the particles were separated and removed in the range of 30 μm or less and 40 μm or less, and the corresponding amount was supplemented and mixed with the liquid quenched fine powder (pulverized particle size: about 5 μm) prepared in Example 2. The supplementary amounts are approximately 5 wt%, approximately 10 wt%, and approximately 20 wt%, respectively.
Met.

次に、この混合粉末にエポキシ樹脂を25vo1.%混
合した後約20 koeの磁界中5 ten/−の成形
圧で円盤状に成形した。この成形体を100℃で2時間
保持し硬化させ、高分子複合磁石とした。その磁石特性
の測定結果を第3図に示す、30μm以下の焼結耐粉末
を、液体急冷粉末で置換することにより、高分子複合磁
石の磁気特性は明らかに向上している。
Next, 25 vol. of epoxy resin was added to this mixed powder. % and then molded into a disk shape under a molding pressure of 5 ten/- in a magnetic field of about 20 koe. This molded body was held at 100° C. for 2 hours to be cured, and a polymer composite magnet was obtained. The measurement results of the magnetic properties are shown in FIG. 3. By replacing the sintering-resistant powder of 30 μm or less with liquid quenched powder, the magnetic properties of the polymer composite magnet are clearly improved.

尚、参考までに、前述の時効処理した粉末についても、
300μm以下に租粉砕して、同様に熱処理、エポキシ
樹脂混合、磁場中成形、樹脂硬化を行ない、磁石特性を
測定したところ、Br5.5kG、  IHc3.0k
Oe 、 (BH)laX、4゜OH,、G、Oeであ
った。
For reference, regarding the above-mentioned aged powder,
It was finely ground to 300 μm or less, heat treated, mixed with epoxy resin, molded in a magnetic field, and cured in the same way, and the magnetic properties were measured. Br5.5kG, IHc3.0k
Oe, (BH)laX, 4°OH,, G, Oe.

以上の実施例で示されたように、異方性を有するR 2
 、 T i 4B系焼結結合金を粉砕して作製した成
形用粉末中の30μm以下の粒子範囲に液体急冷法によ
り作製したR2T14B系合金粉末を含有することによ
り、磁石特性の著しく向上した高分子複合型磁石が実現
できる。
As shown in the above examples, R 2 having anisotropy
, A polymer with significantly improved magnetic properties by containing R2T14B alloy powder produced by a liquid quenching method in the particle size range of 30 μm or less in a molding powder produced by pulverizing a T i 4B sintered alloy. Composite magnets can be realized.

以上の実施例では、Nd−Dy−Fe−B系。In the above embodiments, the Nd-Dy-Fe-B system is used.

Ce−Pr−Nd−Fe−Co−Al −B系。Ce-Pr-Nd-Fe-Co-Al -B system.

Nd−Fe−B系についてのみ述べたが、Ndの一部を
Y及び他の希土類元素例えばGd、Tb。
Although only the Nd-Fe-B system has been described, a portion of Nd may be replaced by Y and other rare earth elements such as Gd and Tb.

Ho等で置換したり、Feの一部を他の遷移金属例えば
Mn、Cr、Ni等で置換しなり、Bの一部を他の′半
金属例えばSL、C等で置換しても1磁石合金の組成が
Nd、Fe、Bを主成分の一部としており、また磁石の
化合物系でNd2Fe14B系で代表されるようなR2
T14Bが磁性に寄与しているものであれば、本発明の
効果が十分に期待できるものであることは容易に推測で
きる。
Even if a part of Fe is replaced with Ho, etc., a part of Fe is replaced with another transition metal such as Mn, Cr, Ni, etc., and a part of B is replaced with another semimetal such as SL, C, etc., one magnet can be obtained. The composition of the alloy is Nd, Fe, and B as some of the main components, and the compound system of magnets is R2, such as the Nd2Fe14B system.
If T14B contributes to magnetism, it can be easily inferred that the effects of the present invention can be fully expected.

また、本実施例では高分子樹脂としてエボキン樹脂とポ
リエチレンのみについて述べたが、成形体内部に介在し
、成形体の強度向上に寄与するものであれば、いかなる
物質(例えば、他の高分子樹脂やゴム等であるばかりで
なく、金属でも可)であっても、本発明の範囲にあるこ
とは、当業者であれば容易に理解できるものである。
In addition, in this example, only Evokin resin and polyethylene were described as polymer resins, but any material (for example, other polymer resins) can be used as long as it is present inside the molded product and contributes to improving the strength of the molded product. Those skilled in the art will easily understand that the scope of the present invention falls within the scope of the present invention.

また、実施例に示した高分子複合磁石化の製法について
は、成形体に樹脂を含浸する含浸型、粉末と樹脂とを混
合した後圧縮成形する圧縮成形型。
Further, regarding the manufacturing method of polymer composite magnetization shown in the examples, there are an impregnation type in which a molded body is impregnated with resin, and a compression molding type in which powder and resin are mixed and then compression molded.

粉末と樹脂を混練した後射出成形する射出成形型につい
てのみ述べたが、池の成形法例えば、押出による成形2
0−ルによる成形等他の製法についても適用できること
は、当業者であれば容易に想像できるものである。
Although we have only described injection molds that perform injection molding after kneading powder and resin, Ike's molding method, for example, molding by extrusion 2
Those skilled in the art can easily imagine that other manufacturing methods such as molding using 0-mol can also be applied.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、通常実施されて
いるR−T−B系焼結磁石の製造工程を活用して、高性
能な異方性高分子複合型希土類磁石の製造方法を提供す
ることができる。
As explained above, according to the present invention, a method for manufacturing a high-performance anisotropic polymer composite rare earth magnet is achieved by utilizing the normally practiced manufacturing process of R-T-B sintered magnets. can be provided.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1における熱間塑性加工成形体微粉末
で置換した焼結体粉砕粉末中の粉末粒径と高分子複合磁
石の磁石特性との関係を示す図、第2図は、実施例2に
おける液体急冷合金粉末で置換した焼結体粉砕粉末中の
粉末粒径と高分子複合磁石の磁石特性との関係を示す図
、第3図は、実施例3における液体急冷合金粉末で置換
した焼結体粉砕粉末中の粉末粒径と高分子複合磁石の磁
石特性との関係を示す図である。 置換した粉末粒径(μm) 第2図 1喚した粉末粒径(PTrL) 第3図 置換した粉彩ひ径(胛)
FIG. 1 is a diagram showing the relationship between the powder particle size in the sintered compact pulverized powder substituted with the hot plastically worked compact powder in Example 1 and the magnetic properties of the polymer composite magnet. FIG. 3 is a diagram showing the relationship between the powder particle size in the sintered compact crushed powder substituted with the liquid quenched alloy powder in Example 2 and the magnetic properties of the polymer composite magnet, and FIG. FIG. 3 is a diagram showing the relationship between the powder particle size in the substituted sintered compact powder and the magnetic properties of the polymer composite magnet. Replaced powder particle size (μm) Figure 2 Replaced powder particle size (PTrL) Figure 3 Replaced powder particle size (PTrL)

Claims (1)

【特許請求の範囲】[Claims] 1.Nd,Fe,Bを主成分として含有するR_2T_
1_4B(但し、RはY及び希土類元素、Tは遷移金属
)系合金粉末を高分子樹脂を用いて高分子複合型磁石を
製造する方法において、前記R_2T_1_4B系合金
粉末は、R_2T_1_4B系合金インゴット粉末から
生成した焼結体を微粉砕してなる焼結体粉末の粒径30
μm以下の粉末粒子を、R_2T14B系合金インゴッ
トから液体急冷法で作製した急冷合金粉末で置換したも
のよりなることを特徴とする高分子複合型希土類磁石の
製造方法。
1. R_2T_ containing Nd, Fe, and B as main components
In a method for manufacturing a polymer composite magnet using a polymer resin and a 1_4B (where R is Y and a rare earth element, and T is a transition metal) alloy powder, the R_2T_1_4B alloy powder is made from an R_2T_1_4B alloy ingot powder. Particle size of sintered body powder obtained by finely pulverizing the generated sintered body is 30
A method for producing a polymer composite rare earth magnet, characterized in that powder particles of μm or less are replaced with rapidly solidified alloy powder produced from an R_2T14B alloy ingot by a liquid quenching method.
JP63178180A 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet Expired - Fee Related JPH0775204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63178180A JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63178180A JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Publications (2)

Publication Number Publication Date
JPH0228901A true JPH0228901A (en) 1990-01-31
JPH0775204B2 JPH0775204B2 (en) 1995-08-09

Family

ID=16044003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63178180A Expired - Fee Related JPH0775204B2 (en) 1988-07-19 1988-07-19 Method for manufacturing polymer composite rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0775204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547525A (en) * 1991-08-09 1993-02-26 Sankyo Seiki Mfg Co Ltd Rare earth bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547525A (en) * 1991-08-09 1993-02-26 Sankyo Seiki Mfg Co Ltd Rare earth bonded magnet

Also Published As

Publication number Publication date
JPH0775204B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
EP0924717B1 (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPS62169403A (en) Manufacture of polymer composite type rare earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02205305A (en) Manufacture of high-molecular composite type rare earth magnet
JPH02162704A (en) Manufacture of permanent magnet
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPS63286515A (en) Manufacture of permanent magnet
JPH02118054A (en) Permanent magnet material
JPH0278205A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPH024942A (en) Permanent magnetic alloy
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH02257603A (en) Bonded magnet
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees