JPH02257603A - Bonded magnet - Google Patents

Bonded magnet

Info

Publication number
JPH02257603A
JPH02257603A JP1076774A JP7677489A JPH02257603A JP H02257603 A JPH02257603 A JP H02257603A JP 1076774 A JP1076774 A JP 1076774A JP 7677489 A JP7677489 A JP 7677489A JP H02257603 A JPH02257603 A JP H02257603A
Authority
JP
Japan
Prior art keywords
bonded magnet
powder
magnetic
magnetic field
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076774A
Other languages
Japanese (ja)
Inventor
Kurimasa Kobayashi
小林 久理真
Yasuhiko Iriyama
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1076774A priority Critical patent/JPH02257603A/en
Publication of JPH02257603A publication Critical patent/JPH02257603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form an anisotropic bonded magnet only by a simple process by a method wherein a specific magnetic material is contained. CONSTITUTION:A magnetic material expressed by a formula of RealphaFe(100-alpha-beta-gamma) NbetaHgamma is contained. In this formula Re represents at least one kind out of rare- earth elements including Y; alpha, beta and gamma represent 5<=alpha<=20, 5<=beta<=30 and 0.01<=gamma<=10, respectively, in terms of their atomic %. A pulverulent body of this magnetic material is kneaded with a binder; after that, this mixture is compressed or injection-molded in a magnetic field or in a state that the magnetic field does not exist; alternatively, after a powdered molded substance has been formed in the magnetic field, it is impregnated with the binder or pressed and formed. Thereby, it is possible to form an anisotropic bonded magnet by a simple and easy method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微粒化しても保磁力の低ドしない箱土類一鉄一
窒素一水素系組成を有する磁性粉体を用いて作製するボ
ンド磁石に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a bonded magnet manufactured using magnetic powder having a box-earth-iron-nitrogen-hydrogen composition that does not cause a decrease in coercive force even when it is atomized. Regarding.

[従来の技術] 永久磁石の高性能化に対する要求は近年とみに大きくな
っている。高性能磁石は、従来は焼結磁石に限られ、そ
の最大エネルギー< (Bit)、、、 >積は例えば
Sm−Co系磁石で208GOc以上、Nd−Fe−B
系磁石で35〜40MGOc以上に達している。しかし
、焼結磁石は機械的応力による割れ、欠けが発生し易く
、成形性か劣っている。また、比較的重い祠質が多い。
[Prior Art] The demand for higher performance of permanent magnets has been increasing in recent years. Conventionally, high-performance magnets have been limited to sintered magnets, and their maximum energy <(Bit)...> product is, for example, 208 GOc or more for Sm-Co magnets, and
The system magnet has reached 35-40 MGOc or more. However, sintered magnets are prone to cracking and chipping due to mechanical stress, and have poor formability. Also, there are many relatively heavy shrines.

一方、プラスチック・マグネット(ブラフグ)あるいは
ボンド磁石は磁性粉体と合成ゴム又はプラスチックの粉
末を組み合わせた複合材料であり、磁気特性は焼結磁石
の 1/2〜l/3に低減するものの加工性に優れ、複
雑形状品の成型や異種材料との複合化も可能である上に
、コスト、工程面でも大きな長所を合している。
On the other hand, plastic magnets (brafugu) or bonded magnets are composite materials that combine magnetic powder and synthetic rubber or plastic powder, and although their magnetic properties are reduced to 1/2 to 1/3 that of sintered magnets, they are easier to work with. In addition to being capable of molding complex-shaped products and combining with different materials, it also has great advantages in terms of cost and process.

ボンド磁石は圧縮成型と射出成型の2つに大別され、バ
インダーとしては合成ゴム、ナイロン、エポキシ樹脂な
どが用いられてきた。
Bonded magnets are broadly divided into compression molding and injection molding, and synthetic rubber, nylon, epoxy resin, etc. have been used as binders.

射出成型によるボンド磁石としては磁性粉体としててS
 m Co s 、S m 2 Ca +rなどが用い
られ、これらをPBT (ポリブチレンテレフタレート
)、PP5(ポリフェニレンサルファイド)さらに液晶
ポリマーなどと混練し、造粒した後、磁場中で射出成型
する。
As a bonded magnet made by injection molding, S is used as a magnetic powder.
mCos, Sm2Ca+r, etc. are used, and these are kneaded with PBT (polybutylene terephthalate), PP5 (polyphenylene sulfide), and a liquid crystal polymer, granulated, and then injection molded in a magnetic field.

圧縮成形によるボンド磁石としては、磁性粉体としてN
d−Fe−B系が多く用いられ、バインダーとしてはエ
ポキシ、フェノ争−ル樹脂などが多用されている。これ
は磁場中の圧縮成型後、加熱硬化(キユアリング)によ
り作製される。
As a bonded magnet made by compression molding, N is used as magnetic powder.
d-Fe-B is often used, and epoxy, phenolic resin, etc. are often used as binders. This is produced by compression molding in a magnetic field and then heat curing.

一般に工程面、応用面では射出成型ボンド磁石が優れて
いるが、物性、とくに高磁気特性という点では圧縮成型
磁石の方が優れている。
In general, injection molded bonded magnets are superior in terms of process and application, but compression molded magnets are superior in terms of physical properties, especially high magnetic properties.

磁気特性に関してはSm−Co系、Nd−Fe−B系の
いずれを用いる場合でも、高磁気特性を得るためには磁
性粉体の熱処理、もしくはボンド磁石成形時の成形加工
技術などが重要である。たとえば、Sm−Co系では母
合金の多段時効処理が必要であり、最高エネルギー積で
13〜17MGOc程度のボンド磁石では、コストは高
くなる。
Regarding magnetic properties, regardless of whether Sm-Co or Nd-Fe-B is used, in order to obtain high magnetic properties, heat treatment of magnetic powder or molding technology during bonded magnet molding is important. . For example, in the Sm--Co system, multi-stage aging treatment of the master alloy is required, and a bonded magnet with a maximum energy product of about 13 to 17 MGOc is expensive.

一方、Nd−Fe−B系では微粉砕によってバルクとし
ての特性が損なわれ、保持力の大幅な低下により(ni
l)□、値が小さくなってしまう。しかIJ %等方性
のボンド磁石が実用化されており、(Bll) 、、、
はほぼ6〜lOMGOeである。
On the other hand, in the Nd-Fe-B system, the bulk properties are lost due to fine pulverization, and the holding force is significantly reduced (ni
l) □, the value becomes small. However, IJ% isotropic bonded magnets have been put into practical use, and (Bll)...
is approximately 6-1 OMGOe.

この磁性粉体を用いた磁石では10MGOe以上の(B
ll)3.、を得るためにはホットプレスや、圧縮異方
化の工程により、−度、高物性の粉体を作製し、異方性
のボンド磁石を作製する必要があるが、実用化のための
困難が多い。
A magnet using this magnetic powder has more than 10 MGOe (B
ll)3. In order to obtain , it is necessary to create a powder with high physical properties and anisotropy by hot pressing or compression anisotropy process, and to create an anisotropic bonded magnet, but it is difficult to put it into practical use. There are many.

[発明が解決しようとする課題] 本発明は先願の希土類−鉄一窒索一水素系の新規な磁性
材料の特性である粉体における高い磁気特性を利用17
て、r11純な工程のみで作製し得る異方性ボンド磁石
を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention utilizes the high magnetic properties of the powder, which are the characteristics of the novel magnetic material of the rare earth-iron-nitrogen-hydrogen system disclosed in the prior application17.
Therefore, the present invention aims to provide an anisotropic bonded magnet that can be manufactured using only r11 simple steps.

[課題を解決するための手段コ 上記課題を解決するための本発明のボンド磁石は (1)一般式Re 、 F e floO−a−1−y
l N s Hvで表わされる磁性材料を含有するボン
ド磁石。
[Means for Solving the Problems] The bonded magnet of the present invention for solving the above problems has the following general formula: (1) Re, FefloO-a-1-y
A bonded magnet containing a magnetic material represented by l N s Hv.

ただし、ReはYを含む希土類元素のうち少なくとも一
種、α、β、γはそれぞれの原子百分率で 5≦α≦20 5≦β≦30 0.01≦γ≦l0 (2)磁性材料の成分であるFeの(1,1)1〜50
原子%をCoで置換1.た上記請求項(1)記載のボン
ド磁石である。
However, Re is at least one rare earth element including Y, and α, β, and γ are the respective atomic percentages of 5≦α≦20 5≦β≦30 0.01≦γ≦l0 (2) Components of magnetic material (1,1)1~50 of certain Fe
Replacement of atomic % with Co1. The bonded magnet according to claim (1) above.

本発明のボンド磁石を製造するには、上記請求項(1)
または(2)における磁性材料の粉体をバインダーと混
練した後に磁場中または磁場のない状態で圧縮または射
出成形するか、圧粉成形体を磁場中で作製後バインダー
を含浸させるか、圧入するのが好ましい。
In order to manufacture the bonded magnet of the present invention, the above-mentioned claim (1) is required.
Alternatively, in (2), the powder of the magnetic material is kneaded with a binder and then compressed or injection molded in a magnetic field or in the absence of a magnetic field, or the compact is produced in a magnetic field and then impregnated with a binder or press-fitted. is preferred.

ここで圧縮成形とは磁性粉体とバインダーを混合し、こ
れを金型に入れ、磁場中で圧縮して成形し、バインダー
を加熱硬化させることをさし、射出成形とは同混合物を
加熱混練l−て、造粒後、金型を用い、磁場中で射出成
形することをさす。なお、成形後の磁石は必要に応じ消
磁、もしくは着磁を施す。また圧粉成形体を作製し、そ
れにパインターを含浸もしくは圧入させるタイプのボン
ド磁石では、成形時の磁場引加のa無、最終的な消磁も
しくは着磁などの処理により、異方性、等方性のいずれ
のボンド磁石も作製可能であるが、ここでは異方性ボン
ド磁石を簡便な手法で作製し得ることを示す。
Here, compression molding refers to mixing magnetic powder and a binder, placing it in a mold, compressing and molding in a magnetic field, and heating and hardening the binder.Injection molding refers to heating and kneading the same mixture. l- refers to injection molding in a magnetic field using a mold after granulation. Note that the magnet after molding is demagnetized or magnetized as necessary. In addition, in the case of bonded magnets in which a powder compact is produced and pinter is impregnated or press-fitted into it, anisotropy, isotropy, etc. Although any type of bonded magnet can be manufactured, we will show here that an anisotropic bonded magnet can be manufactured using a simple method.

製造方法 本発明におけるボンド磁石の製造方程の工程を第1図に
示す。
Manufacturing Method The steps of manufacturing a bonded magnet in the present invention are shown in FIG.

(1)母合金の合成では希土類−鉄系合金を合成する。(1) In the synthesis of the master alloy, a rare earth-iron alloy is synthesized.

(2)粗粉砕、 (3)窒化、水素化で本発明における磁性粉体(RFN
H系磁性粉体)を作製し得る。
(2) Coarse pulverization, (3) Nitriding and hydrogenation to produce magnetic powder (RFN) in the present invention.
H-based magnetic powder) can be produced.

(4)微粉砕はおもに保磁力の最適化処理である。(4) Fine pulverization is mainly a coercive force optimization process.

(5)ボンド磁石作製工程は主に3種類の方法をかある
(5) There are mainly three methods for manufacturing bonded magnets.

以下、これらの各工程について説明する。Each of these steps will be explained below.

(1)母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、又液体
超急冷法によっても作製できる。その組成はReが5〜
25原子%、Feが75〜95原子%の範囲にあること
が好ましい。Reが5原子%未満では合金中にα−Fe
相が多く存在し、高保磁力が得られない。また、Reが
25原子%を越えると高い飽和磁束密度が得られない。
(1) Synthesis of master alloy The raw material alloy can be produced by a high frequency furnace, an arc melting furnace, or by a liquid super-quenching method. Its composition is Re 5~
It is preferable that Fe is in the range of 25 at% and 75 to 95 at%. When Re is less than 5 at%, α-Fe is present in the alloy.
There are many phases and high coercive force cannot be obtained. Furthermore, if Re exceeds 25 atomic %, a high saturation magnetic flux density cannot be obtained.

高周波炉及びアーク溶解炉を用いた場合、溶融状態から
合金が凝固する際にFeが析出し易く、このことは磁気
特性、とくに保磁力の低下をひきおこす。そこでFe単
体での相を消失させ、合金の組成の均一化および結晶性
の向上を目的として焼鈍を行うことが有効である。この
焼鈍は1000℃〜1800℃で行う場合に効果が顕著
である。この方法で作製した合金は液体超急冷法などと
比較して結晶性が良好であり、高い飽和磁化をイfして
いる。
When a high frequency furnace or an arc melting furnace is used, Fe tends to precipitate when the alloy solidifies from a molten state, which causes a decrease in magnetic properties, particularly coercive force. Therefore, it is effective to perform annealing for the purpose of eliminating the phase of Fe alone, making the alloy composition uniform, and improving crystallinity. This annealing is most effective when performed at 1000°C to 1800°C. The alloy produced by this method has better crystallinity and higher saturation magnetization than those produced by the liquid ultra-quenching method.

液体超急冷法、ロール回転法などの合金作製法でも、目
的組成の合金を作製できる。しかも、これらの方法によ
り作製した合金の結晶粒は微細であり、条件によっては
サブミクロンの粒子も調製できる。ただし、冷却速度が
大きい場合には合金の非晶質化が起こり、窒化、水素化
後にも飽和磁化、保磁力が他の方法はど上昇しない。こ
の場合にも焼鈍等の後処理が必要である。
Alloys with the desired composition can also be produced using alloy production methods such as the liquid super-quenching method and the roll rotation method. Moreover, the crystal grains of the alloys produced by these methods are fine, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and even after nitriding and hydrogenation, the saturation magnetization and coercive force do not increase as much as with other methods. In this case as well, post-treatment such as annealing is required.

(2)粗粉砕 この段階の粉砕はショークラッシャー スタンプミルの
ような粗粉のみを調製するような方法でもよいし、ボー
ルミル、ジェットミルによっても条件次第で可能である
。しかし、この粉砕は次の段階における窒化、水素化を
均一に行わしめるためのものであり、その条件とあわせ
て十分な反応性を有し、かつ酸化は進行しない粉体状態
に調製することが重要である。
(2) Coarse pulverization The pulverization at this stage may be performed using a method such as a Shaw Crusher stamp mill that prepares only coarse powder, or may be performed using a ball mill or jet mill depending on the conditions. However, this pulverization is for the purpose of uniformly performing the nitriding and hydrogenation in the next step, and it is necessary to prepare a powder state that has sufficient reactivity and does not progress to oxidation. is important.

(3)窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしくは
含浸させる方法としては原料合金粉末をアンモニアガス
或いはアンモニアガスを含む還元性の混合ガス中で加圧
あるいは加熱処理する方法が有効である。合金中に含ま
れる窒素及び水素量はアンモニアガス含有混合ガスの混
合成分比、及び加熱温度、加圧力、処理時間によって制
御し得る。
(3) Nitriding and Hydrogenation A method for combining or impregnating nitrogen and hydrogen into the pulverized raw material master alloy is to pressurize or heat-treat the raw material alloy powder in ammonia gas or a reducing mixed gas containing ammonia gas. The method is valid. The amount of nitrogen and hydrogen contained in the alloy can be controlled by the mixture component ratio of the ammonia gas-containing mixed gas, heating temperature, pressurizing force, and treatment time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及びア
ルゴンのいずれか、もしくは2種以上とアンモニアガス
を混合したガスが有効である。混合比は処理条件との関
連で変化させ得るが、アンモニアガス分圧としては、と
くに0.02〜0.75atmが有効であり、処理温度
は200〜700℃の範囲が好ましい。低温では侵入速
度が小さく、700℃以上の高温では鉄の窒化物が生成
し、磁気特性は低下する。加圧処理では1Oate程度
の加圧でも窒素、水素の含有量を変化させ得る。
As the mixed gas, a mixture of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. Although the mixing ratio can be changed depending on the treatment conditions, it is particularly effective to use ammonia gas partial pressure of 0.02 to 0.75 atm, and the treatment temperature is preferably in the range of 200 to 700°C. At low temperatures, the penetration rate is low, and at high temperatures of 700° C. or higher, iron nitrides are produced, and the magnetic properties deteriorate. In the pressure treatment, the contents of nitrogen and hydrogen can be changed even with a pressure of about 1 Oate.

この窒化、水素化の工程で注意すべき点は酸化であり、
雰囲気中に酸素が存在していると磁気特性は低下する。
The point to be careful about in this nitriding and hydrogenation process is oxidation.
Magnetic properties deteriorate if oxygen is present in the atmosphere.

従って、でき得る限り酸素分圧を低下させる必要がある
Therefore, it is necessary to lower the oxygen partial pressure as much as possible.

アンモニアガス以外のガスを窒化、水素化雰囲気の主成
分とすると、反応効率は著しく低下する。しかし、たと
えば水素ガスと窒素ガスの混合ガスを用い長時間反応を
行うと窒素及び水素の導入は可能である。
If a gas other than ammonia gas is used as the main component of the nitriding or hydrogenation atmosphere, the reaction efficiency will be significantly reduced. However, it is possible to introduce nitrogen and hydrogen, for example, by carrying out a long reaction using a mixed gas of hydrogen gas and nitrogen gas.

(4)微粉砕 窒化・水素化後の粗粉はそのままでも飽和磁化13KG
、保磁力500〜7000cを有しているが、これを振
動ボールミル、遊昆ボールミル、さらに回転型の通常の
ポット型ボールミルで粉砕することにより、保磁力を8
0000c程度まで向上させることが可能である。通常
磁化は多少低下するが、必要な磁化、保磁力を有する粉
体をこの微粉砕条件の設定で得ることができる。
(4) The coarse powder after pulverization, nitriding and hydrogenation has a saturation magnetization of 13KG as it is.
, has a coercive force of 500 to 7000c, but by grinding it with a vibrating ball mill, a Yukon ball mill, and a rotary ordinary pot-type ball mill, the coercive force can be reduced to 8.
It is possible to improve it to about 0000c. Normally, the magnetization decreases to some extent, but powder having the required magnetization and coercive force can be obtained by setting these pulverization conditions.

(5)ボンド磁石作製 ここではRFNH系磁性粉体を用いて作製するボンド磁
石の典型的な作成法を3例示す。ただし、磁場配向の工
・程など、工程の細部はこれらに限定するものではない
(5) Bonded magnet production Here, three typical methods for producing bonded magnets using RFNH-based magnetic powder will be shown. However, the details of the process, such as the process of magnetic field orientation, are not limited to these.

(A)圧縮成形 RFNH系磁性粉体の磁気特性を調整後、エポキシ樹脂
、フェノール樹脂、合成ゴムなどのバインダーと混合し
、金型中へ必要量を移し、磁場中で圧縮成形する。これ
を加熱硬化した後、金型から取り出し、青磁もしくは消
磁して最終的な成形磁石とする。
(A) Compression molding After adjusting the magnetic properties of the RFNH magnetic powder, it is mixed with a binder such as epoxy resin, phenol resin, or synthetic rubber, and the required amount is transferred into a mold and compression molded in a magnetic field. After this is heated and hardened, it is removed from the mold and is made into celadon or demagnetized to form the final molded magnet.

(B)射出成形 RFNH系磁性粉体の磁気特性を調整後、ポリアミド、
ポリブチレンテレフタレート、ポリフェニレンサルファ
イド、液晶ポリマーなどと混合後、混練し、造粒した後
、金型を用いて射出成形する。この成形体に着磁もしく
は消磁を施し、成形磁石とする。
(B) After adjusting the magnetic properties of injection molded RFNH-based magnetic powder, polyamide,
After mixing with polybutylene terephthalate, polyphenylene sulfide, liquid crystal polymer, etc., it is kneaded, granulated, and then injection molded using a mold. This molded body is magnetized or demagnetized to form a molded magnet.

(C)圧粉成形 RFNH系磁性粉体の磁気特性を調整後、磁場中で金型
を用い加圧成形する。この成形体を取り出し、ポリマー
 もしくはポリマーとその硬化剤を混合したものを、ト
ルエン、エタノール、シクロヘキサンなどの可溶解性溶
媒に溶解し、成形体中へ含浸もしくは圧入して、その後
溶媒を揮発させて乾燥する。これに着磁を施して、異方
性ボンド磁石とする。
(C) Powder Molding After adjusting the magnetic properties of the RFNH-based magnetic powder, it is pressure molded using a mold in a magnetic field. This molded body is taken out, and the polymer or a mixture of the polymer and its curing agent is dissolved in a soluble solvent such as toluene, ethanol, or cyclohexane, impregnated or press-fitted into the molded body, and then the solvent is evaporated. dry. This is magnetized to form an anisotropic bonded magnet.

[実施例コ 以下に本発明を実施例によって、具体的に説明する。[Example code] The present invention will be specifically explained below using examples.

実施例l Sm11Fe87組成の合金を高周波溶融法で作製し、
この合成を1250℃Ar雰囲気中で約3時間アニール
し、S m lo、5F e 89.母合金を調製した
Example 1 An alloy with a composition of Sm11Fe87 was produced by high frequency melting method,
This synthesis was annealed at 1250° C. in an Ar atmosphere for about 3 hours, and S m lo, 5F e 89. A master alloy was prepared.

この母合金を1約100μIになる程度に粗粉砕して、
アンモニア−水素雰囲気[N H3(20)−H2(8
0)1 465℃でN、Hを構造中へ導入して、S m
s、5 F e 72.、N 、7H2□組成の磁性粉
体を作製する。この粉体をH2中、465℃でアニール
した後、150℃大気中でさらにアニールして、振動ボ
ールミルで微粉砕して飽和磁化12KG。
This master alloy is coarsely ground to about 100 μI,
Ammonia-hydrogen atmosphere [NH3(20)-H2(8
0) 1 By introducing N and H into the structure at 465°C, S m
s, 5 F e 72. , N , 7H2□ magnetic powder is produced. This powder was annealed at 465°C in H2, further annealed at 150°C in the atmosphere, and finely pulverized in a vibrating ball mill to give a saturation magnetization of 12KG.

保磁力45000eの磁性粉体を得た。Magnetic powder with a coercive force of 45,000e was obtained.

この粉体0.5gとエポキシ接着剤(2液温合型)を0
.4g混合し、これをセラミックス製の型に移し、一つ
はそのまま50分間硬化させ、他にもう一つを15KO
eの磁場中で50分間硬化させた。
Add 0.5g of this powder and epoxy adhesive (2-component hot type) to 0.0g.
.. Mix 4g, transfer this to a ceramic mold, let one harden for 50 minutes, and the other 15KO.
Cure for 50 minutes in a magnetic field of e.

これらの成形体を15KOeの磁場中で着磁して振動試
料型磁力計(VSM装置)を用いて測定した。
These compacts were magnetized in a magnetic field of 15 KOe and measured using a vibrating sample magnetometer (VSM device).

”j3磁は80)[Ocで行なった。``J3 magnet was performed at 80) [Oc.

実施例3 実施例1の粉体及びこの粉体の製法中、Feの50原子
%をCOで置換した母合金と実施例1の出発合金および
その組成をSm、□、5Fe87.5とした出発合金を
用いて実施例1と同様の処理を施し、以下に示す組成と
磁気特性を有する4g1石磁は60KOcで行なった。
Example 3 The powder of Example 1 and the method for producing this powder, the mother alloy in which 50 at. The alloy was subjected to the same treatment as in Example 1, and a 4g1 magnet having the composition and magnetic properties shown below was treated at 60KOc.

実施例2 実施例1の粉体を用いて、この粉体100gと8−ナイ
ロン50gを混練し、5〜IOamの円柱状チップに裁
断し、射出成形器により窒素雰囲気中250℃で3mm
812mmの断面を有する金型に射ち込み、棒状の成形
体を得た。
Example 2 Using the powder of Example 1, 100 g of this powder and 50 g of 8-nylon were kneaded, cut into cylindrical chips of 5 to IOam, and molded with an injection molder at 250°C in a nitrogen atmosphere to a size of 3 mm.
The mixture was poured into a mold having a cross section of 812 mm to obtain a rod-shaped molded product.

保磁力(Idle)   4.7KOe残留磁化(Br
)  6.5KOe (Bll) 、、、    6.3MGOeこれらの粉
体各0.5gづつを15KOcの磁場中で10ton/
cm 2で5m1IX lOmn+X約0 、5+mの
圧粉成形体にした。これに対して、トルエンに5wt%
溶解したインブレンゴムを含浸させ、乾燥させた。
Coercive force (Idle) 4.7KOe Residual magnetization (Br
) 6.5KOe (Bll) , , , 6.3MGOe 0.5g each of these powders were heated at 10ton/min in a magnetic field of 15KOc.
It was made into a powder compact of 5+ m and 5 m 1 IX lOmn+X in cm 2 . On the other hand, 5 wt% in toluene
Impregnated with dissolved Inbrene rubber and dried.

これを60KOeの磁場中で着磁した。以下の特性のボ
ンド磁石が得られた。
This was magnetized in a magnetic field of 60 KOe. A bonded magnet with the following characteristics was obtained.

[発明の効果] 以上説明したように、本発明の希土類(Re)鉄(Fe
)−窒素(N)−水素(H)系磁性材料(RFNH磁性
粉体)では、磁気異方性、保磁力などをそこなうことな
く、微粉砕が可能であり、さらに構造中にN、Hを導入
した時点でただちに高磁気特性が発現するため熱処理、
ホットプレスなどをT捏上はふくことも可能である。
[Effect of the invention] As explained above, the rare earth (Re) iron (Fe) of the present invention
)-Nitrogen (N)-Hydrogen (H) based magnetic material (RFNH magnetic powder) can be finely pulverized without damaging magnetic anisotropy, coercive force, etc. Heat treatment is required to immediately develop high magnetic properties upon introduction.
It is also possible to wipe the hot press etc.

【図面の簡単な説明】 第1図は本発明のボンド磁石の製造工程図である。[Brief explanation of drawings] FIG. 1 is a manufacturing process diagram of the bonded magnet of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式Re_αFe_(_1_0_0_−_α_
β_γ_)N_βH_γで表わされる磁性材料を含有す
るボンド磁石。 ただし、ReはYを含む希土類元素のうち 少なくとも一種、α、β、γはそれぞれの原子百分率で 5≦α≦20 5≦β≦30 0.01≦γ≦10
(1) General formula Re_αFe_(_1_0_0_−_α_
A bonded magnet containing a magnetic material represented by β_γ_)N_βH_γ. However, Re is at least one rare earth element including Y, and α, β, and γ are each atomic percentage of 5≦α≦20 5≦β≦30 0.01≦γ≦10
(2)磁性材料の成分であるFeの0.01〜50原子
%をCoで置換したことを特徴とする上記請求項(1)
記載のボンド磁石。
(2) Claim (1) above, characterized in that 0.01 to 50 atomic % of Fe, which is a component of the magnetic material, is replaced with Co.
Bonded magnet as described.
JP1076774A 1989-03-30 1989-03-30 Bonded magnet Pending JPH02257603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076774A JPH02257603A (en) 1989-03-30 1989-03-30 Bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076774A JPH02257603A (en) 1989-03-30 1989-03-30 Bonded magnet

Publications (1)

Publication Number Publication Date
JPH02257603A true JPH02257603A (en) 1990-10-18

Family

ID=13614936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076774A Pending JPH02257603A (en) 1989-03-30 1989-03-30 Bonded magnet

Country Status (1)

Country Link
JP (1) JPH02257603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609695A (en) * 1993-12-21 1997-03-11 Matsushita Electric Industrial Co., Ltd. Method for producing alloy powder of the R2 T17 system, a method for producing magnetic powder of the R2 T17 Nx system, and a high pressure heat-treatment apparatus
JP2020053436A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609695A (en) * 1993-12-21 1997-03-11 Matsushita Electric Industrial Co., Ltd. Method for producing alloy powder of the R2 T17 system, a method for producing magnetic powder of the R2 T17 Nx system, and a high pressure heat-treatment apparatus
US5776263A (en) * 1993-12-21 1998-07-07 Matsushita Electric Industrial Co., Ltd. Method for producing alloy powder of the R2T17 system, a method for producing magnetic powder of the of the R2T17NX system, and a high pressure heat-treatment apparatus
JP2020053436A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Method of manufacturing rare earth magnet

Similar Documents

Publication Publication Date Title
KR20130030896A (en) Manufacturing method for bonded magnet
JPH08316014A (en) Magnet and its manufacture
JPS62198103A (en) Rare earth-iron permanent magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH02257603A (en) Bonded magnet
JPS6112001B2 (en)
JP2708578B2 (en) Bonded magnet
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP2926161B2 (en) Manufacturing method of permanent magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPS62281307A (en) Nd-fe-b plastic magnet and its manufacture
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP2892013B2 (en) Manufacturing method of rare earth plastic magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPS62281308A (en) Manufacture of nd-fe-b plastic magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JP2004303881A (en) Manufacturing method for r-t-n magnet powder
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JP2992808B2 (en) permanent magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
KR20010002365A (en) Method of Manufacturing a Fragrance Emitting Lodestone
JPH02106906A (en) Manufacture of polymer composite type rare earth magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet